conv.py 51.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define classes of convolutional neural network
16

17 18
import numpy as np

Z
zhiboniu 已提交
19
from paddle import get_flags
20 21 22 23 24 25

from ...device import (
    get_cudnn_version,
    is_compiled_with_cuda,
    is_compiled_with_rocm,
)
26
from ...utils import convert_to_list
27 28
from .. import functional as F
from ..functional.conv import _update_padding_nd
29
from ..initializer import Normal
30
from .layers import Layer
31

32 33
__all__ = []

34 35 36

def _get_default_param_initializer(num_channels, filter_size):
    filter_elem_num = num_channels * np.prod(filter_size)
37
    std = (2.0 / filter_elem_num) ** 0.5
Z
zhiboniu 已提交
38
    return Normal(0.0, std)
39 40


41 42 43 44 45
def _reverse_repeat_list(t, n):
    """Reverse the order of `t` and repeat each element for `n` times.
    This can be used to translate padding arg used by Conv and Pooling modules
    to the ones used by `F.pad`.
    """
46
    return [x for x in reversed(t) for _ in range(n)]
47 48


Z
zhiboniu 已提交
49
class _ConvNd(Layer):
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        transposed,
        dims,
        stride=1,
        padding=0,
        padding_mode='zeros',
        output_padding=0,
        dilation=1,
        groups=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
    ):
67
        super().__init__()
68 69 70
        assert (
            weight_attr is not False
        ), "weight_attr should not be False in Conv."
L
LielinJiang 已提交
71 72 73 74 75 76 77
        self._param_attr = weight_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._in_channels = in_channels
        self._out_channels = out_channels
        self._data_format = data_format

78 79 80
        valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
        if padding_mode not in valid_padding_modes:
            raise ValueError(
81 82 83 84
                "padding_mode must be one of {}, but got padding_mode='{}'".format(
                    valid_padding_modes, padding_mode
                )
            )
85

86 87 88 89 90
        if padding_mode in {
            'reflect',
            'replicate',
            'circular',
        } and not isinstance(padding, int):
91 92 93 94
            raise TypeError(
                "when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
            )

95 96 97
        valid_format = {'NHWC', 'NCHW', 'NDHWC', 'NCDHW', 'NLC', 'NCL'}
        if data_format not in valid_format:
            raise ValueError(
98 99 100 101
                "data_format must be one of {}, but got data_format='{}'".format(
                    valid_format, data_format
                )
            )
102

103 104 105 106 107
        channel_last = (
            (data_format == "NHWC")
            or (data_format == "NDHWC")
            or (data_format == "NLC")
        )
L
LielinJiang 已提交
108 109 110 111 112
        if channel_last:
            self._channel_dim = len(data_format) - 1
        else:
            self._channel_dim = 1

113 114 115
        self._stride = convert_to_list(stride, dims, 'stride')
        self._dilation = convert_to_list(dilation, dims, 'dilation')
        self._kernel_size = convert_to_list(kernel_size, dims, 'kernel_size')
L
LielinJiang 已提交
116
        self._padding = padding
117
        self._padding_mode = padding_mode
118
        self.output_padding = output_padding
L
LielinJiang 已提交
119
        if dims != 1:
120
            self._updated_padding, self._padding_algorithm = _update_padding_nd(
121 122
                padding, channel_last, dims
            )
L
LielinJiang 已提交
123 124

        if transposed:
125 126 127 128
            filter_shape = [
                self._in_channels,
                out_channels // groups,
            ] + self._kernel_size
L
LielinJiang 已提交
129
        else:
130 131 132 133
            if in_channels % groups != 0:
                raise ValueError("in_channels must be divisible by groups.")

            if padding_mode in {'reflect', 'replicate', 'circular'}:
134
                _paired_padding = convert_to_list(padding, dims, 'padding')
135
                self._reversed_padding_repeated_twice = _reverse_repeat_list(
136 137
                    _paired_padding, 2
                )
138

139 140 141 142
                (
                    self._updated_padding,
                    self._padding_algorithm,
                ) = _update_padding_nd(0, channel_last, dims)
L
LielinJiang 已提交
143

144 145 146 147
            filter_shape = [
                out_channels,
                in_channels // groups,
            ] + self._kernel_size
L
LielinJiang 已提交
148

L
LielinJiang 已提交
149 150 151 152
        def _get_default_param_initializer():
            if transposed:
                return None
            filter_elem_num = np.prod(self._kernel_size) * self._in_channels
153
            std = (2.0 / filter_elem_num) ** 0.5
Z
zhiboniu 已提交
154
            return Normal(0.0, std)
L
LielinJiang 已提交
155

L
LielinJiang 已提交
156
        self.weight = self.create_parameter(
L
LielinJiang 已提交
157 158
            shape=filter_shape,
            attr=self._param_attr,
159 160 161 162 163
            default_initializer=_get_default_param_initializer(),
        )
        self.bias = self.create_parameter(
            attr=self._bias_attr, shape=[self._out_channels], is_bias=True
        )
L
LielinJiang 已提交
164

L
LielinJiang 已提交
165 166
        cudnn_version = get_cudnn_version()

167 168 169 170 171
        self._use_cudnn = (
            True
            if (is_compiled_with_cuda() and cudnn_version is not None)
            else False
        )
L
LielinJiang 已提交
172 173

        self._op_type = "conv" + str(dims) + 'd'
174 175 176 177 178
        if self._op_type == 'conv2d' and (
            in_channels == groups
            and in_channels != 1
            and out_channels % in_channels == 0
        ):
L
LielinJiang 已提交
179
            self._op_type = 'depthwise_conv2d'
Z
zhiboniu 已提交
180
            if is_compiled_with_rocm():
181 182 183 184
                self._use_cudnn = True
            else:
                self._use_cudnn = False

185 186 187 188 189 190
        if (
            is_compiled_with_cuda()
            and get_flags("FLAGS_conv2d_disable_cudnn")[
                "FLAGS_conv2d_disable_cudnn"
            ]
        ):
L
LielinJiang 已提交
191 192
            self._use_cudnn = False

193 194 195 196 197 198
    def extra_repr(self):
        main_str = '{_in_channels}, {_out_channels}, kernel_size={_kernel_size}'
        if self._stride != [1] * len(self._stride):
            main_str += ', stride={_stride}'
        if self._padding != 0:
            main_str += ', padding={_padding}'
199
        if self._padding_mode != 'zeros':
200
            main_str += ', padding_mode={_padding_mode}'
201 202
        if self.output_padding != 0:
            main_str += ', output_padding={output_padding}'
203 204 205 206 207 208 209
        if self._dilation != [1] * len(self._dilation):
            main_str += ', dilation={_dilation}'
        if self._groups != 1:
            main_str += ', groups={_groups}'
        main_str += ', data_format={_data_format}'
        return main_str.format(**self.__dict__)

L
LielinJiang 已提交
210

C
cnn 已提交
211
class Conv1D(_ConvNd):
212
    r"""
C
cnn 已提交
213
    This interface is used to construct a callable object of the ``Conv1D`` class.
W
whs 已提交
214 215 216 217 218 219
    For more details, refer to code examples.
    The convolution1D layer calculates the output based on the input, filter
    and stride, padding, dilation, groups parameters. Input and
    Output are in NCL format or NLC format, where N is batch size, C is the number of
    the feature map, L is the length of the feature map.
    Filter's shape is [MCK] , where M is the number of output feature map,
220
    C is the number of input feature map, K is the size of the kernel.
W
whs 已提交
221 222 223 224
    If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
W
whs 已提交
225 226 227

    For each input :math:`X` , the equation is:

W
whs 已提交
228
    .. math::
W
whs 已提交
229

230
        Out = \sigma (W \ast X + b)
W
whs 已提交
231

W
whs 已提交
232
    Where:
W
whs 已提交
233

W
whs 已提交
234 235
    * :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
236
    * :math:`\ast`: Convolution operation.
W
wangguanzhong 已提交
237
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
238
    * :math:`\sigma`: Activation function.
W
whs 已提交
239
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
W
whs 已提交
240

W
whs 已提交
241
    Example:
W
whs 已提交
242

W
whs 已提交
243
        - Input:
W
whs 已提交
244

W
whs 已提交
245
          Input shape: :math:`(N, C_{in}, L_{in})`
W
whs 已提交
246

W
whs 已提交
247
          Kernel shape: :math:`(C_{out}, C_{in}, K)`
W
whs 已提交
248

W
whs 已提交
249
        - Output:
W
whs 已提交
250

W
whs 已提交
251
          Output shape: :math:`(N, C_{out}, L_{out})`
W
whs 已提交
252

W
whs 已提交
253
        Where
W
whs 已提交
254

W
whs 已提交
255
        .. math::
W
whs 已提交
256

257
            L_{out}&= \frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
W
whs 已提交
258

W
whs 已提交
259 260 261 262
    Parameters:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of filter. It is as same as the output
            feature map.
263
        kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple/list,
W
whs 已提交
264
            it must contain one integer, (kernel_size).
265
        stride (int|tuple|list, optional): The stride size. If stride is a tuple/list, it must
W
whs 已提交
266 267 268 269 270 271
            contain one integer, (stride_size). Default: 1.
        padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
            1. a string in ['valid', 'same'].
            2. an int, which means the feature map is zero paded by size of `padding` on both sides.
            3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
            The default value is 0.
272
        dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple/list, it must
W
whs 已提交
273 274 275 276 277 278 279 280 281 282 283 284
            contain one integer, (dilation_size). Default: 1.
        groups (int, optional): The groups number of the conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: 1.
        padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
            When in 'zeros' mode, this op uses zeros to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'zeros'.
L
LielinJiang 已提交
285
        weight_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
W
whs 已提交
286 287 288
            of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
289
            and the :math:`std` is :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
W
whs 已提交
290 291 292 293 294
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
W
whs 已提交
295

W
whs 已提交
296
    Attribute:
W
wangguanzhong 已提交
297

W
whs 已提交
298
        **weight** (Parameter): the learnable weights of filter of this layer.
W
wangguanzhong 已提交
299

W
whs 已提交
300
        **bias** (Parameter or None): the learnable bias of this layer.
W
whs 已提交
301

W
whs 已提交
302 303
    Shape:
        - x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
W
wangguanzhong 已提交
304 305
        - weight: 3-D tensor with shape: (out_channels, in_channels, kernel_size)
        - bias: 1-D tensor with shape: (out_channels)
W
whs 已提交
306
        - output: 3-D tensor with same shape as input x.
307

W
whs 已提交
308 309
    Examples:
        .. code-block:: python
W
whs 已提交
310

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
            >>> import paddle
            >>> from paddle.nn import Conv1D

            >>> x = paddle.to_tensor([[[4, 8, 1, 9],
            ... [7, 2, 0, 9],
            ... [6, 9, 2, 6]]], dtype="float32")
            >>> w = paddle.to_tensor([[[9, 3, 4],
            ... [0, 0, 7],
            ... [2, 5, 6]],
            ... [[0, 3, 4],
            ... [2, 9, 7],
            ... [5, 6, 8]]], dtype="float32")

            >>> conv = Conv1D(3, 2, 3)
            >>> conv.weight.set_value(w)
            >>> y = conv(x)
            >>> print(y)
            Tensor(shape=[1, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=False,
            [[[133., 238.],
            [160., 211.]]])
331
    """
S
swtkiwi 已提交
332

333 334 335 336 337 338 339 340 341 342 343 344 345 346
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        padding_mode='zeros',
        weight_attr=None,
        bias_attr=None,
        data_format="NCL",
    ):
347
        super().__init__(
348 349 350 351 352 353 354 355 356 357 358 359 360 361
            in_channels,
            out_channels,
            kernel_size,
            False,
            1,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
362

363
    def forward(self, x):
L
LielinJiang 已提交
364 365
        padding = 0
        if self._padding_mode != "zeros":
366 367 368 369 370 371
            x = F.pad(
                x,
                self._reversed_padding_repeated_twice,
                mode=self._padding_mode,
                data_format=self._data_format,
            )
L
LielinJiang 已提交
372 373
        else:
            padding = self._padding
374

375 376 377 378 379 380 381 382 383 384
        out = F.conv1d(
            x,
            self.weight,
            bias=self.bias,
            padding=padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
        )
385 386 387
        return out


C
cnn 已提交
388
class Conv1DTranspose(_ConvNd):
389
    r"""
C
cnn 已提交
390
    This interface is used to construct a callable object of the ``Conv1DTranspose`` class.
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    For more details, refer to code examples.
    The 1-D convolution transpose layer calculates the output based on the input,
    filter, and dilation, stride, padding. Input(Input) and output(Output)
    are in 'NCL' format or 'NLC' where N is batch size, C is the number of channels,
    L is the length of the feature. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

406
        Out = \sigma (W \ast X + b)
407 408 409 410 411

    Where:

    * :math:`X`: Input value, a 3-D Tensor with 'NCL' format or 'NLC' format.
    * :math:`W`: Kernel value, a 3-D Tensor with 'MCK' format.
412
    * :math:`\ast`: Convolution operation.
413
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
414
    * :math:`\sigma`: Activation function.
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
    * :math:`Out`: Output value, a 3-D Tensor with data format 'NCL' of 'NLC', the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, L_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, L_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, L_{out})`

        Where

        .. math::

433
           L^\prime_{out} &= (L_{in} - 1) * stride - 2 * padding + dilation * (L_f - 1) + 1 \\
434 435 436 437 438 439 440 441
           L_{out} &\in [ L^\prime_{out}, L^\prime_{out} + stride ]

    Note:
          The conv1d_transpose can be seen as the backward of the conv1d. For conv1d,
          when stride > 1, conv1d maps multiple input shape to the same output shape,
          so for conv1d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`L_{out} = L^\prime_{out}`;
          else, the :math:`L_{out}` of the output size must between :math:`L^\prime_{out}`
442
          and :math:`L^\prime_{out} + stride`.
443 444 445 446 447

    Args:
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of the filter. It is as same as the output
            feature map.
448
        kernel_size(int|tuple|list): The filter size. If kernel_size is a tuple/list,
449 450 451 452
            it must contain one integers, (kernel_size). None if
            use output size to calculate kernel_size. Default: None. kernel_size and
            output_size should not be None at the same time.
        stride(int|tuple|list, optional): The stride size. It means the stride in transposed convolution.
453
            If stride is a tuple/list, it must contain one integer, (stride_size).
454 455 456 457 458 459 460
            Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in two forms:
             `[pad]` or `[pad_left, pad_right]`. Default: padding = 0.
        output_padding(int|list|tuple, optional): The count of zeros to be added to tail of each dimension.
461
             If it is a tuple/list, it must contain one integer. Default: 0.
C
cnn 已提交
462
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
463 464 465 466 467 468 469
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        bias(bool, optional): Whether to use bias. Default: True.
        dilation(int|tuple|list, optional): The dilation size. It means the spacing between the kernel points.
470
            If dilation is a tuple/list, it must contain one integer, (dilation_size).
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
            Default: dilation = 1.
        weight_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv1d_transpose. If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv1d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv1d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:
W
whs 已提交
487 488

        - x(Tensor): 3-D tensor with shape (batch, in_channels, length) when data_format is "NCL" or shape (batch, length, in_channels) when data_format is "NLC".
W
wangguanzhong 已提交
489 490
        - weight(Tensor): 3-D tensor with shape (in_channels, out_channels, kernel_length).
        - bias(Tensor): 1-D tensor with shape (out_channels).
491
        - output_size(int|tuple|list, optional): The output image size. If output size is a tuple/list, it must contain one integer, (feature_length). None if use kernel_size, padding, output_padding and stride to calculate output_size. If output_size and kernel_size are specified at the same time, They should follow the formula above. Default: None. output_size and kernel_size should not be None at the same time.
492 493 494 495 496
        - output(Tensor): 3-D tensor with same shape as input x.

    Examples:
       .. code-block:: python

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
            >>> import paddle
            >>> from paddle.nn import Conv1DTranspose

            >>> # shape: (1, 2, 4)
            >>> x = paddle.to_tensor([[[4, 0, 9, 7],
            ... [8, 0, 9, 2]]], dtype="float32")
            >>> print(x.shape)
            [1, 2, 4]

            >>> # shape: (2, 1, 2)
            >>> w = paddle.to_tensor([[[7, 0]],
            ... [[4, 2]]], dtype="float32")
            >>> print(w.shape)
            [2, 1, 2]

            >>> conv = Conv1DTranspose(2, 1, 2)
            >>> conv.weight.set_value(w)
            >>> y = conv(x)
            >>> print(y)
            Tensor(shape=[1, 1, 5], dtype=float32, place=Place(cpu), stop_gradient=False,
            [[[60., 16., 99., 75., 4. ]]])
518 519
    """

520 521 522 523 524 525 526 527 528 529 530 531 532 533
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        output_padding=0,
        groups=1,
        dilation=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCL",
    ):
534
        super().__init__(
535 536 537 538 539 540 541 542 543 544 545 546 547 548
            in_channels,
            out_channels,
            kernel_size,
            True,
            1,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
549 550

    def forward(self, x, output_size=None):
551 552 553 554 555 556 557 558 559 560 561 562
        out = F.conv1d_transpose(
            x,
            self.weight,
            bias=self.bias,
            output_size=output_size,
            output_padding=self.output_padding,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
        )
L
LielinJiang 已提交
563 564 565
        return out


C
cnn 已提交
566
class Conv2D(_ConvNd):
567
    r"""
C
cnn 已提交
568
    This interface is used to construct a callable object of the ``Conv2D`` class.
L
LielinJiang 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
    For more details, refer to code examples.
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more details.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
    For each input :math:`X`, the equation is:

    ..  math::

588
        Out = \sigma (W \ast X + b)
L
LielinJiang 已提交
589 590 591 592 593

    Where:

    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
594
    * :math:`\ast`: Convolution operation.
W
wangguanzhong 已提交
595
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
596
    * :math:`\sigma`: Activation function.
L
LielinJiang 已提交
597
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
598

L
LielinJiang 已提交
599 600 601
    Parameters:
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
602
        kernel_size(int|list|tuple): The size of the convolving kernel.
603
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
L
LielinJiang 已提交
604 605 606 607
            contain three integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. The default value is 1.
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
608
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
L
LielinJiang 已提交
609 610 611 612
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
613
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
L
LielinJiang 已提交
614 615
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
616
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
L
LielinJiang 已提交
617 618 619 620 621 622 623 624 625
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
626
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
L
LielinJiang 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
        data_format(str, optional): Data format that specifies the layout of input.
            It can be "NCHW" or "NHWC". Default: "NCHW".

    Attribute:

        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Shape:

        - x: :math:`(N, C_{in}, H_{in}, W_{in})`

W
wangguanzhong 已提交
645 646 647 648
        - weight: :math:`(C_{out}, C_{in}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
649 650 651 652 653 654
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        ..  math::

655
           H_{out}&= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
L
LielinJiang 已提交
656

657
           W_{out}&= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
L
LielinJiang 已提交
658 659 660 661 662

    Examples:

        .. code-block:: python

663 664
            >>> import paddle
            >>> import paddle.nn as nn
665

666
            >>> paddle.disable_static()
667

668
            >>> x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
669

670 671 672 673
            >>> conv = nn.Conv2D(4, 6, (3, 3))
            >>> y_var = conv(x_var)
            >>> print(y_var.shape)
            [2, 6, 6, 6]
L
LielinJiang 已提交
674 675
    """

676 677 678 679 680 681 682 683 684 685 686 687 688 689
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        padding_mode='zeros',
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
    ):
690
        super().__init__(
691 692 693 694 695 696 697 698 699 700 701 702 703 704
            in_channels,
            out_channels,
            kernel_size,
            False,
            2,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
L
LielinJiang 已提交
705 706 707

    def forward(self, x):
        if self._padding_mode != 'zeros':
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
            x = F.pad(
                x,
                self._reversed_padding_repeated_twice,
                mode=self._padding_mode,
                data_format=self._data_format,
            )

        out = F.conv._conv_nd(
            x,
            self.weight,
            bias=self.bias,
            stride=self._stride,
            padding=self._updated_padding,
            padding_algorithm=self._padding_algorithm,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn,
        )
729 730 731
        return out


C
cnn 已提交
732
class Conv2DTranspose(_ConvNd):
733
    r"""
C
cnn 已提交
734
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
735 736 737 738 739
    For more details, refer to code examples.
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
W
wangguanzhong 已提交
740 741
    Filter's shape is [CMHW] , where C is the number of input feature map,
    M is the number of output feature map, H is the height of the filter,
742 743 744 745 746 747
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    The details of convolution transpose layer, please refer to the following explanation and references
W
wangguanzhong 已提交
748
    `conv2dtranspose <https://arxiv.org/pdf/1603.07285.pdf>`_ .
749
    For each input :math:`X`, the equation is:
750 751 752

    ..  math::

753
        Out = \sigma (W \ast X + b)
754

755
    Where:
756

757
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
W
wangguanzhong 已提交
758
    * :math:`W`: Filter value, a ``Tensor`` with shape [CMHW] .
759
    * :math:`\ast`: Convolution operation.
W
wangguanzhong 已提交
760
    * :math:`b`: Bias value, a 1-D ``Tensor`` with shape [M].
761
    * :math:`\sigma`: Activation function.
762
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
763

764
    Parameters:
L
LielinJiang 已提交
765 766
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
767
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
768 769
            it must contain two integers, (kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
770
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
771 772
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: 1.
773 774
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
775
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding` on both sides
776 777 778 779
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
780 781
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
782
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
783 784
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
785
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
786 787 788 789 790
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: 1.
791
        weight_attr(ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
792 793 794
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
795
        bias_attr(ParamAttr|bool, optional): The attribute for the bias of conv2d_transpose.
796 797 798 799
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
800
        data_format(str, optional): Data format that specifies the layout of input.
801
            It can be "NCHW" or "NHWC". Default: "NCHW".
802

803
    Attribute:
804

805
        **weight** (Parameter): the learnable weights of filters of this layer.
806

807
        **bias** (Parameter or None): the learnable bias of this layer.
808

L
LielinJiang 已提交
809
    Shape:
810

L
LielinJiang 已提交
811
        - x: :math:`(N, C_{in}, H_{in}, W_{in})`
812

W
wangguanzhong 已提交
813 814 815 816
        - weight: :math:`(C_{in}, C_{out}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
817
        - output: :math:`(N, C_{out}, H_{out}, W_{out})`
818

L
LielinJiang 已提交
819
        Where
820 821 822 823 824 825 826 827 828 829 830

        ..  math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1

           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1

           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] )

           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

831
    Examples:
832

833
       .. code-block:: python
834

835 836
            >>> import paddle
            >>> import paddle.nn as nn
837

838
            >>> paddle.disable_static()
839

840
            >>> x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
841

842 843 844 845
            >>> conv = nn.Conv2DTranspose(4, 6, (3, 3))
            >>> y_var = conv(x_var)
            >>> print(y_var.shape)
            [2, 6, 10, 10]
846 847
    """

848 849 850 851 852 853 854 855 856 857 858 859 860 861
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        output_padding=0,
        dilation=1,
        groups=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
    ):
862
        super().__init__(
863 864 865 866 867 868 869 870 871 872 873 874 875 876
            in_channels,
            out_channels,
            kernel_size,
            True,
            2,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
L
LielinJiang 已提交
877 878

    def forward(self, x, output_size=None):
879
        if output_size is None:
880
            output_padding = self.output_padding
881
        else:
L
LielinJiang 已提交
882
            output_padding = 0
883

884 885 886 887 888 889 890 891 892 893 894 895
        out = F.conv2d_transpose(
            x,
            self.weight,
            bias=self.bias,
            padding=self._padding,
            output_padding=output_padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            output_size=output_size,
            data_format=self._data_format,
        )
896 897 898
        return out


C
cnn 已提交
899
class Conv3D(_ConvNd):
900
    r"""
901 902
    **Convlution3d Layer**
    The convolution3d layer calculates the output based on the input, filter
903
    and strides, paddings, dilations, groups parameters. Input(Input) and
904
    Output(Output) are multidimensional tensors with a shape of
905 906 907 908 909 910 911
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
    For each input :math:`X`, the equation is:
912 913 914

    ..  math::

915
        Out = \sigma (W \ast X + b)
916

917
    In the above equation:
918

919 920
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
921
    * :math:`\ast`: Convolution operation.
W
wangguanzhong 已提交
922
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
923
    * :math:`\sigma`: Activation function.
924
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
925

926
    Parameters:
927 928
        in_channels(int): The number of input channels in the input image.
        out_channels(int): The number of output channels produced by the convolution.
929
        kernel_size(int|list|tuple): The size of the convolving kernel.
930
        stride(int|list|tuple, optional): The stride size. If stride is a list/tuple, it must
931 932
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. The default value is 1.
933
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
934
            1. a string in ['valid', 'same'].
935
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
936 937 938 939
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
            The default value is 0.
940
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
941 942
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
943
        groups(int, optional): The groups number of the Conv3D Layer. According to grouped
944 945 946 947
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. The default value is 1.
948 949
        padding_mode(str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``.
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
950 951 952
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
953
            :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
954
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
955 956 957 958
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. The default value is None.
959
        data_format(str, optional): Data format that specifies the layout of input.
960
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
961

962
    Attribute:
963

964
        **weight** (Parameter): the learnable weights of filters of this layer.
965

966
        **bias** (Parameter): the learnable bias of this layer.
967

968
    Shape:
969

970
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
971

W
wangguanzhong 已提交
972 973 974 975
        - weight: :math:`(C_{out}, C_{in}, K_{d}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

976
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
977

978
        Where
979 980 981

        ..  math::

982
           D_{out}&= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (kernel\_size[0] - 1) + 1))}{strides[0]} + 1
983

984
           H_{out}&= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (kernel\_size[1] - 1) + 1))}{strides[1]} + 1
985

986
           W_{out}&= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (kernel\_size[2] - 1) + 1))}{strides[2]} + 1
987

988
    Examples:
989

990
        .. code-block:: python
991

992 993
            >>> import paddle
            >>> import paddle.nn as nn
994

995
            >>> paddle.disable_static()
996

997
            >>> x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
998

999 1000 1001 1002
            >>> conv = nn.Conv3D(4, 6, (3, 3, 3))
            >>> y_var = conv(x_var)
            >>> print(y_var.shape)
            [2, 6, 6, 6, 6]
1003 1004
    """

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        padding_mode='zeros',
        weight_attr=None,
        bias_attr=None,
        data_format="NCDHW",
    ):
1019
        super().__init__(
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
            in_channels,
            out_channels,
            kernel_size,
            False,
            3,
            stride=stride,
            padding=padding,
            padding_mode=padding_mode,
            dilation=dilation,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
1034

1035 1036
    def forward(self, x):
        if self._padding_mode != 'zeros':
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
            x = F.pad(
                x,
                self._reversed_padding_repeated_twice,
                mode=self._padding_mode,
                data_format=self._data_format,
            )

        out = F.conv._conv_nd(
            x,
            self.weight,
            bias=self.bias,
            stride=self._stride,
            padding=self._updated_padding,
            padding_algorithm=self._padding_algorithm,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format,
            channel_dim=self._channel_dim,
            op_type=self._op_type,
            use_cudnn=self._use_cudnn,
        )
1058 1059 1060
        return out


C
cnn 已提交
1061
class Conv3DTranspose(_ConvNd):
1062
    r"""
1063 1064 1065 1066 1067 1068 1069 1070
    **Convlution3D transpose layer**
    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
W
wangguanzhong 已提交
1071
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
1072 1073 1074 1075
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
    For each input :math:`X`, the equation is:
1076

1077 1078
    ..  math::

1079
        Out = \sigma (W \ast X + b)
1080

1081
    In the above equation:
1082

1083
    * :math:`X`: Input value, a tensor with NCDHW format.
W
wangguanzhong 已提交
1084
    * :math:`W`: Filter value, a tensor with CMDHW format.
1085
    * :math:`\ast`: Convolution operation.
W
wangguanzhong 已提交
1086
    * :math:`b`: Bias value, a 1-D tensor with shape [M].
1087
    * :math:`\sigma`: Activation function.
1088
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
    .. note::
        The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
        when stride > 1, conv3d maps multiple input shape to the same output shape,
        so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
        If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`;
        else, the :math:`D_{out}` of the output size must between :math:`D^\prime_{out}`
        and :math:`D^\prime_{out} + strides[0]`, the :math:`H_{out}` of the output size must
        between :math:`H^\prime_{out}` and :math:`H^\prime_{out} + strides[1]`, and the
        :math:`W_{out}` of the output size must between :math:`W^\prime_{out}` and
        :math:`W^\prime_{out} + strides[2]`, conv3d_transpose can compute the kernel size automatically.
1100

1101
    Parameters:
L
LielinJiang 已提交
1102 1103
        in_channels(int): The number of channels in the input image.
        out_channels(int): The number of channels produced by the convolution.
1104
        kernel_size(int|list|tuple): The kernel size. If kernel_size is a list/tuple,
L
LielinJiang 已提交
1105 1106
            it must contain three integers, (kernel_size_D, kernel_size_H, kernel_size_W).
            Otherwise, the kernel will be a square.
1107 1108 1109
        stride(int|list|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a list/tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
1110
            Default: 1.
1111 1112
        padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
            1. a string in ['valid', 'same'].
1113
            2. an int, which means each spartial dimension(depth, height, width) is zero paded by size of `padding`
1114 1115 1116
            3. a list[int] or tuple[int] whose length is the number of spartial dimensions, which contains the amount of padding on each side for each spartial dimension. It has the form [pad_d1, pad_d2, ...].
            4. a list[int] or tuple[int] whose length is 2 * number of spartial dimensions. It has the form  [pad_before, pad_after, pad_before, pad_after, ...] for all spartial dimensions.
            5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
1117
            Default: 0.
L
LielinJiang 已提交
1118 1119
        output_padding(int|list|tuple, optional): Additional size added to one side
            of each dimension in the output shape. Default: 0.
1120
        dilation(int|list|tuple, optional): The dilation size. If dilation is a list/tuple, it must
1121
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
1122
            dilation_D = dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
1123
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
1124 1125
            grouped convolution in `Alex Krizhevsky's Deep CNN paper <https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf>`_, in which
            when groups = 2, the first half of the filters is only connected to the
1126 1127
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
1128
            Default: 1.
1129
        weight_attr(ParamAttr, optional): The parameter attribute for learnable parameters/weights
1130 1131
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
1132
            is not set, the parameter is initialized with Xavier. Default: None.
1133
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
1134 1135 1136
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
1137
            is not set, the bias is initialized zero. Default: None.
1138
        data_format(str, optional): Data format that specifies the layout of input.
1139
            It can be "NCDHW" or "NDHWC". Default: "NCDHW".
1140

1141
    Attribute:
1142

1143
        **weight** (Parameter): the learnable weights of filters of this layer.
1144

1145
        **bias** (Parameter): the learnable bias of this layer.
1146

L
LielinJiang 已提交
1147
    Shape:
1148

L
LielinJiang 已提交
1149
        - x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
1150

W
wangguanzhong 已提交
1151 1152 1153 1154
        - weight: :math:`(C_{in}, C_{out}, K_{d}, K_{h}, K_{w})`

        - bias: :math:`(C_{out})`

L
LielinJiang 已提交
1155
        - output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
1156

L
LielinJiang 已提交
1157
        Where
1158 1159 1160 1161

        ..  math::

           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel\_size[0] - 1) + 1
1162

1163
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel\_size[1] - 1) + 1
1164

1165
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel\_size[2] - 1) + 1
1166

1167
    Examples:
1168

1169
       .. code-block:: python
1170

1171 1172
            >>> import paddle
            >>> import paddle.nn as nn
1173

1174
            >>> paddle.disable_static()
1175

1176
            >>> x_var = paddle.uniform((2, 4, 8, 8, 8), dtype='float32', min=-1., max=1.)
1177

1178 1179 1180 1181
            >>> conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
            >>> y_var = conv(x_var)
            >>> print(y_var.shape)
            [2, 6, 10, 10, 10]
1182 1183
    """

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        output_padding=0,
        dilation=1,
        groups=1,
        weight_attr=None,
        bias_attr=None,
        data_format="NCDHW",
    ):
1198
        super().__init__(
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
            in_channels,
            out_channels,
            kernel_size,
            True,
            3,
            stride=stride,
            padding=padding,
            dilation=dilation,
            output_padding=output_padding,
            groups=groups,
            weight_attr=weight_attr,
            bias_attr=bias_attr,
            data_format=data_format,
        )
L
LielinJiang 已提交
1213

1214
    def forward(self, x, output_size=None):
1215
        if output_size is None:
1216
            output_padding = self.output_padding
1217
        else:
L
LielinJiang 已提交
1218
            output_padding = 0
1219

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
        out = F.conv3d_transpose(
            x,
            self.weight,
            bias=self.bias,
            padding=self._padding,
            output_padding=output_padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            output_size=output_size,
            data_format=self._data_format,
        )
1232
        return out