search.py 37.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
Chengmo 已提交
14
from __future__ import print_function
15
import numpy as np
C
Chengmo 已提交
16 17
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
18
from ..fluid import core, layers
19 20 21 22
from paddle.common_ops_import import in_dygraph_mode
from paddle.common_ops_import import convert_np_dtype_to_dtype_
from paddle.common_ops_import import Variable
from paddle.common_ops_import import VarDesc
W
wanghuancoder 已提交
23
from paddle import _C_ops
24

25
# TODO: define searching & indexing functions of a tensor  
26 27
# from ..fluid.layers import has_inf  #DEFINE_ALIAS
# from ..fluid.layers import has_nan  #DEFINE_ALIAS
28

29 30
__all__ = []

31

32 33
def argsort(x, axis=-1, descending=False, name=None):
    """
W
wawltor 已提交
34
    This OP sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: sorted indices(with the same shape as ``x``
        and with data type int64).

    Examples:
李灿 已提交
54

55
        .. code-block:: python
李灿 已提交
56

57 58
            import paddle
            
59 60 61 62 63 64 65
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                dtype='float32')
66 67 68
            out1 = paddle.argsort(x=x, axis=-1)
            out2 = paddle.argsort(x=x, axis=0)
            out3 = paddle.argsort(x=x, axis=1)
N
Noel 已提交
69
            print(out1)
W
wawltor 已提交
70 71 72
            #[[[0 3 1 2]
            #  [0 1 2 3]
            #  [2 3 0 1]]
73
            # [[1 3 2 0]
W
wawltor 已提交
74 75
            #  [0 1 2 3]
            #  [2 0 3 1]]]
N
Noel 已提交
76
            print(out2)
W
wawltor 已提交
77 78 79 80 81 82
            #[[[0 1 1 1]
            #  [0 0 0 0]
            #  [1 1 1 0]]
            # [[1 0 0 0]
            #  [1 1 1 1]
            #  [0 0 0 1]]]
N
Noel 已提交
83
            print(out3)
W
wawltor 已提交
84 85 86 87 88 89
            #[[[1 1 1 2]
            #  [0 0 2 0]
            #  [2 2 0 1]]
            # [[2 0 2 0]
            #  [1 1 0 2]
            #  [0 2 1 1]]]
90 91
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
92
        _, ids = _C_ops.argsort(x, 'axis', axis, 'descending', descending)
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        return ids
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort')

    helper = LayerHelper("argsort", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
        inputs={'X': x},
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
    return ids


113
def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
114 115 116 117 118
    """
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.

    Args:
W
wawltor 已提交
119
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
120 121
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
W
wawltor 已提交
122 123 124
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
        keepdim(bool, optional): Keep the axis that selecting max. The defalut value is False.
125 126 127
        dtype(str|np.dtype, optional): Data type of the output tensor which can
                    be int32, int64. The default value is 'int64', and it will
                    return the int64 indices.
128 129 130
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
131 132

    Returns:
W
wawltor 已提交
133
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`
134 135 136 137

    Examples:
        .. code-block:: python

W
wawltor 已提交
138
            import paddle
139

140 141 142
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
143
            out1 = paddle.argmax(x)
N
Noel 已提交
144
            print(out1) # 2
W
wawltor 已提交
145
            out2 = paddle.argmax(x, axis=1)
N
Noel 已提交
146
            print(out2) 
W
wawltor 已提交
147 148
            # [2 3 1]
            out3 = paddle.argmax(x, axis=-1)
N
Noel 已提交
149
            print(out3) 
W
wawltor 已提交
150
            # [2 3 1]
151
    """
152 153 154 155
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmax, but received %s."
            % (type(axis)))
156

157 158 159 160
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmax could not be None, but received None"
        )
161

162
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
163 164 165 166 167 168
    flatten = False
    if axis is None:
        flatten = True
        axis = 0

    if in_dygraph_mode():
W
wanghuancoder 已提交
169 170
        out = _C_ops.arg_max(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                             keepdim, 'flatten', flatten)
W
wawltor 已提交
171 172 173 174 175 176
        return out

    helper = LayerHelper("argmax", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmax')
177
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
178
    attrs = {}
W
wawltor 已提交
179 180 181 182
    out = helper.create_variable_for_type_inference(var_dtype)
    attrs['keepdims'] = keepdim
    attrs['axis'] = axis
    attrs['flatten'] = flatten
183
    attrs['dtype'] = var_dtype
W
wawltor 已提交
184 185 186 187 188 189
    helper.append_op(
        type='arg_max', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
    out.stop_gradient = True
    return out


190
def argmin(x, axis=None, keepdim=False, dtype="int64", name=None):
W
wawltor 已提交
191 192 193 194 195 196 197 198 199 200
    """
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
201
        keepdim(bool, optional): Keep the axis that selecting min. The defalut value is False.
W
wawltor 已提交
202
        dtype(str): Data type of the output tensor which can
203
                    be int32, int64. The default value is 'int64', and it will
W
wawltor 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216
                    return the int64 indices.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`

    Examples:
        .. code-block:: python

            import paddle

217 218 219
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
220
            out1 = paddle.argmin(x)
N
Noel 已提交
221
            print(out1) # 4
W
wawltor 已提交
222
            out2 = paddle.argmin(x, axis=1)
N
Noel 已提交
223
            print(out2) 
W
wawltor 已提交
224 225
            # [0 0 2]
            out3 = paddle.argmin(x, axis=-1)
N
Noel 已提交
226
            print(out3) 
W
wawltor 已提交
227 228
            # [0 0 2]
    """
229 230 231 232
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmin, but received %s."
            % (type(axis)))
233

234 235 236 237
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmin could not be None, but received None"
        )
238

239
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
240
    flatten = False
241
    if axis is None:
W
wawltor 已提交
242 243 244 245
        flatten = True
        axis = 0

    if in_dygraph_mode():
W
wanghuancoder 已提交
246 247
        out = _C_ops.arg_min(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                             keepdim, 'flatten', flatten)
W
wawltor 已提交
248 249 250 251 252 253
        return out

    helper = LayerHelper("argmin", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmin')
254
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
255
    out = helper.create_variable_for_type_inference(var_dtype)
256
    attrs = {}
W
wawltor 已提交
257
    attrs['keepdims'] = keepdim
258
    attrs['axis'] = axis
W
wawltor 已提交
259
    attrs['flatten'] = flatten
260
    attrs['dtype'] = var_dtype
261
    helper.append_op(
W
wawltor 已提交
262
        type='arg_min', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
263 264
    out.stop_gradient = True
    return out
265 266


267
def index_select(x, index, axis=0, name=None):
268
    """
S
swtkiwi 已提交
269

270 271 272 273
    Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using 
    the entries in ``index`` which is a Tensor. The returned tensor has the same number 
    of dimensions as the original ``x`` tensor. The dim-th dimension has the same 
    size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor. 
C
Chengmo 已提交
274

275
    Args:
276 277 278
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64.
        axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0.
279 280 281
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
282 283

    Returns:
284
        Tensor: A Tensor with same data type as ``x``.
285
    
286 287
    Examples:
        .. code-block:: python
288
            
289 290
            import paddle

291 292 293 294
            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            index = paddle.to_tensor([0, 1, 1], dtype='int32')
295 296 297 298 299 300 301 302
            out_z1 = paddle.index_select(x=x, index=index)
            #[[1. 2. 3. 4.]
            # [5. 6. 7. 8.]
            # [5. 6. 7. 8.]]
            out_z2 = paddle.index_select(x=x, index=index, axis=1)
            #[[ 1.  2.  2.]
            # [ 5.  6.  6.]
            # [ 9. 10. 10.]]
303
    """
304

305
    if in_dygraph_mode():
W
wanghuancoder 已提交
306
        return _C_ops.index_select(x, index, 'dim', axis)
307

308 309 310
    helper = LayerHelper("index_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_select')
311
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
312
                             'paddle.tensor.search.index_select')
313

314
    out = helper.create_variable_for_type_inference(x.dtype)
315 316 317

    helper.append_op(
        type='index_select',
318
        inputs={'X': x,
319 320
                'Index': index},
        outputs={'Out': out},
321
        attrs={'dim': axis})
322 323 324
    return out


325
def nonzero(x, as_tuple=False):
326 327 328 329 330 331 332 333
    """
    Return a tensor containing the indices of all non-zero elements of the `input` 
    tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension 
    in `input`, each containing the indices (in that dimension) of all non-zero elements 
    of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If 
    as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the 
    number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get 
    a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1].
C
Chengmo 已提交
334

335
    Args:
336
        x (Tensor): The input tensor variable.
337 338 339
        as_tuple (bool): Return type, Tensor or tuple of Tensor.

    Returns:
340
        Tensor. The data type is int64.
341 342

    Examples:
343

N
Noel 已提交
344
        .. code-block:: python
李灿 已提交
345

346
            import paddle
347 348

            x1 = paddle.to_tensor([[1.0, 0.0, 0.0],
N
Noel 已提交
349 350
                                   [0.0, 2.0, 0.0],
                                   [0.0, 0.0, 3.0]])
351 352
            x2 = paddle.to_tensor([0.0, 1.0, 0.0, 3.0])
            out_z1 = paddle.nonzero(x1)
N
Noel 已提交
353
            print(out_z1)
354 355 356 357 358
            #[[0 0]
            # [1 1]
            # [2 2]]
            out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
            for out in out_z1_tuple:
N
Noel 已提交
359
                print(out)
360 361 362 363 364 365 366
            #[[0]
            # [1]
            # [2]]
            #[[0]
            # [1]
            # [2]]
            out_z2 = paddle.nonzero(x2)
N
Noel 已提交
367
            print(out_z2)
368 369 370 371
            #[[1]
            # [3]]
            out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
            for out in out_z2_tuple:
N
Noel 已提交
372
                print(out)
373 374
            #[[1]
            # [3]]
N
Noel 已提交
375

376 377
    """
    list_out = []
378
    shape = x.shape
379 380 381
    rank = len(shape)

    if in_dygraph_mode():
W
wanghuancoder 已提交
382
        outs = _C_ops.where_index(x)
383
    else:
384
        outs = layers.where(x)
385 386 387 388 389 390 391 392 393

    if not as_tuple:
        return outs
    elif rank == 1:
        return tuple([outs])
    else:
        for i in range(rank):
            list_out.append(
                layers.slice(
394
                    outs, axes=[1], starts=[i], ends=[i + 1]))
395 396 397
        return tuple(list_out)


398
def sort(x, axis=-1, descending=False, name=None):
399
    """
S
swtkiwi 已提交
400

W
wawltor 已提交
401
    This OP sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
C
Chengmo 已提交
402

403
    Args:
404
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
405 406 407 408 409 410 411 412 413 414 415
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
W
wawltor 已提交
416
        Tensor: sorted tensor(with the same shape and data type as ``x``).
417
    Examples:
N
Noel 已提交
418

419
        .. code-block:: python
N
Noel 已提交
420

421
            import paddle
N
Noel 已提交
422

423 424 425 426 427 428 429
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                 dtype='float32')
430 431 432
            out1 = paddle.sort(x=x, axis=-1)
            out2 = paddle.sort(x=x, axis=0)
            out3 = paddle.sort(x=x, axis=1)
N
Noel 已提交
433
            print(out1)
W
wawltor 已提交
434 435 436 437 438 439
            #[[[5. 5. 8. 9.]
            #  [0. 0. 1. 7.]
            #  [2. 4. 6. 9.]]
            # [[2. 2. 4. 5.]
            #  [4. 7. 7. 9.]
            #  [0. 1. 6. 7.]]]
N
Noel 已提交
440
            print(out2)
441
            #[[[5. 2. 4. 2.]
W
wawltor 已提交
442 443 444 445 446
            #  [0. 0. 1. 7.]
            #  [1. 7. 0. 4.]]
            # [[5. 8. 9. 5.]
            #  [4. 7. 7. 9.]
            #  [6. 9. 2. 6.]]]
N
Noel 已提交
447
            print(out3)
448
            #[[[0. 0. 1. 4.]
W
wawltor 已提交
449 450 451 452 453
            #  [5. 8. 2. 5.]
            #  [6. 9. 9. 7.]]
            # [[1. 2. 0. 2.]
            #  [4. 7. 4. 6.]
            #  [5. 7. 7. 9.]]]
454
    """
455
    if in_dygraph_mode():
W
wanghuancoder 已提交
456
        out, _ = _C_ops.argsort(x, 'axis', axis, 'descending', descending)
W
wawltor 已提交
457
        return out
458
    helper = LayerHelper("sort", **locals())
459 460
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=False)
461 462 463 464
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
465
        inputs={'X': x},
466 467 468 469
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
W
wawltor 已提交
470
    return out
C
Chengmo 已提交
471 472


473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
def mode(x, axis=-1, keepdim=False, name=None):
    """
    This OP is used to find values and indices of the modes at the optional axis.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle
           
           tensor = paddle.to_tensor([[[1,2,2],[2,3,3]],[[0,5,5],[9,9,0]]], dtype=paddle.float32)
           res = paddle.mode(tensor, 2)
           print(res)
           # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
           #   [[2., 3.],
           #    [5., 9.]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
           #   [[1, 1],
           #    [1, 0]]))
           
    """
    if in_dygraph_mode():
        return _C_ops.mode(x, "axis", axis, "keepdim", keepdim)

    helper = LayerHelper("mode", **locals())
    inputs = {"X": [x]}
    attrs = {}
    attrs['axis'] = axis
    attrs['keepdim'] = keepdim

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="mode",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices


R
ronnywang 已提交
526
def where(condition, x=None, y=None, name=None):
527
    r"""
528 529
    Return a tensor of elements selected from either $x$ or $y$, depending on $condition$.

R
ronnywang 已提交
530 531 532
    **Note**:
        ``paddle.where(condition)`` is identical to ``paddle.nonzero(condition, as_tuple=True)``.

533
    .. math::
C
Chengmo 已提交
534

535
      out_i =
R
ronnywang 已提交
536 537 538 539
      \begin{cases}
      x_i, \quad  \text{if}  \ condition_i \  is \ True \\
      y_i, \quad  \text{if}  \ condition_i \  is \ False \\
      \end{cases}
C
Chengmo 已提交
540

541

542
    Args:
G
GaoWei8 已提交
543
        condition(Tensor): The condition to choose x or y.
R
ronnywang 已提交
544 545
        x(Tensor, optional): x is a Tensor with data type float32, float64, int32, int64. Either both or neither of x and y should be given.
        y(Tensor, optional): y is a Tensor with data type float32, float64, int32, int64. Either both or neither of x and y should be given.
546 547 548 549 550

        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

551
    Returns:
G
GaoWei8 已提交
552
        Tensor: A Tensor with the same data dype as x. 
553

554 555 556
    Examples:
        .. code-block:: python

G
GaoWei8 已提交
557
          import paddle
558

559 560 561
          x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2])
          y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0])
          out = paddle.where(x>1, x, y)
562

G
GaoWei8 已提交
563
          print(out)
564
          #out: [1.0, 1.0, 3.2, 1.2]
R
ronnywang 已提交
565 566 567 568 569 570

          out = paddle.where(x>1)
          print(out)
          #out: (Tensor(shape=[2, 1], dtype=int64, place=CPUPlace, stop_gradient=True,
          #            [[2],
          #             [3]]),)
571
    """
R
ronnywang 已提交
572 573 574 575 576 577
    if x is None and y is None:
        return nonzero(condition, as_tuple=True)

    if x is None or y is None:
        raise ValueError("either both or neither of x and y should be given")

578
    if not in_dygraph_mode():
579
        check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
580
        check_variable_and_dtype(
581
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'where')
582
        check_variable_and_dtype(
583
            y, 'y', ['float32', 'float64', 'int32', 'int64'], 'where')
584

585
    condition_shape = list(condition.shape)
586 587
    x_shape = list(x.shape)
    y_shape = list(y.shape)
588

589
    if x_shape == y_shape and condition_shape == x_shape:
590 591 592 593 594 595 596 597 598 599
        broadcast_condition = condition
        broadcast_x = x
        broadcast_y = y
    else:
        if core.is_compiled_with_xpu():
            cond_int = layers.cast(condition, x.dtype)
            cond_not_int = layers.cast(layers.logical_not(condition), x.dtype)
            out1 = layers.elementwise_mul(x, cond_int)
            out2 = layers.elementwise_mul(y, cond_not_int)
            out = layers.elementwise_add(out1, out2)
600
            return out
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617

        zeros_like_x = layers.zeros_like(x)
        zeros_like_y = layers.zeros_like(y)
        zeros_like_condition = layers.zeros_like(condition)
        zeros_like_condition = layers.cast(zeros_like_condition, x.dtype)
        cast_cond = layers.cast(condition, x.dtype)

        broadcast_zeros = layers.elementwise_add(zeros_like_x, zeros_like_y)
        broadcast_zeros = layers.elementwise_add(broadcast_zeros,
                                                 zeros_like_condition)
        broadcast_x = layers.elementwise_add(x, broadcast_zeros)
        broadcast_y = layers.elementwise_add(y, broadcast_zeros)
        broadcast_condition = layers.elementwise_add(cast_cond, broadcast_zeros)
        broadcast_condition = layers.cast(broadcast_condition, 'bool')

    if in_dygraph_mode():
        return _C_ops.where(broadcast_condition, broadcast_x, broadcast_y)
618
    else:
619 620 621 622 623 624 625 626 627 628 629 630
        helper = LayerHelper("where", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

        helper.append_op(
            type='where',
            inputs={
                'Condition': broadcast_condition,
                'X': broadcast_x,
                'Y': broadcast_y
            },
            outputs={'Out': [out]})

631 632 633
        return out


C
Chengmo 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
def index_sample(x, index):
    """
    **IndexSample Layer**

    IndexSample OP returns the element of the specified location of X, 
    and the location is specified by Index. 

    .. code-block:: text


                Given:

                X = [[1, 2, 3, 4, 5],
                     [6, 7, 8, 9, 10]]

                Index = [[0, 1, 3],
                         [0, 2, 4]]

                Then:

                Out = [[1, 2, 4],
                       [6, 8, 10]]

    Args:
C
Chengmo 已提交
658
        x (Tensor): The source input tensor with 2-D shape. Supported data type is 
C
Chengmo 已提交
659
            int32, int64, float32, float64.
C
Chengmo 已提交
660
        index (Tensor): The index input tensor with 2-D shape, first dimension should be same with X. 
C
Chengmo 已提交
661 662 663
            Data type is int32 or int64.

    Returns:
C
Chengmo 已提交
664
        output (Tensor): The output is a tensor with the same shape as index.
C
Chengmo 已提交
665 666 667 668 669 670

    Examples:

        .. code-block:: python

            import paddle
671 672 673 674 675 676 677 678 679 680 681

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]], dtype='float32')
            index = paddle.to_tensor([[0, 1, 2],
                                      [1, 2, 3],
                                      [0, 0, 0]], dtype='int32')
            target = paddle.to_tensor([[100, 200, 300, 400],
                                       [500, 600, 700, 800],
                                       [900, 1000, 1100, 1200]], dtype='int32')
            out_z1 = paddle.index_sample(x, index)
N
Noel 已提交
682
            print(out_z1)
683 684 685 686 687 688 689 690
            #[[1. 2. 3.]
            # [6. 7. 8.]
            # [9. 9. 9.]]

            # Use the index of the maximum value by topk op
            # get the value of the element of the corresponding index in other tensors
            top_value, top_index = paddle.topk(x, k=2)
            out_z2 = paddle.index_sample(target, top_index)
N
Noel 已提交
691
            print(top_value)
692 693 694 695
            #[[ 4.  3.]
            # [ 8.  7.]
            # [12. 11.]]

N
Noel 已提交
696
            print(top_index)
697 698 699 700
            #[[3 2]
            # [3 2]
            # [3 2]]

N
Noel 已提交
701
            print(out_z2)
702 703 704
            #[[ 400  300]
            # [ 800  700]
            # [1200 1100]]
C
Chengmo 已提交
705

C
Chengmo 已提交
706
    """
C
Chengmo 已提交
707
    if in_dygraph_mode():
W
wanghuancoder 已提交
708
        return _C_ops.index_sample(x, index)
C
Chengmo 已提交
709

C
Chengmo 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722
    helper = LayerHelper("index_sample", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='index_sample',
        inputs={'X': x,
                'Index': index},
        outputs={'Out': out})
    return out
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743


def masked_select(x, mask, name=None):
    """
    This OP Returns a new 1-D tensor which indexes the input tensor according to the ``mask``
    which is a tensor with data type of bool.

    Args:
        x (Tensor): The input Tensor, the data type can be int32, int64, float32, float64. 
        mask (Tensor): The Tensor containing the binary mask to index with, it's data type is bool.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: A 1-D Tensor which is the same data type  as ``x``.
    
    Examples:

        .. code-block:: python

            import paddle
744 745 746 747 748 749 750

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            mask = paddle.to_tensor([[True, False, False, False],
                                     [True, True, False, False],
                                     [True, False, False, False]])
751 752 753 754 755
            out = paddle.masked_select(x, mask)
            #[1.0 5.0 6.0 9.0]
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
756
        return _C_ops.masked_select(x, mask)
757 758 759 760 761 762 763 764 765 766 767

    helper = LayerHelper("masked_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.mask_select')
    check_variable_and_dtype(mask, 'mask', ['bool'],
                             'paddle.tensor.search.masked_select')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='masked_select', inputs={'X': x,
                                      'Mask': mask}, outputs={'Y': out})
    return out
W
wawltor 已提交
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796


def topk(x, k, axis=None, largest=True, sorted=True, name=None):
    """
    This OP is used to find values and indices of the k largest or smallest at the optional axis.
    If the input is a 1-D Tensor, finds the k largest or smallest values and indices.
    If the input is a Tensor with higher rank, this operator computes the top k values and indices along the :attr:`axis`.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        k(int, Tensor): The number of top elements to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        largest(bool, optional) : largest is a flag, if set to true,
            algorithm will sort by descending order, otherwise sort by
            ascending order. Default is True.
        sorted(bool, optional): controls whether to return the elements in sorted order, default value is True. In gpu device, it always return the sorted value. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle

797
           tensor_1 = paddle.to_tensor([1, 4, 5, 7])
W
wawltor 已提交
798
           value_1, indices_1 = paddle.topk(tensor_1, k=1)
N
Noel 已提交
799
           print(value_1)
W
wawltor 已提交
800
           # [7]
N
Noel 已提交
801
           print(indices_1)
W
wawltor 已提交
802
           # [3] 
803
           tensor_2 = paddle.to_tensor([[1, 4, 5, 7], [2, 6, 2, 5]])
W
wawltor 已提交
804
           value_2, indices_2 = paddle.topk(tensor_2, k=1)
N
Noel 已提交
805
           print(value_2)
W
wawltor 已提交
806 807
           # [[7]
           #  [6]]
N
Noel 已提交
808
           print(indices_2)
W
wawltor 已提交
809 810 811
           # [[3]
           #  [1]]
           value_3, indices_3 = paddle.topk(tensor_2, k=1, axis=-1)
N
Noel 已提交
812
           print(value_3)
W
wawltor 已提交
813 814
           # [[7]
           #  [6]]
N
Noel 已提交
815
           print(indices_3)
W
wawltor 已提交
816 817 818
           # [[3]
           #  [1]]
           value_4, indices_4 = paddle.topk(tensor_2, k=1, axis=0)
N
Noel 已提交
819
           print(value_4)
W
wawltor 已提交
820
           # [[2 6 5 7]]
N
Noel 已提交
821
           print(indices_4)
W
wawltor 已提交
822 823 824 825 826 827
           # [[1 1 0 0]]

    """
    if in_dygraph_mode():
        k = k.numpy().item(0) if isinstance(k, Variable) else k
        if axis is None:
W
wanghuancoder 已提交
828 829 830
            out, indices = _C_ops.top_k_v2(x, 'k',
                                           int(k), 'largest', largest, 'sorted',
                                           sorted)
W
wawltor 已提交
831
        else:
W
wanghuancoder 已提交
832 833 834
            out, indices = _C_ops.top_k_v2(x, 'k',
                                           int(k), 'axis', axis, 'largest',
                                           largest, 'sorted', sorted)
W
wawltor 已提交
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
        return out, indices

    helper = LayerHelper("top_k_v2", **locals())
    inputs = {"X": [x]}
    attrs = {}
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}
    attrs['largest'] = largest
    attrs['sorted'] = sorted
    if axis is not None:
        attrs['axis'] = axis

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="top_k_v2",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices
Y
Yanxing Shi 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931


def searchsorted(sorted_sequence,
                 values,
                 out_int32=False,
                 right=False,
                 name=None):
    """
    This OP is used to find the index of the corresponding `sorted_sequence` in the innermost dimension based on the given `values`.

    Args:
        sorted_sequence(Tensor): An input N-D or 1-D tensor with type int32, int64, float32, float64. The value of the tensor monotonically increases in the innermost dimension. 
        values(Tensor): An input N-D tensor value with type int32, int64, float32, float64.
        out_int32(bool, optional): Data type of the output tensor which can be int32, int64. The default value is False, and it indicates that the output data type is int64.
        right(bool, optional): Find the upper or lower bounds of the sorted_sequence range in the innermost dimension based on the given `values`. If the value of the sorted_sequence is nan or inf, return the size of the innermost dimension.
                               The default value is False and it shows the lower bounds.  
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
        
    Returns:
        Tensor(the same sizes of the `values`), return the tensor of int32 if set :attr:`out_int32` is True, otherwise return the tensor of int64.  
    
    Examples:

        .. code-block:: python
    
            import paddle

            sorted_sequence = paddle.to_tensor([[1, 3, 5, 7, 9, 11],
                                                [2, 4, 6, 8, 10, 12]], dtype='int32')
            values = paddle.to_tensor([[3, 6, 9, 10], [3, 6, 9, 10]], dtype='int32')
            out1 = paddle.searchsorted(sorted_sequence, values)
            print(out1)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 2, 4, 4]])
            out2 = paddle.searchsorted(sorted_sequence, values, right=True)
            print(out2)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[2, 3, 5, 5],
            #         [1, 3, 4, 5]])
            sorted_sequence_1d = paddle.to_tensor([1, 3, 5, 7, 9, 11, 13])
            out3 = paddle.searchsorted(sorted_sequence_1d, values)     
            print(out3)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 3, 4, 5]])
            
    """

    if in_dygraph_mode():
        return _C_ops.searchsorted(sorted_sequence, values, "out_int32",
                                   out_int32, "right", right)

    check_variable_and_dtype(sorted_sequence, 'SortedSequence',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')
    check_variable_and_dtype(values, 'Values',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')

    helper = LayerHelper('searchsorted', **locals())
    out_type = 'int32' if out_int32 else 'int64'
    out = helper.create_variable_for_type_inference(dtype=out_type)
    helper.append_op(
        type='searchsorted',
        inputs={'SortedSequence': sorted_sequence,
                "Values": values},
        outputs={'Out': out},
        attrs={"out_int32": out_int32,
               "right": right})

    return out
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993


def kthvalue(x, k, axis=None, keepdim=False, name=None):
    """
    This OP is used to find values and indices of the k-th smallest at the axis.

    Args:
        x(Tensor): A N-D Tensor with type float32, float64, int32, int64.
        k(int): The k for the k-th smallest number to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. The default is None. And if the axis is None, it will computed as -1 by default.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.
   
    Examples:

        .. code-block:: python
    
            import paddle
            
            x = paddle.randn((2,3,2))
            # Tensor(shape=[2, 3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[[ 0.22954939, -0.01296274],
            #         [ 1.17135799, -0.34493217],
            #         [-0.19550551, -0.17573971]],
            #
            #        [[ 0.15104349, -0.93965352],
            #         [ 0.14745511,  0.98209465],
            #         [ 0.10732264, -0.55859774]]])           
            y = paddle.kthvalue(x, 2, 1)    
            # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            # [[ 0.22954939, -0.17573971],
            #  [ 0.14745511, -0.55859774]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #  [[0, 2],
            #  [1, 2]]))
    """
    if in_dygraph_mode():
        if axis is not None:
            return _C_ops.kthvalue(x, 'k', k, "axis", axis, "keepdim", keepdim)
        else:
            return _C_ops.kthvalue(x, 'k', k, "keepdim", keepdim)

    helper = LayerHelper("kthvalue", **locals())
    inputs = {"X": [x]}
    attrs = {'k': k}
    if axis is not None:
        attrs['axis'] = axis
    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="kthvalue",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices