Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c068512f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c068512f
编写于
4月 08, 2020
作者:
G
GaoWei8
提交者:
GitHub
4月 08, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Implement a new C++ operator where and API tensor.where (#23220)
上级
9b82e4c1
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
600 addition
and
4 deletion
+600
-4
paddle/fluid/operators/where_op.cc
paddle/fluid/operators/where_op.cc
+159
-0
paddle/fluid/operators/where_op.cu
paddle/fluid/operators/where_op.cu
+122
-0
paddle/fluid/operators/where_op.h
paddle/fluid/operators/where_op.h
+73
-0
python/paddle/fluid/tests/unittests/test_where_op.py
python/paddle/fluid/tests/unittests/test_where_op.py
+173
-0
python/paddle/tensor/__init__.py
python/paddle/tensor/__init__.py
+1
-1
python/paddle/tensor/search.py
python/paddle/tensor/search.py
+72
-3
未找到文件。
paddle/fluid/operators/where_op.cc
0 → 100644
浏览文件 @
c068512f
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/where_op.h"
namespace
paddle
{
namespace
operators
{
class
WhereOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Condition"
),
"Input"
,
"Condition"
,
"Where"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"Where"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Y"
),
"Input"
,
"Y"
,
"Where"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"Where"
);
auto
cond_dims
=
ctx
->
GetInputDim
(
"Condition"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
y_dims
=
ctx
->
GetInputDim
(
"Y"
);
PADDLE_ENFORCE_EQ
(
cond_dims
,
x_dims
,
platform
::
errors
::
InvalidArgument
(
"The dims of Inputs(Condition) and Inputs(X) should be same. "
"But received Condition's shape is [%s], X's shape is [%s]"
,
cond_dims
,
x_dims
));
PADDLE_ENFORCE_EQ
(
x_dims
,
y_dims
,
platform
::
errors
::
InvalidArgument
(
"The dims of Inputs(X) and Inputs(Y) should be same. "
"But received X's shape is [%s], Y's shape is [%s]"
,
x_dims
,
y_dims
));
ctx
->
SetOutputDim
(
"Out"
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
GetPlace
());
}
};
class
WhereGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Condition"
),
"Input"
,
"Condition"
,
"Where"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"Where"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Y"
),
"Input"
,
"Y"
,
"Where"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input"
,
framework
::
GradVarName
(
"Out"
),
"Where"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
y_dims
=
ctx
->
GetInputDim
(
"Y"
);
auto
x_grad_name
=
framework
::
GradVarName
(
"X"
);
auto
y_grad_name
=
framework
::
GradVarName
(
"Y"
);
if
(
ctx
->
HasOutput
(
x_grad_name
))
{
ctx
->
SetOutputDim
(
x_grad_name
,
x_dims
);
}
if
(
ctx
->
HasOutput
(
y_grad_name
))
{
ctx
->
SetOutputDim
(
y_grad_name
,
y_dims
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
framework
::
GradVarName
(
"Out"
)),
ctx
.
GetPlace
());
}
};
class
WhereOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"Condition"
,
"(Tensor) A bool tensor whose rank is at least 1. When Condition "
"is True, yield x, otherwise yield y"
);
AddInput
(
"X"
,
"(Tensor), The first input tensor of where op. When the "
"corresponding position of the condition is true, the output "
"takes the element of X."
);
AddInput
(
"Y"
,
"(Tensor), The second input tensor of where op. When the "
"corresponding position of condition is false, the output takes "
"the element of Y."
);
AddOutput
(
"Out"
,
"(Tensor), The output tensor of mul op."
);
AddComment
(
R"DOC(
Where Operator.
Return a tensor of elements selected from either $X$ or $Y$, depending on condition.
The equation is:
$$
Out_i =
\begin{cases}
\X_i, \quad \text{if} \ cond_i is True \\
\Y_i, \quad \text{if} \ cond_i is False \\
\end{cases}
$$
)DOC"
);
}
};
template
<
typename
T
>
class
WhereOpGradMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
void
Apply
(
GradOpPtr
<
T
>
grad
)
const
override
{
grad
->
SetType
(
"where_grad"
);
grad
->
SetInput
(
"Condition"
,
this
->
Input
(
"Condition"
));
grad
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
grad
->
SetInput
(
"Y"
,
this
->
Input
(
"Y"
));
grad
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
grad
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
grad
->
SetOutput
(
framework
::
GradVarName
(
"Y"
),
this
->
InputGrad
(
"Y"
));
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER
(
WhereGradNoNeedBufferVarsInference
,
"X"
,
"Y"
);
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
where
,
ops
::
WhereOp
,
ops
::
WhereOpMaker
,
ops
::
WhereOpGradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
WhereOpGradMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
where_grad
,
ops
::
WhereGradOp
,
ops
::
WhereGradNoNeedBufferVarsInference
);
REGISTER_OP_CPU_KERNEL
(
where
,
ops
::
WhereKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
WhereKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
WhereKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
WhereKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
where_grad
,
ops
::
WhereGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
WhereGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
WhereGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
WhereGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
paddle/fluid/operators/where_op.cu
0 → 100644
浏览文件 @
c068512f
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/where_op.h"
#include "paddle/fluid/platform/gpu_launch_param_config.h"
namespace
platform
=
paddle
::
platform
;
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
__global__
void
WhereCUDAKernel
(
const
int
N
,
const
bool
*
cond
,
const
T
*
x
,
const
T
*
y
,
T
*
out
)
{
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
for
(;
idx
<
N
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
out
[
idx
]
=
cond
[
idx
]
?
x
[
idx
]
:
y
[
idx
];
}
}
template
<
typename
T
>
__global__
void
WhereGradCUDAKernel
(
const
int
N
,
const
T
*
out
,
const
bool
*
cond
,
T
*
x
,
T
*
y
)
{
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
for
(;
idx
<
N
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
if
(
x
!=
nullptr
)
{
x
[
idx
]
=
out
[
idx
]
*
(
cond
[
idx
]
?
1.
:
0.
);
}
if
(
y
!=
nullptr
)
{
y
[
idx
]
=
out
[
idx
]
*
(
cond
[
idx
]
?
0.
:
1.
);
}
}
}
template
<
typename
T
>
class
WhereKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
context
.
GetPlace
()),
true
,
platform
::
errors
::
PermissionDenied
(
"It must use CUDAPlace."
));
auto
*
condition
=
context
.
Input
<
framework
::
Tensor
>
(
"Condition"
);
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
numel
=
condition
->
numel
();
// TODO(GaaoWei8): Input of where can be broadcast
const
bool
*
cond_data
=
condition
->
data
<
bool
>
();
const
T
*
x_data
=
X
->
data
<
T
>
();
const
T
*
y_data
=
Y
->
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
stream
=
context
.
cuda_device_context
().
stream
();
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
config
=
GetGpuLaunchConfig1D
(
dev_ctx
,
numel
);
WhereCUDAKernel
<
T
><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
stream
>>>
(
numel
,
cond_data
,
x_data
,
y_data
,
out_data
);
}
};
template
<
typename
T
>
class
WhereGradKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
context
.
GetPlace
()),
true
,
platform
::
errors
::
PermissionDenied
(
"It must use CUDAPlace."
));
auto
*
condition
=
context
.
Input
<
framework
::
Tensor
>
(
"Condition"
);
const
bool
*
cond_data
=
condition
->
data
<
bool
>
();
auto
numel
=
condition
->
numel
();
auto
*
dout_t
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx_t
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy_t
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
dout
=
dout_t
->
data
<
T
>
();
T
*
dx
=
(
dx_t
!=
nullptr
)
?
dx_t
->
mutable_data
<
T
>
(
context
.
GetPlace
())
:
nullptr
;
T
*
dy
=
(
dy_t
!=
nullptr
)
?
dy_t
->
mutable_data
<
T
>
(
context
.
GetPlace
())
:
nullptr
;
auto
stream
=
context
.
cuda_device_context
().
stream
();
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
config
=
GetGpuLaunchConfig1D
(
dev_ctx
,
condition
->
numel
());
WhereGradCUDAKernel
<
T
><<<
config
.
block_per_grid
.
x
,
config
.
thread_per_block
.
x
,
0
,
stream
>>>
(
numel
,
dout
,
cond_data
,
dx
,
dy
);
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OP_CUDA_KERNEL
(
where
,
paddle
::
operators
::
WhereKernel
<
platform
::
CUDADeviceContext
,
float
>
,
paddle
::
operators
::
WhereKernel
<
platform
::
CUDADeviceContext
,
double
>
,
paddle
::
operators
::
WhereKernel
<
platform
::
CUDADeviceContext
,
int
>
,
paddle
::
operators
::
WhereKernel
<
platform
::
CUDADeviceContext
,
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
where_grad
,
paddle
::
operators
::
WhereGradKernel
<
platform
::
CUDADeviceContext
,
float
>
,
paddle
::
operators
::
WhereGradKernel
<
platform
::
CUDADeviceContext
,
double
>
,
paddle
::
operators
::
WhereGradKernel
<
platform
::
CUDADeviceContext
,
int
>
,
paddle
::
operators
::
WhereGradKernel
<
platform
::
CUDADeviceContext
,
int64_t
>
);
paddle/fluid/operators/where_op.h
0 → 100644
浏览文件 @
c068512f
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
WhereKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
condition
=
context
.
Input
<
framework
::
Tensor
>
(
"Condition"
);
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
const
bool
*
cond_data
=
condition
->
data
<
bool
>
();
const
T
*
x_data
=
X
->
data
<
T
>
();
const
T
*
y_data
=
Y
->
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x_numel
=
X
->
numel
();
for
(
int
i
=
0
;
i
<
x_numel
;
i
++
)
{
out_data
[
i
]
=
cond_data
[
i
]
?
x_data
[
i
]
:
y_data
[
i
];
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
WhereGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
condition
=
context
.
Input
<
framework
::
LoDTensor
>
(
"Condition"
);
const
auto
*
cond_data
=
condition
->
data
<
bool
>
();
auto
numel
=
condition
->
numel
();
auto
*
dout_t
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx_t
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy_t
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
dout
=
dout_t
->
data
<
T
>
();
if
(
dx_t
!=
nullptr
)
{
auto
*
dx
=
dx_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
numel
;
i
++
)
{
dx
[
i
]
=
dout
[
i
]
*
(
cond_data
[
i
]
?
1.
:
0.
);
}
}
if
(
dy_t
!=
nullptr
)
{
auto
*
dy
=
dy_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
numel
;
i
++
)
{
dy
[
i
]
=
dout
[
i
]
*
(
cond_data
[
i
]
?
0.
:
1.
);
}
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/tests/unittests/test_where_op.py
0 → 100644
浏览文件 @
c068512f
#Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.tensor
as
tensor
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
from
paddle.fluid
import
compiler
,
Program
,
program_guard
from
paddle.fluid.op
import
Operator
from
paddle.fluid.backward
import
append_backward
class
TestWhereOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"where"
self
.
init_config
()
self
.
inputs
=
{
'Condition'
:
self
.
cond
,
'X'
:
self
.
x
,
'Y'
:
self
.
y
}
self
.
outputs
=
{
'Out'
:
np
.
where
(
self
.
cond
,
self
.
x
,
self
.
y
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
)
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
3
,
5
,
(
100
)).
astype
(
"float64"
)
self
.
y
=
np
.
random
.
uniform
(
-
3
,
5
,
(
100
)).
astype
(
"float64"
)
self
.
cond
=
np
.
zeros
((
100
)).
astype
(
"bool"
)
class
TestWhereOp2
(
TestWhereOp
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
5
,
5
,
(
60
,
2
)).
astype
(
"float64"
)
self
.
y
=
np
.
random
.
uniform
(
-
5
,
5
,
(
60
,
2
)).
astype
(
"float64"
)
self
.
cond
=
np
.
ones
((
60
,
2
)).
astype
(
"bool"
)
class
TestWhereOp3
(
TestWhereOp
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
3
,
5
,
(
20
,
2
,
4
)).
astype
(
"float64"
)
self
.
y
=
np
.
random
.
uniform
(
-
3
,
5
,
(
20
,
2
,
4
)).
astype
(
"float64"
)
self
.
cond
=
np
.
array
(
np
.
random
.
randint
(
2
,
size
=
(
20
,
2
,
4
)),
dtype
=
bool
)
class
TestWhereAPI
(
unittest
.
TestCase
):
def
test_api
(
self
,
use_cuda
=
False
):
main_program
=
Program
()
with
fluid
.
program_guard
(
main_program
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
4
],
dtype
=
'float32'
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
4
],
dtype
=
'float32'
)
x_i
=
np
.
array
([
0.9383
,
0.1983
,
3.2
,
1.2
]).
astype
(
"float32"
)
y_i
=
np
.
array
([
1.0
,
1.0
,
1.0
,
1.0
]).
astype
(
"float32"
)
cond_i
=
np
.
array
([
False
,
False
,
True
,
True
]).
astype
(
"bool"
)
result
=
tensor
.
where
(
x
>
1
,
X
=
x
,
Y
=
y
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'x'
:
x_i
,
'y'
:
y_i
},
fetch_list
=
[
result
])
assert
np
.
array_equal
(
out
[
0
],
np
.
where
(
cond_i
,
x_i
,
y_i
))
def
test_grad
(
self
,
use_cuda
=
False
):
main_program
=
Program
()
for
x_stop_gradient
,
y_stop_gradient
in
[[
False
,
False
],
[
True
,
False
],
[
False
,
True
]]:
with
fluid
.
program_guard
(
main_program
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
4
],
dtype
=
'float32'
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
4
],
dtype
=
'float32'
)
x
.
stop_gradient
=
x_stop_gradient
y
.
stop_gradient
=
y_stop_gradient
x_i
=
np
.
array
([
0.9383
,
0.1983
,
3.2
,
1.2
]).
astype
(
"float32"
)
y_i
=
np
.
array
([
1.0
,
1.0
,
1.0
,
1.0
]).
astype
(
"float32"
)
cond_i
=
np
.
array
([
False
,
False
,
True
,
True
]).
astype
(
"bool"
)
result
=
tensor
.
where
(
x
>
1
,
X
=
x
,
Y
=
y
)
x_mean
=
layers
.
mean
(
x
)
append_backward
(
x_mean
)
y_mean
=
layers
.
mean
(
y
)
append_backward
(
y_mean
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'x'
:
x_i
,
'y'
:
y_i
},
fetch_list
=
[
result
,
x
.
grad_name
,
y
.
grad_name
])
x_grad
=
[
0.25
]
*
4
y_grad
=
[
0.25
]
*
4
assert
np
.
array_equal
(
out
[
0
],
np
.
where
(
cond_i
,
x_i
,
y_i
))
assert
np
.
array_equal
(
out
[
1
],
x_grad
)
assert
np
.
array_equal
(
out
[
2
],
y_grad
)
def
test_api_broadcast
(
self
,
use_cuda
=
False
):
main_program
=
Program
()
with
fluid
.
program_guard
(
main_program
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
4
,
1
],
dtype
=
'float32'
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
4
,
2
],
dtype
=
'float32'
)
x_i
=
np
.
array
([[
0.9383
,
0.1983
,
3.2
,
1.2
]]).
astype
(
"float32"
)
y_i
=
np
.
array
(
[[
1.0
,
1.0
,
1.0
,
1.0
],
[
1.0
,
1.0
,
1.0
,
1.0
]]).
astype
(
"float32"
)
cond_i
=
np
.
array
([[
False
,
False
,
True
,
True
],
[
False
,
False
,
True
,
True
]]).
astype
(
"bool"
)
result
=
tensor
.
where
(
x
>
1
,
X
=
x
,
Y
=
y
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'x'
:
x_i
,
'y'
:
y_i
},
fetch_list
=
[
result
])
assert
np
.
array_equal
(
out
[
0
],
np
.
where
(
cond_i
,
x_i
,
y_i
))
def
test_fw_bw
(
self
):
if
core
.
is_compiled_with_cuda
():
self
.
test_api
(
use_cuda
=
True
)
self
.
test_api_broadcast
(
use_cuda
=
True
)
self
.
test_grad
(
use_cuda
=
True
)
class
TestWhereDygraphAPI
(
unittest
.
TestCase
):
def
test_api
(
self
):
with
fluid
.
dygraph
.
guard
():
x_i
=
np
.
array
([
0.9383
,
0.1983
,
3.2
,
1.2
]).
astype
(
"float64"
)
y_i
=
np
.
array
([
1.0
,
1.0
,
1.0
,
1.0
]).
astype
(
"float64"
)
cond_i
=
np
.
array
([
False
,
False
,
True
,
True
]).
astype
(
"bool"
)
x
=
fluid
.
dygraph
.
to_variable
(
x_i
)
y
=
fluid
.
dygraph
.
to_variable
(
y_i
)
cond
=
fluid
.
dygraph
.
to_variable
(
cond_i
)
out
=
tensor
.
where
(
cond
,
x
,
y
)
assert
np
.
array_equal
(
out
.
numpy
(),
np
.
where
(
cond_i
,
x_i
,
y_i
))
class
TestWhereOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
x_i
=
np
.
array
([
0.9383
,
0.1983
,
3.2
,
1.2
]).
astype
(
"float64"
)
y_i
=
np
.
array
([
1.0
,
1.0
,
1.0
,
1.0
]).
astype
(
"float64"
)
cond_i
=
np
.
array
([
False
,
False
,
True
,
True
]).
astype
(
"bool"
)
def
test_Variable
():
tensor
.
where
(
cond_i
,
x_i
,
y_i
)
self
.
assertRaises
(
TypeError
,
test_Variable
)
def
test_type
():
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
4
],
dtype
=
'bool'
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
4
],
dtype
=
'float16'
)
cond
=
fluid
.
layers
.
data
(
name
=
'cond'
,
shape
=
[
4
],
dtype
=
'int32'
)
tensor
.
where
(
cond
,
x
,
y
)
self
.
assertRaises
(
TypeError
,
test_type
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/tensor/__init__.py
浏览文件 @
c068512f
...
...
@@ -165,7 +165,7 @@ from .search import argmax #DEFINE_ALIAS
# from .search import has_nan #DEFINE_ALIAS
# from .search import masked_select #DEFINE_ALIAS
# from .search import topk #DEFINE_ALIAS
# from .search import where
#DEFINE_ALIAS
from
.search
import
where
#DEFINE_ALIAS
# from .search import index_select #DEFINE_ALIAS
from
.search
import
index_sample
# DEFINE_ALIAS
# from .search import nonzero #DEFINE_ALIAS
...
...
python/paddle/tensor/search.py
浏览文件 @
c068512f
...
...
@@ -12,10 +12,21 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
warnings
import
six
import
os
import
inspect
from
..fluid.layer_helper
import
LayerHelper
from
..fluid.data_feeder
import
check_variable_and_dtype
,
check_type
,
check_dtype
# TODO: define searching & indexing functions of a tensor
from
..fluid.initializer
import
Normal
,
Constant
,
NumpyArrayInitializer
from
..fluid.framework
import
Variable
,
OpProtoHolder
,
in_dygraph_mode
,
dygraph_only
,
_dygraph_tracer
,
default_main_program
from
..fluid
import
dygraph_utils
from
..fluid.param_attr
import
ParamAttr
from
..fluid
import
unique_name
from
..fluid
import
core
,
layers
# TODO: define searching & indexing functions of a tensor
__all__
=
[
'argmax'
,
# 'argmin',
...
...
@@ -24,7 +35,7 @@ __all__ = [
# 'has_nan',
# 'masked_select',
# 'topk',
#
'where',
'where'
,
# 'index_select',
# 'nonzero',
'sort'
,
...
...
@@ -213,6 +224,64 @@ def sort(input, axis=-1, descending=False, out=None, name=None):
return
out
,
ids
def
where
(
Condition
,
X
,
Y
):
"""
Return a tensor of elements selected from either $X$ or $Y$, depending on $Condition$.
Args:
Condition(Variable): A bool tensor with rank at least 1, the data type is bool.
X(Variable): X is a Tensor Variable.
Y(Variable): Y is a Tensor Variable.
Returns:
out : The tensor.
Examples:
.. code-block:: python
import numpy as np
import paddle as paddle
import paddle.fluid as fluid
with fluid.dygraph.guard():
x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float64")
y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float64")
x = fluid.dygraph.to_variable(x_i)
y = fluid.dygraph.to_variable(y_i)
out = paddle.where(x>1, x, y)
print(out.numpy())
#out: [1.0, 1.0, 3.2, 1.2]
"""
if
not
in_dygraph_mode
():
check_variable_and_dtype
(
Condition
,
'Condition'
,
[
'bool'
],
'where'
)
check_variable_and_dtype
(
X
,
'X'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'where'
)
check_variable_and_dtype
(
Y
,
'Y'
,
[
'float32'
,
'float64'
,
'int32'
,
'int64'
],
'where'
)
X_shape
=
list
(
X
.
shape
)
Y_shape
=
list
(
Y
.
shape
)
if
X_shape
==
Y_shape
:
if
in_dygraph_mode
():
return
core
.
ops
.
where
(
Condition
,
X
,
Y
)
else
:
helper
=
LayerHelper
(
"where"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
'where'
,
inputs
=
{
'Condition'
:
Condition
,
'X'
:
X
,
'Y'
:
Y
},
outputs
=
{
'Out'
:
[
out
]})
return
out
else
:
cond_int
=
layers
.
cast
(
Condition
,
X
.
dtype
)
cond_not_int
=
layers
.
cast
(
layers
.
logical_not
(
Condition
),
X
.
dtype
)
out1
=
layers
.
elementwise_mul
(
X
,
cond_int
)
out2
=
layers
.
elementwise_mul
(
Y
,
cond_not_int
)
out
=
layers
.
elementwise_add
(
out1
,
out2
)
return
out
def
index_sample
(
x
,
index
):
"""
**IndexSample Layer**
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录