nn.py 227.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
25 26 27
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
Y
ying 已提交
32 33 34
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
35
    'dynamic_lstmp',
G
guosheng 已提交
36
    'dynamic_gru',
Y
ying 已提交
37 38 39 40 41 42 43 44 45
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
46
    'conv3d',
Y
ying 已提交
47
    'sequence_pool',
48 49
    'sequence_softmax',
    'softmax',
Y
ying 已提交
50
    'pool2d',
Y
yuyang18 已提交
51
    'pool3d',
Y
ying 已提交
52 53 54
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
55
    'conv3d_transpose',
Y
ying 已提交
56
    'sequence_expand',
C
chengduo 已提交
57
    'sequence_expand_as',
F
fengjiayi 已提交
58
    'sequence_pad',
Y
ying 已提交
59 60 61 62 63
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
64
    'reduce_prod',
Y
ying 已提交
65 66 67 68
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
69 70
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
71 72
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
73
    'topk',
Y
ying 已提交
74 75
    'warpctc',
    'sequence_reshape',
76
    'transpose',
77
    'im2sequence',
78
    'nce',
W
weixing02 已提交
79
    'hsigmoid',
Q
Qiao Longfei 已提交
80
    'beam_search',
81
    'row_conv',
82
    'multiplex',
G
guosheng 已提交
83
    'layer_norm',
84 85
    'softmax_with_cross_entropy',
    'smooth_l1',
86
    'one_hot',
Y
Yu Yang 已提交
87
    'autoincreased_step_counter',
C
caoying03 已提交
88
    'reshape',
Y
Yibing Liu 已提交
89 90
    'squeeze',
    'unsqueeze',
Y
yangyaming 已提交
91
    'lod_reset',
D
dragonwarrior 已提交
92
    'lrn',
G
guosheng 已提交
93
    'pad',
C
chengduo 已提交
94
    'pad_constant_like',
95
    'label_smooth',
96
    'roi_pool',
W
whs 已提交
97
    'dice_loss',
F
fengjiayi 已提交
98 99
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
100
    'resize_bilinear',
W
whs 已提交
101
    'gather',
102
    'scatter',
Q
Qingsheng Li 已提交
103
    'sequence_scatter',
104
    'random_crop',
Y
yuyang18 已提交
105 106 107
    'mean_iou',
    'relu',
    'log',
108
    'crop',
109
    'rank_loss',
110 111 112 113 114 115
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
J
jerrywgz 已提交
116
    'prelu',
117
    'flatten',
Q
qingqing01 已提交
118
    'sequence_mask',
S
sneaxiy 已提交
119
    'stack',
W
whs 已提交
120
    'pad2d',
D
dzhwinter 已提交
121
    'unstack',
122
    'sequence_enumerate',
W
whs 已提交
123
    'expand',
C
add api  
chengduoZH 已提交
124
    'sequence_concat',
Y
Yu Yang 已提交
125 126 127 128 129 130 131 132
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
133
       use_mkldnn=False,
Y
Yu Yang 已提交
134
       act=None,
J
Jacek Czaja 已提交
135
       is_test=False,
136
       name=None):
Y
Yu Yang 已提交
137
    """
138
    **Fully Connected Layer**
Y
Yu Yang 已提交
139

140 141 142 143 144 145 146 147
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
148
    to the output as well.
C
caoying03 已提交
149

C
caoying03 已提交
150
    This process can be formulated as follows:
151 152 153

    .. math::

154
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
155 156 157

    In the above equation:

C
caoying03 已提交
158 159 160 161
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
162
    * :math:`Act`: The activation function.
C
caoying03 已提交
163
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
164 165

    Args:
R
ranqiu 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
181 182
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
183
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
184
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
185 186
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
187
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
188

189
    Returns:
F
fengjiayi 已提交
190
        Variable: The transformation result.
191 192

    Raises:
C
caoying03 已提交
193
        ValueError: If rank of the input tensor is less than 2.
194 195 196 197

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
198
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
199
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
200
    """
C
caoying03 已提交
201

C
caoying03 已提交
202
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
203 204 205 206

    dtype = helper.input_dtype()

    mul_results = []
207 208
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
209 210 211
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
212

Y
Yu Yang 已提交
213
        w = helper.create_parameter(
214 215
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
216
        helper.append_op(
217 218 219
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
220
            outputs={"Out": tmp},
M
mozga-intel 已提交
221 222
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
223 224 225 226
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
227
    else:
228 229
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
230 231 232 233
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
234 235 236 237
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
238 239


240 241 242
def embedding(input,
              size,
              is_sparse=False,
243
              is_distributed=False,
244 245 246
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
247
    """
248 249
    **Embedding Layer**

250
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
251 252
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
253 254 255

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
256 257

    Args:
258 259 260 261 262
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
263
        is_distributed(bool): Whether to run lookup table from remote parameter server.
264 265
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
266
            with zeros whenever lookup encounters it in :attr:`input`. If
267
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
268 269
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
270
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
271

272 273 274
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
275

276 277
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
278

C
chengduoZH 已提交
279
          dict_size = len(dataset.ids)
280
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
281
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
282 283 284 285 286 287
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
288 289
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
290 291 292 293 294
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
295 296 297 298 299
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
300 301 302
    return tmp


Y
yi.wu 已提交
303
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
304 305
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
306 307
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
308 309 310 311 312 313 314
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
315 316
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
317
    """
Y
yi.wu 已提交
318
    ${comment}
Y
Yibing Liu 已提交
319 320

    Args:
Y
yi.wu 已提交
321 322
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
323 324 325 326 327 328 329
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

330
        param_attr(ParamAttr|None): The parameter attribute for the learnable
331
                               hidden-hidden weights.
Y
Yibing Liu 已提交
332 333 334

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
335 336
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
337
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
338 339 340
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
341

342
                              1. `use_peepholes = False`
Y
yi.wu 已提交
343 344
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
345
                              2. `use_peepholes = True`
Y
yi.wu 已提交
346
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
347
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
348
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
349 350 351 352 353 354 355 356
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
357 358

    Returns:
Y
Yibing Liu 已提交
359 360
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
361

Y
Yibing Liu 已提交
362
    Examples:
Y
Yibing Liu 已提交
363 364
        .. code-block:: python

Y
Yibing Liu 已提交
365 366
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
367
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
368 369
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
370
    """
371

Y
Yu Yang 已提交
372
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
373
    size = size // 4
Y
Yu Yang 已提交
374 375 376 377 378 379 380 381 382 383 384 385
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
386 387 388 389 390 391 392 393 394 395
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
396 397 398

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
399
        inputs=inputs,
Y
Yu Yang 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
416 417 418 419 420 421 422 423 424 425 426
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
427 428
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
429 430 431
    """
    **Dynamic LSTMP Layer**

432 433 434 435 436 437
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
438 439 440 441 442

    The formula is as follows:

    .. math::

443
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
444

445
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
446

447
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
448

449
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
450

451
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
452

453
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
454

455
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
456

Y
Yibing Liu 已提交
457 458 459 460 461 462
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
463
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
464
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
465
          bias vector).
Y
Yibing Liu 已提交
466 467 468
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
469
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
470
    * :math:`h`: The hidden state.
471
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
472 473
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
474
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
475
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
476
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
477 478
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
479 480 481 482

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
483

Y
Yibing Liu 已提交
484 485 486 487 488 489 490 491 492 493 494 495
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
496
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
497 498
                               hidden-hidden weight and projection weight.

499 500
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
501 502
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
503 504
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
505 506
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
507 508 509 510 511 512
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
513
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
514 515 516
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
517
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
518 519 520 521 522 523 524 525 526
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
527
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
528 529
                              default "tanh".
        proj_activation(str): The activation for projection output.
530
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
531 532
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
533 534
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
535 536

    Returns:
537 538 539 540
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
541 542

    Examples:
543

Y
Yibing Liu 已提交
544 545
        .. code-block:: python

546 547 548 549
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
550
            hidden_dim, proj_dim = 512, 256
551
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
552
                                     act=None, bias_attr=None)
553 554 555
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
556 557 558 559
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
560
    """
561

Y
Yibing Liu 已提交
562
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
563
    size = size // 4
Y
Yibing Liu 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
608 609 610 611 612 613 614 615 616
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
617
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
618

619
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
620
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
621

G
guosheng 已提交
622 623 624 625 626 627 628 629 630
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
631

G
guosheng 已提交
632
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
633

G
guosheng 已提交
634
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
635 636
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
637 638 639 640
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
641
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
642 643

    Args:
644 645
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
646
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
647
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
648 649
            is the hidden size.
        size(int): The dimension of the gru cell.
650
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
651 652
            hidden-hidden weight matrix. Note:

653
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
654
              :math:`D` is the hidden size.
655
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
656
              The first part are weights of the update gate and reset gate with
657
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
658
              candidate hidden state with shape :math:`(D \\times D)`.
659
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
660
            hidden-hidden bias.
661
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
662 663 664
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
665
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
666
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
667 668 669 670
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
671 672

    Returns:
G
guosheng 已提交
673
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
674
            and sequence length is the same with the input.
675

G
guosheng 已提交
676
    Examples:
677

G
guosheng 已提交
678 679
        .. code-block:: python

680 681 682 683
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
684
            hidden_dim = 512
685
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
686 687 688 689 690 691 692 693 694 695
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
696
    batch_size = input.shape[0]
G
guosheng 已提交
697 698 699
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
700 701 702
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
726 727 728
def gru_unit(input,
             hidden,
             size,
729 730
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
731
             activation='tanh',
732
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
733
    """
734
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
735

736 737
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
738

739
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
740

741
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
742

743
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
744 745

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
746 747 748
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
749 750
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

751 752
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
753 754 755
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
756 757 758 759 760

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
761 762
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
763 764 765 766
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
767

768 769 770 771 772 773
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
774

775
             # assuming we have x_t_data and prev_hidden of size=10
776
             x_t = fluid.layers.fc(input=x_t_data, size=30)
777 778
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
779 780 781 782 783 784 785 786 787 788 789 790

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
791
    size = size // 3
Y
Yu Yang 已提交
792 793

    # create weight
794 795
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
796

797 798 799 800
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
801
    # create bias
802
    if helper.bias_attr:
Y
Yu Yang 已提交
803 804 805
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
806
        inputs['Bias'] = bias
Y
Yu Yang 已提交
807 808 809

    helper.append_op(
        type='gru_unit',
810
        inputs=inputs,
Y
Yu Yang 已提交
811 812 813 814 815 816
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
817 818
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
819 820 821 822 823
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
824
@templatedoc()
825
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
826 827 828 829 830 831 832
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
833
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
834 835 836 837
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
838 839 840
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
841 842

    """
Y
Yu Yang 已提交
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
868
@templatedoc()
869
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
870 871 872 873 874
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
875

Y
yuyang18 已提交
876
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
877

Y
yuyang18 已提交
878 879 880
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
881
        Variable: ${viterbi_path_comment}
882

Y
yi.wu 已提交
883 884 885 886 887
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
888
    """
Y
Yu Yang 已提交
889 890 891 892 893 894 895 896 897 898 899 900 901
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
902
@templatedoc()
F
fengjiayi 已提交
903
def cos_sim(X, Y):
Y
Yu Yang 已提交
904
    """
Y
yi.wu 已提交
905 906 907
    ${comment}

    Args:
908 909
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
910

Y
yi.wu 已提交
911
    Returns:
912
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
913
    """
F
fengjiayi 已提交
914
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


928
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
929 930 931 932 933
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
934
    training. The dropout operator randomly sets (according to the given dropout
935 936 937 938
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
939 940
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
941 942 943 944 945 946 947
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
948 949

    Returns:
950
        Variable: A tensor variable is the shape with `x`.
951 952

    Examples:
953

954 955
        .. code-block:: python

956 957
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
958 959
    """

F
fengjiayi 已提交
960
    helper = LayerHelper('dropout', **locals())
961 962
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
963 964 965 966

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

967 968 969 970 971
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
972 973 974 975 976 977
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
978 979 980
    return out


981
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
982
    """
Y
Yibing Liu 已提交
983 984
    **Cross Entropy Layer**

985 986 987
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
988 989

    1) One-hot cross-entropy:
F
fengjiayi 已提交
990
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
991

Y
Yibing Liu 已提交
992
        .. math::
Y
yangyaming 已提交
993

Y
Yibing Liu 已提交
994 995 996
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
997 998
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
999 1000 1001 1002 1003

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1004
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1005 1006 1007
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1008 1009
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1010
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1011

Y
Yibing Liu 已提交
1012
    Args:
Y
yangyaming 已提交
1013
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1014 1015 1016 1017
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1018
        label (Variable|list): the ground truth which is a 2-D tensor. When
1019 1020 1021 1022
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1023
        soft_label (bool): a flag indicating whether to
1024
                                           interpretate the given labels as soft
1025 1026 1027 1028
                                           labels. Default: `False`.
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1029 1030 1031 1032 1033

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1034 1035 1036 1037 1038
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1039 1040 1041 1042 1043 1044

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1045
    """
F
fengjiayi 已提交
1046
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1047 1048 1049 1050 1051 1052
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1053 1054
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1055 1056 1057
    return out


F
fengjiayi 已提交
1058
def square_error_cost(input, label):
Y
Yu Yang 已提交
1059
    """
1060 1061
    **Square error cost layer**

1062 1063
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1064

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1078 1079
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1080 1081

    Returns:
G
guosheng 已提交
1082
        Variable: The tensor variable storing the element-wise squared error \
1083
                  difference of input and label.
1084 1085 1086 1087 1088 1089 1090 1091

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1092
    """
F
fengjiayi 已提交
1093
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1103 1104
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1105 1106 1107
    return square_out


Y
yi.wu 已提交
1108
@templatedoc()
Y
Yu Yang 已提交
1109 1110 1111 1112
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1113
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1114
    """
Y
yi.wu 已提交
1115
    **Chunk Evaluator**
Y
yi.wu 已提交
1116

Y
yangyaming 已提交
1117
    This function computes and outputs the precision, recall and
1118
    F1-score of chunk detection.
Y
yi.wu 已提交
1119

Y
yi.wu 已提交
1120 1121 1122 1123 1124 1125 1126 1127
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1128

Y
yi.wu 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1154

Y
yi.wu 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1179
    Args:
1180 1181 1182 1183 1184
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1185

Y
yi.wu 已提交
1186
    Returns:
Y
update  
yi.wu 已提交
1187 1188 1189
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1190

Y
yi.wu 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1203
    """
F
fengjiayi 已提交
1204
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1205 1206 1207 1208 1209

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1210 1211 1212
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1213 1214 1215 1216 1217 1218 1219 1220

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1221 1222 1223 1224
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1225 1226 1227
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1228 1229
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1230
        })
1231 1232
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1233 1234


1235
@templatedoc()
Y
Yu Yang 已提交
1236 1237 1238 1239 1240 1241 1242
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1243
                  act=None):
Y
Yu Yang 已提交
1244 1245 1246 1247
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1258

1259 1260
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1279
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1280 1281 1282 1283 1284 1285
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1286
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False):
1287 1288 1289
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1290
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1309
        library is installed. Default: False
1310

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1333
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1334
    """
1335
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1336
    has the same shape as the input.
Q
qiaolongfei 已提交
1337

1338 1339 1340 1341 1342 1343
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1344
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1345 1346 1347 1348 1349 1350 1351

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1352
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1387 1388 1389
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1390 1391
           stride=1,
           padding=0,
1392
           dilation=1,
Y
Yu Yang 已提交
1393 1394 1395
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1396
           use_cudnn=True,
1397
           use_mkldnn=False,
1398 1399
           act=None,
           name=None):
Y
Yu Yang 已提交
1400
    """
C
chengduoZH 已提交
1401
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1402 1403
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1404
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1405 1406 1407 1408 1409 1410 1411
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1412 1413 1414
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1415

1416
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1417

C
chengduoZH 已提交
1418 1419
    .. math::

C
refine  
chengduoZH 已提交
1420
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1421

T
tensor-tang 已提交
1422
    Where:
C
chengduoZH 已提交
1423

1424 1425 1426 1427 1428
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1429
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1430 1431 1432

    Example:

1433 1434
        - Input:

W
weixing02 已提交
1435
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1436

W
weixing02 已提交
1437
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1438

1439
        - Output:
T
tensor-tang 已提交
1440

W
weixing02 已提交
1441
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1442

C
chengduoZH 已提交
1443
        Where
1444 1445

        .. math::
C
chengduoZH 已提交
1446

W
weixing02 已提交
1447 1448
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1449 1450

    Args:
1451
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1452
        num_filters(int): The number of filter. It is as same as the output
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1475 1476
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1477 1478 1479
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1480 1481

    Returns:
G
guosheng 已提交
1482
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1483 1484
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1485
    Raises:
1486 1487
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1488

C
chengduoZH 已提交
1489 1490 1491
    Examples:
        .. code-block:: python

1492 1493
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1494 1495 1496
    """

    num_channels = input.shape[1]
1497 1498

    l_type = 'conv2d'
X
xzl 已提交
1499 1500
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1501
        l_type = 'depthwise_conv2d'
1502 1503 1504 1505

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1506 1507 1508 1509 1510
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1511
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1512

C
chengduoZH 已提交
1513 1514 1515
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1516
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1517

C
chengduoZH 已提交
1518 1519
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1520 1521

    input_shape = input.shape
M
minqiyang 已提交
1522
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1537
        type=l_type,
Y
Yu Yang 已提交
1538 1539 1540 1541 1542
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1543 1544 1545
        attrs={
            'strides': stride,
            'paddings': padding,
1546
            'dilations': dilation,
C
chengduoZH 已提交
1547
            'groups': groups,
1548 1549
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1550
        })
Y
Yu Yang 已提交
1551 1552 1553 1554 1555 1556

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1575 1576 1577 1578 1579 1580
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1590 1591
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1592 1593 1594
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1595
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1621
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1622 1623
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1624
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1625 1626
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1627
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1628 1629
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1630
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1657 1658
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1673
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1714
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1715 1716 1717 1718

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1719
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1720
    """
Y
yangyaming 已提交
1721 1722 1723
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1735
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1736 1737 1738 1739 1740
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1741
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1742 1743 1744 1745 1746 1747 1748

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1749 1750
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1751

L
Luo Tao 已提交
1752 1753
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1754
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1755 1756 1757 1758 1759 1760 1761 1762
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1763

Y
yangyaming 已提交
1764
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1765 1766 1767 1768 1769
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1770 1771
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1772
    """
F
fengjiayi 已提交
1773
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1785 1786 1787 1788 1789
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1790 1791 1792
    return pool_out


C
add doc  
chengduoZH 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1818
def sequence_first_step(input):
L
Luo Tao 已提交
1819
    """
L
Luo Tao 已提交
1820
    This function gets the first step of sequence.
L
Luo Tao 已提交
1821 1822 1823 1824

    .. code-block:: text

       x is a 1-level LoDTensor:
1825
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1826 1827 1828 1829 1830
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1831
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1832
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1833

L
Luo Tao 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1843

Y
yangyaming 已提交
1844
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1845 1846 1847
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1848 1849 1850
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1851
def sequence_last_step(input):
L
Luo Tao 已提交
1852
    """
L
Luo Tao 已提交
1853
    This function gets the last step of sequence.
L
Luo Tao 已提交
1854 1855 1856 1857

    .. code-block:: text

       x is a 1-level LoDTensor:
1858
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1859 1860 1861 1862 1863
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1864
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1865
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1866

L
Luo Tao 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1876

Y
yangyaming 已提交
1877
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1878 1879 1880
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1881 1882 1883
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1884
@templatedoc()
Y
Yu Yang 已提交
1885
def pool2d(input,
C
chengduoZH 已提交
1886 1887
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1888 1889
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1890
           global_pooling=False,
C
chengduoZH 已提交
1891
           use_cudnn=True,
1892
           ceil_mode=False,
1893
           use_mkldnn=False,
C
caoying03 已提交
1894
           name=None):
Y
Yu Yang 已提交
1895
    """
F
fengjiayi 已提交
1896
    ${comment}
1897 1898

    Args:
1899 1900 1901
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1902
                          feature, and W is the width of the feature.
1903
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1904
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1905
        pool_type: ${pooling_type_comment}
1906 1907
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1908 1909 1910 1911
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1912
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1913 1914
                        layer will be named automatically.

1915
    Returns:
F
fengjiayi 已提交
1916
        Variable: The pooling result.
F
fengjiayi 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1930 1931 1932 1933
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1934
                            global_pooling=False)
Y
Yu Yang 已提交
1935 1936 1937 1938 1939
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1940

C
chengduoZH 已提交
1941 1942 1943 1944 1945
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1946 1947 1948 1949
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1950 1951
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1952

C
Add doc  
chengduoZH 已提交
1953
    l_type = 'pool2d'
1954 1955

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1956 1957 1958 1959
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1989
    pooling configurations mentioned in input parameters.
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2003

2004
    Returns:
2005
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2006 2007 2008 2009 2010
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2011

C
chengduoZH 已提交
2012 2013 2014 2015 2016
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2017 2018 2019
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2020

C
chengduoZH 已提交
2021 2022
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2023

2024 2025
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2026 2027 2028 2029
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2030
        type=l_type,
Y
Yu Yang 已提交
2031 2032 2033 2034 2035 2036 2037
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2038
            "paddings": pool_padding,
2039
            "use_cudnn": use_cudnn,
2040 2041
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2054
               data_layout='NCHW',
Y
Yang Yang 已提交
2055
               in_place=False,
2056
               use_mkldnn=False,
2057 2058
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2059
               moving_variance_name=None,
2060 2061
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2062
    """
Q
qiaolongfei 已提交
2063 2064 2065 2066
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2067

Q
qiaolongfei 已提交
2068
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2069

Q
qiaolongfei 已提交
2070 2071
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2072 2073 2074
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2087 2088

    Args:
Q
qiaolongfei 已提交
2089
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2090 2091 2092 2093
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2094 2095 2096
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2097
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2098 2099 2100 2101 2102
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2103
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2104
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2105 2106

    Returns:
Q
qiaolongfei 已提交
2107
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2108 2109 2110 2111 2112 2113 2114

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2138
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2139

2140 2141
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2142 2143 2144
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2145
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2146
        shape=param_shape,
2147 2148 2149 2150 2151 2152 2153
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2154
            trainable=False,
W
wanghaoshuang 已提交
2155
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2156
        shape=param_shape,
2157 2158
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2159 2160 2161 2162 2163 2164

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2165 2166
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2167

2168
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2186 2187 2188 2189
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2190 2191
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2192
        })
Y
Yu Yang 已提交
2193 2194 2195 2196

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2197
@templatedoc()
G
guosheng 已提交
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2208
    ${comment}
G
guosheng 已提交
2209 2210 2211

    The formula is as follows:

Y
yuyang18 已提交
2212
    ..  math::
G
guosheng 已提交
2213 2214 2215 2216 2217 2218 2219

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2220 2221 2222 2223 2224 2225 2226 2227
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2228

G
guosheng 已提交
2229 2230
    Args:
        input(Variable): The input tensor variable.
2231
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2232
            normalization.
2233
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2234
            normalization.
2235
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2236
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2237
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2238 2239 2240 2241 2242 2243
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2244
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2245 2246

    Returns:
Y
yuyang18 已提交
2247
        ${y_comment}
G
guosheng 已提交
2248 2249 2250

    Examples:

Y
yuyang18 已提交
2251 2252 2253
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2269
    if shift:
G
guosheng 已提交
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2294 2295 2296 2297
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2298 2299 2300
                     padding=0,
                     stride=1,
                     dilation=1,
2301
                     groups=None,
C
caoying03 已提交
2302
                     param_attr=None,
2303
                     bias_attr=None,
C
chengduoZH 已提交
2304
                     use_cudnn=True,
2305
                     act=None,
C
caoying03 已提交
2306
                     name=None):
Y
Yu Yang 已提交
2307
    """
2308 2309 2310 2311 2312 2313 2314 2315
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2316 2317
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2318 2319 2320
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2321 2322 2323 2324 2325

    For each input :math:`X`, the equation is:

    .. math::

2326
        Out = \sigma (W \\ast X + b)
2327

2328
    Where:
2329 2330 2331

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2332 2333 2334 2335
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2336

2337 2338 2339 2340
    Example:

        - Input:

2341
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2342

2343
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2344 2345 2346

        - Output:

2347
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2348 2349

        Where
Y
Yu Yang 已提交
2350

2351 2352
        .. math::

2353 2354 2355 2356
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2357 2358

    Args:
2359 2360 2361 2362
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2363 2364 2365 2366
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2394 2395

    Returns:
2396
        Variable: The tensor variable storing the convolution transpose result.
2397 2398

    Raises:
2399 2400
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2401 2402 2403 2404

    Examples:
       .. code-block:: python

2405 2406
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2407
    """
2408 2409 2410 2411 2412 2413 2414 2415 2416

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2417 2418 2419
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2420 2421 2422
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2423

C
chengduoZH 已提交
2424 2425
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2426

Y
Yu Yang 已提交
2427 2428 2429 2430 2431
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2432

Y
Yu Yang 已提交
2433 2434
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2435

C
chengduoZH 已提交
2436
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2437
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2438
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2439
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2440
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2441 2442 2443
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2444 2445 2446 2447 2448 2449 2450
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2451
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2452
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2453 2454 2455
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2456
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2457
    helper.append_op(
2458
        type=op_type,
Y
Yu Yang 已提交
2459 2460
        inputs={'Input': [input],
                'Filter': [img_filter]},
2461
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2462
        attrs={
2463
            'output_size': output_size,
2464 2465 2466 2467 2468
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2469 2470
        })

2471 2472 2473
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2474 2475


2476
def conv3d_transpose(input,
Y
Yu Yang 已提交
2477 2478 2479
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2480 2481 2482
                     padding=0,
                     stride=1,
                     dilation=1,
2483
                     groups=None,
C
caoying03 已提交
2484
                     param_attr=None,
2485
                     bias_attr=None,
C
chengduoZH 已提交
2486
                     use_cudnn=True,
2487
                     act=None,
C
caoying03 已提交
2488
                     name=None):
Y
Yu Yang 已提交
2489
    """
2490
    **Convlution3D transpose layer**
2491

2492
    The convolution3D transpose layer calculates the output based on the input,
2493
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2494 2495 2496 2497 2498 2499
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2500 2501 2502
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2503 2504 2505 2506 2507

    For each input :math:`X`, the equation is:

    .. math::

2508
        Out = \sigma (W \\ast X + b)
2509 2510 2511

    In the above equation:

2512 2513
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2514 2515 2516 2517
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2518

2519 2520 2521 2522
    Example:

        - Input:

2523
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2524

2525
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2526 2527 2528

        - Output:

2529
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2530 2531

        Where
Y
Yu Yang 已提交
2532

2533 2534
        .. math::

2535 2536 2537
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2538 2539

    Args:
2540
        input(Variable): The input image with [N, C, D, H, W] format.
2541 2542 2543
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2544
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2545 2546
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2547
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2548 2549 2550
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2551 2552
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2553
        stride(int|tuple): The stride size. If stride is a tuple, it must
2554 2555
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2556
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2557 2558 2559
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2560 2561 2562 2563 2564
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2565 2566 2567
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2568 2569 2570 2571 2572
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2573 2574

    Returns:
2575
        Variable: The tensor variable storing the convolution transpose result.
2576 2577

    Raises:
2578 2579
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2580 2581 2582 2583

    Examples:
       .. code-block:: python

2584 2585
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2586
    """
2587 2588
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2589
    if not isinstance(input, Variable):
2590
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2591 2592
    input_channel = input.shape[1]

2593 2594 2595
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2596

C
chengduoZH 已提交
2597 2598 2599
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2600 2601 2602 2603 2604 2605
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2606 2607 2608
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2609

2610
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2611
                         padding[0] - 1) // dilation[0] + 1
2612
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2613
                         padding[1] - 1) // dilation[1] + 1
2614
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2615
                         padding[2] - 1) // dilation[2] + 1
2616
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2617
    else:
2618 2619
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2620

2621
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2622
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2623 2624 2625
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2626
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2627
    helper.append_op(
2628
        type=l_type,
Y
Yu Yang 已提交
2629 2630
        inputs={'Input': [input],
                'Filter': [img_filter]},
2631
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2632 2633 2634 2635
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2636
            'groups': groups,
C
chengduoZH 已提交
2637 2638
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2639

2640 2641
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2642
    return out
Y
yangyaming 已提交
2643 2644


Y
yangyaming 已提交
2645
def sequence_expand(x, y, ref_level=-1, name=None):
2646
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2647 2648 2649 2650
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2651 2652 2653 2654 2655

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2656
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2657
                x.data = [[a], [b], [c], [d]]
2658 2659 2660
                x.dims = [4, 1]

            y is a LoDTensor:
2661 2662
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2663

Y
yangyaming 已提交
2664
            ref_level: 0
2665

Y
yangyaming 已提交
2666
            then output is a 1-level LoDTensor:
2667
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2668
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2669 2670 2671 2672
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2673
                x.data = [[a], [b], [c]]
2674 2675 2676
                x.dims = [3, 1]

            y is a LoDTensor:
2677
                y.lod = [[2, 0, 3]]
2678

Y
yangyaming 已提交
2679
            ref_level: -1
2680

Y
yangyaming 已提交
2681 2682 2683
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2684 2685 2686
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2687 2688
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2689
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2690
                        will be named automatically.
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2701
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2702
    """
Y
yangyaming 已提交
2703
    helper = LayerHelper('sequence_expand', input=x, **locals())
2704 2705 2706
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2707 2708 2709 2710 2711
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2712
    return tmp
2713 2714


C
chengduo 已提交
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
        pad_value(Variable): The Variable that holds values that will be fill 
            into padded steps. It can be a scalar or a tensor whose shape 
            equals to time steps in sequences. If it's a scalar, it will be 
            automatically broadcasted to the shape of time step.
        maxlen(int, default None): The length of padded sequences. It can be 
            None or any positive int. When it is None, all sequences will be 
            padded up to the length of the longest one among them; when it a 
            certain positive value, it must be greater than the length of the 
            longest original sequence."
    
    Returns:
2798 2799
        Variable: The padded sequence batch and the original lengths before 
                  padding. All sequences has the same length.
F
fengjiayi 已提交
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
    
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2815 2816 2817 2818 2819
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2820 2821 2822 2823 2824 2825
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2826 2827
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2828
        attrs={'padded_length': maxlen})
2829
    return out, length
F
fengjiayi 已提交
2830 2831


2832 2833 2834 2835 2836 2837 2838 2839 2840
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2841 2842
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2843 2844 2845

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2846 2847

    This layer does the search in beams for one time step. Specifically, it
2848 2849 2850 2851 2852 2853
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2854

2855 2856 2857 2858 2859 2860 2861 2862
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2863

2864
    Args:
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2890

2891
    Returns:
2892 2893
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2894 2895 2896 2897

    Examples:
        .. code-block:: python

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2926
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2944 2945 2946 2947 2948 2949 2950
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2951

2952 2953 2954 2955 2956 2957 2958 2959 2960
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2961

2962 2963 2964 2965 2966 2967
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2968

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2994 2995 2996 2997
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2998
              param_attr=None,
C
caoying03 已提交
2999 3000
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3001 3002 3003 3004
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3005
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3006

3007
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3008

3009
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3010

3011
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3012 3013 3014

            h_t & = o_t tanh(c_t)

3015 3016 3017 3018 3019 3020
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3021 3022 3023

        .. math::

3024
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3025 3026 3027 3028 3029 3030 3031 3032

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3033
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3034 3035

    Args:
Y
yangyaming 已提交
3036 3037 3038 3039 3040 3041
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3042
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
3043 3044
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
3045 3046
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
3047 3048
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3049 3050

    Returns:
Y
yangyaming 已提交
3051
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3052 3053

    Raises:
3054 3055 3056 3057
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3058 3059 3060 3061 3062 3063

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3064
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3065
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3066
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3083
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3084 3085 3086 3087
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3088 3089
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3090 3091 3092
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3093
    size = cell_t_prev.shape[1]
3094
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3095 3096
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3097
                param_attr=param_attr,
3098
                bias_attr=bias_attr)
Y
yangyaming 已提交
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3111
    return h, c
G
guosheng 已提交
3112 3113


C
caoying03 已提交
3114
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3115
    """
Y
yangyaming 已提交
3116
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3117 3118 3119

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3120
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3121 3122
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3123 3124
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3125
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3126
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3127
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3128 3129
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3130 3131 3132

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3133

G
guosheng 已提交
3134 3135 3136 3137 3138 3139
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3140
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3141 3142 3143 3144
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3145 3146 3147 3148

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3149
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3150 3151 3152
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3153 3154 3155
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3156 3157
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3158 3159 3160 3161 3162
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3163
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3164 3165 3166 3167
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3168 3169


C
caoying03 已提交
3170
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3171
    """
Y
Yibing Liu 已提交
3172
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3173 3174 3175

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3176 3177 3178
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3179
            must be in the range :math:`[-rank(input), rank(input))`. If
3180
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3181
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3182 3183
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3184
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3185
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3186
                       will be named automatically.
G
guosheng 已提交
3187 3188

    Returns:
Y
Yibing Liu 已提交
3189
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3190

G
guosheng 已提交
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3201 3202
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3203 3204 3205 3206 3207 3208 3209

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3210 3211 3212
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3213 3214
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3215 3216 3217 3218 3219
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3220
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3221 3222 3223 3224
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3225 3226


C
caoying03 已提交
3227
def reduce_max(input, dim=None, keep_dim=False, name=None):
3228
    """
Y
yangyaming 已提交
3229
    Computes the maximum of tensor elements over the given dimension.
3230 3231 3232

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3233
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3234 3235 3236
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3237
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3238 3239
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3240
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3241 3242
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3243 3244 3245

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3246

3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3258 3259 3260 3261 3262 3263 3264

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3265 3266 3267
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3268 3269
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3270 3271 3272 3273 3274
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3275
            'dim': dim if dim != None else [0],
3276 3277 3278 3279 3280 3281
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3282
def reduce_min(input, dim=None, keep_dim=False, name=None):
3283
    """
Y
yangyaming 已提交
3284
    Computes the minimum of tensor elements over the given dimension.
3285 3286 3287

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3288
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3289 3290 3291
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3292
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3293 3294
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3295
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3296 3297
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3298 3299 3300

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3301

3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3313 3314 3315 3316 3317 3318 3319

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3320 3321 3322
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3323 3324
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3325 3326 3327 3328 3329
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3330
            'dim': dim if dim != None else [0],
3331 3332 3333 3334
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3335 3336


3337 3338 3339 3340 3341 3342
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3343
        dim (list|int|None): The dimensions along which the product is performed. If
3344 3345
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3346 3347
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3348 3349 3350
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3351
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3352
            layer will be named automatically.
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3367
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3368
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3369 3370 3371 3372 3373 3374 3375

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3376 3377 3378
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3379 3380
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3381 3382 3383 3384 3385
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3386
            'dim': dim if dim != None else [0],
3387 3388 3389 3390 3391 3392
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3393
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3394
    """
C
caoying03 已提交
3395
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3396 3397 3398

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3399 3400 3401 3402 3403
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3404
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3405
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3406
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3407 3408
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3409 3410

    Returns:
D
dzhwinter 已提交
3411
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3412 3413 3414 3415 3416 3417 3418 3419 3420

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3421 3422
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3452 3453 3454 3455 3456 3457 3458 3459 3460


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3461
    .. math::
3462 3463

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3464 3465 3466 3467 3468

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3469
        x(Variable|list): The input tensor to l2_normalize layer.
3470
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3471 3472
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3473
        epsilon(float): The epsilon value is used to avoid division by zero, \
3474
            the defalut value is 1e-10.
3475
        name(str|None): A name for this layer(optional). If set None, the layer \
3476
            will be named automatically.
C
caoying03 已提交
3477 3478

    Returns:
3479
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3480 3481

    Examples:
3482

C
caoying03 已提交
3483 3484
        .. code-block:: python

3485 3486 3487 3488
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3489 3490
    """

F
fengjiayi 已提交
3491 3492
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3493 3494
    helper = LayerHelper("l2_normalize", **locals())

3495 3496
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3497
    helper.append_op(
3498 3499 3500 3501
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3502
        attrs={
3503 3504
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3505 3506
        })
    return out
3507 3508


S
sneaxiy 已提交
3509
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3510
    """
Y
ying 已提交
3511 3512 3513 3514
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3515

C
chengduoZH 已提交
3516
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3517
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3518

3519 3520 3521 3522 3523
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3524
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3525

C
chengduoZH 已提交
3526
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3527
      performs in the following way.
G
guosheng 已提交
3528

3529
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3530
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3531
        last two dimensions and a batched matrix multiply supporting broadcast
3532
        applies on the two tensors.
G
guosheng 已提交
3533

Y
ying 已提交
3534 3535
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3536
    removed after matrix multiplication.
G
guosheng 已提交
3537 3538 3539

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3540 3541 3542
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3543
        alpha (float): The scale of output. Default 1.0.
3544
        name(str|None): A name for this layer(optional). If set None, the layer
3545
            will be named automatically.
G
guosheng 已提交
3546 3547

    Returns:
3548
        Variable: The product Tensor variable.
G
guosheng 已提交
3549

G
guosheng 已提交
3550 3551 3552
    Examples:
        .. code-block:: python

3553
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3554 3555
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3556

3557 3558
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3559

3560 3561
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3562

3563 3564
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3565 3566 3567 3568

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3569 3570
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3571

Y
ying 已提交
3572
            # x: [M], y: [N]
3573
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3574
    """
Y
ying 已提交
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3587
            y_shape = y_shape + [1]
Y
ying 已提交
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3604
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3605
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3606
    helper.append_op(
3607 3608 3609 3610
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3611 3612 3613
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3614
            'alpha': alpha,
S
sneaxiy 已提交
3615
        })
3616
    return out
3617 3618


3619
def topk(input, k, name=None):
Q
qingqing01 已提交
3620 3621 3622 3623
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3624
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3625 3626 3627 3628 3629 3630
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3652 3653 3654
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3655
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3656
                 of input.
3657
        name(str|None): A name for this layer(optional). If set None, the layer
3658
                       will be named automatically.
F
fengjiayi 已提交
3659
                       Default: None
Q
qingqing01 已提交
3660 3661

    Returns:
3662 3663 3664
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3665
        within the last dimension of input.
Q
qingqing01 已提交
3666

F
fengjiayi 已提交
3667 3668
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3689
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3690
    """
Y
ying 已提交
3691 3692 3693 3694 3695 3696 3697 3698 3699
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3700

Y
ying 已提交
3701
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3702

3703
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3704 3705
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3706
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3707

3708
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3709 3710
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3711

3712 3713 3714
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3715
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3716
                          the length of reference string.
3717
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3718
                                     calculating edit distance.
3719
        name (str): The name of this layer. It is optional.
3720

W
wanghaoshuang 已提交
3721
    Returns:
W
wanghaoshuang 已提交
3722
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3723 3724 3725 3726 3727

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3728
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3729
            cost = fluid.layers.edit_distance(input=x,label=y)
3730
    """
3731
    helper = LayerHelper("edit_distance", **locals())
3732

3733
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3734
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3735 3736 3737 3738 3739 3740 3741
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3742
            attrs={"tokens": ignored_tokens})
3743 3744 3745 3746 3747
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3748
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3749
            attrs={"tokens": ignored_tokens})
3750 3751
        label = erased_label

3752 3753
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3754
    sequence_num = helper.create_tmp_variable(dtype="int64")
3755 3756 3757 3758
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3759 3760
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3761 3762
        attrs={"normalized": normalized})

3763
    return edit_distance_out, sequence_num
3764 3765 3766 3767 3768


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3769

Y
ying 已提交
3770 3771 3772 3773
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3791
        input.lod = [[4, 4]]
3792 3793 3794 3795 3796 3797 3798

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3799
        output.lod = [[2, 1]]
3800 3801 3802

    Args:

Y
ying 已提交
3803 3804 3805 3806 3807 3808 3809 3810 3811
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3812
        name (str): The name of this layer. It is optional.
3813 3814

    Returns:
3815
        Variable: CTC greedy decode result. If all the sequences in result were
3816
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3817 3818 3819 3820 3821

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3822

3823
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3824
    """
3825
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3826
    _, topk_indices = topk(input, k=1)
3827 3828 3829 3830 3831 3832

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3833
        outputs={"Output": [ctc_out]},
3834 3835
        attrs={"merge_repeated": True,
               "blank": blank})
3836
    return ctc_out
3837 3838


F
fengjiayi 已提交
3839
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3840
    """
3841 3842
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3843
    to compute Connectionist Temporal Classification (CTC) loss.
3844 3845
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3846 3847 3848
    input tensor.

    Args:
3849
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3850 3851 3852 3853
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3854
       label (Variable): The ground truth of variable-length sequence,
3855 3856 3857
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3858 3859
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3860 3861 3862
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3863
         follewed by a mean_op.
W
wanghaoshuang 已提交
3864 3865

    Returns:
3866 3867
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3868 3869

    Examples:
3870

W
wanghaoshuang 已提交
3871
        .. code-block:: python
3872

3873 3874 3875
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3876 3877

    """
F
fengjiayi 已提交
3878
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3905 3906 3907
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3908 3909 3910 3911 3912
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3913

3914
            out.lod  = [[0, 1, 3]]
3915 3916 3917 3918

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3919 3920 3921 3922 3923 3924 3925
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3926 3927 3928

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3929 3930

    Returns:
3931

3932 3933 3934 3935 3936
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3937
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3938
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3939 3940 3941 3942 3943 3944 3945 3946 3947
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3948 3949


3950 3951 3952 3953
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3954 3955 3956 3957 3958 3959 3960
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3961 3962 3963 3964 3965 3966 3967
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3968 3969
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3970
            sample is 1.0.
3971 3972 3973
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3974

3975
    Returns:
Y
Yibing Liu 已提交
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4003
    """
Y
Yang Yu 已提交
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
4023 4024 4025 4026 4027 4028 4029 4030 4031
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4048
    return cost / (num_neg_samples + 1)
4049 4050


G
guosheng 已提交
4051
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
4052 4053
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4054
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4055 4056 4057 4058 4059 4060 4061 4062 4063
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4064

W
weixing02 已提交
4065
    Args:
M
minqiyang 已提交
4066
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4067 4068 4069 4070 4071
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
4072 4073
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4074
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4075 4076
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4077 4078 4079 4080 4081 4082 4083 4084

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4085 4086 4087
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4088 4089 4090 4091 4092 4093 4094 4095
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4096
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4097 4098 4099 4100 4101
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4102 4103 4104 4105 4106 4107 4108 4109
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4110 4111
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4112
        inputs=inputs,
W
weixing02 已提交
4113 4114 4115 4116 4117 4118
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4119
def transpose(x, perm, name=None):
Y
ying 已提交
4120 4121 4122 4123 4124 4125 4126
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4127 4128 4129
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4130 4131 4132 4133 4134 4135 4136 4137

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4138
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4139 4140
    """

Y
fix ci.  
ying 已提交
4141
    if len(perm) != len(x.shape):
Y
ying 已提交
4142 4143 4144
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4145 4146 4147 4148 4149 4150
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4151 4152

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4153
    out = helper.create_tmp_variable(x.dtype)
4154
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4155
    helper.append_op(
4156
        type='transpose2',
Y
fix ci.  
ying 已提交
4157
        inputs={'X': [x]},
4158 4159
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4160 4161
        attrs={'axis': perm})
    return out
4162 4163


4164 4165 4166 4167 4168 4169 4170
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4171
    """
4172 4173 4174 4175 4176 4177 4178
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4207 4208 4209 4210 4211 4212 4213 4214 4215
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4216 4217 4218
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4219 4220 4221 4222 4223
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4251 4252 4253
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4266
            output.dims = {8, 8}
4267

4268
            output.lod = [[4, 4]]
4269

D
dzhwinter 已提交
4270
     Examples:
4271 4272 4273

        .. code-block:: python

4274 4275
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4276 4277

    """
W
wanghaoshuang 已提交
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4288 4289 4290 4291 4292 4293 4294
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4295
    helper = LayerHelper('im2sequence', **locals())
4296 4297
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4298
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4299
    return out
4300 4301


Y
yuyang18 已提交
4302
@templatedoc()
4303
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4304 4305
    """
    ${comment}
4306 4307

    Args:
Y
yuyang18 已提交
4308
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4309 4310
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4311 4312 4313 4314 4315
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4316
        ${out_comment}.
4317 4318

    Examples:
Y
yuyang18 已提交
4319 4320 4321 4322
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4335
    return helper.append_activation(out)
4336 4337


Y
yuyang18 已提交
4338
@templatedoc()
4339 4340
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4341 4342 4343 4344 4345 4346 4347
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4348 4349

    Args:
Y
yuyang18 已提交
4350 4351
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4352 4353

    Returns:
Y
yuyang18 已提交
4354
        ${out_comment}.
4355 4356
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4357 4358 4359 4360 4361 4362

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4363 4364 4365 4366 4367 4368
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4369 4370


4371 4372 4373 4374
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4375 4376
    """
    **Softmax With Cross Entropy Operator.**
4377

4378 4379 4380 4381
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4382

4383 4384 4385
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4386

4387 4388 4389
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4390

4391
    The equation is as follows:
4392

4393
    1) Hard label (one-hot label, so every sample has exactly one class)
4394

4395 4396 4397 4398
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4399

4400 4401 4402
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4403

4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
4416 4417 4418 4419
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100

4420 4421 4422 4423 4424 4425 4426 4427 4428
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4429 4430
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4441 4442
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4443 4444 4445 4446 4447
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4448 4449
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4450
    For each instance, it computes the smooth L1 loss element by element first
4451
    and then sums all the losses. So the shape of ouput Variable is
4452
    [batch_size, 1].
4453

4454 4455
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4456
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4457
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4458
            L1 loss op with same shape as :attr:`x`.
4459
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4460 4461
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4462
            by this tensor element by element.
4463
        outside_weight (Variable|None): A tensor with rank at least 2. This
4464 4465
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4466
            element by element.
4467
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4468 4469
           scalar with default value 1.0.

4470
    Returns:
4471
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4472 4473 4474 4475 4476

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4477 4478
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4479
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4480
            out = fluid.layers.smooth_l1(x=fc, y=label)
4481
    """
4482

4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4498 4499 4500 4501


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4502
    This layer creates the one-hot representations for input indices.
4503 4504

    Args:
Y
Yibing Liu 已提交
4505 4506
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4507 4508

    Returns:
Y
Yibing Liu 已提交
4509
        Variable: The one-hot representations of input.
4510 4511

    Examples:
C
caoying03 已提交
4512
        .. code-block:: python
4513

Y
Yibing Liu 已提交
4514 4515
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4516 4517 4518 4519 4520 4521 4522 4523 4524
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4525 4526


Y
Yu Yang 已提交
4527
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4528
    """
Y
yi.wu 已提交
4529 4530 4531
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4532 4533 4534 4535 4536 4537

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4538 4539
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4540 4541 4542 4543 4544 4545

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4546 4547
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4548 4549
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4550 4551 4552 4553 4554
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4555
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4556
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4557 4558
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4559 4560
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4561 4562 4563
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4564 4565


4566
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4567
    """
C
caoying03 已提交
4568 4569
    Gives a new shape to the input Tensor without changing its data.

4570 4571 4572 4573 4574
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4575

4576
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4577

4578 4579 4580 4581
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4582
    2. 0 means the actual dimension value is going to be copied from the
4583 4584 4585 4586
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4587 4588

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4589
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4590
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4591

4592
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4593 4594
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4595 4596
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4597
    dimensions.
C
caoying03 已提交
4598

4599
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4600 4601 4602 4603
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4604 4605

    Args:
4606
        x(variable): The input tensor.
C
caoying03 已提交
4607 4608
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4609 4610 4611 4612 4613
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4614
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4615 4616 4617 4618
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4619
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4620

4621 4622
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4623

X
Xin Pan 已提交
4624 4625 4626
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4627 4628
    Examples:
        .. code-block:: python
G
guosheng 已提交
4629

4630
            data = fluid.layers.data(
4631
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4632
            reshaped = fluid.layers.reshape(
4633
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4634 4635 4636
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4637
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4638 4639 4640 4641 4642
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4643

4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4659
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4660
    out = helper.create_tmp_variable(dtype=x.dtype)
4661
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4662
    helper.append_op(
4663
        type="reshape2",
X
Xin Pan 已提交
4664
        inputs=inputs,
D
dzhwinter 已提交
4665
        attrs={"shape": shape},
4666 4667
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4668

D
dzhwinter 已提交
4669
    return helper.append_activation(out)
4670

4671

4672
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
    """
    Remove single-dimensional entries from the shape of a tensor. Takes a 
    parameter axes with a list of axes to squeeze. If axes is not provided, all 
    the single dimensions will be removed from the shape. If an axis is 
    selected with shape entry not equal to one, an error is raised.
        
    Examples:
    Case 1:
      Given 
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
        and 
          axes = []
        we get:
          Out.shape = (3, 5)
    
    Args:
4696
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4697
        axes (list): List of integers, indicating the dimensions to be squeezed.
4698
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4699 4700 4701 4702 4703 4704 4705 4706

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4707
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4708 4709
    """
    helper = LayerHelper("squeeze", **locals())
4710
    out = helper.create_tmp_variable(dtype=input.dtype)
4711
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4712
    helper.append_op(
4713
        type="squeeze2",
4714
        inputs={"X": input},
Y
Yibing Liu 已提交
4715
        attrs={"axes": axes},
4716 4717
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4718

4719 4720 4721
    return out


4722
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
    """
    Insert single-dimensional entries to the shape of a tensor. Takes one 
    required argument axes, a list of dimensions that will be inserted. 
    Dimension indices in axes are as seen in the output tensor. 

    For example: 
      Given a tensor such that tensor with shape [3, 4, 5], 
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
    
    Args:
4733
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4734
        axes (list): List of integers, indicating the dimensions to be inserted.
4735
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4736 4737 4738 4739 4740 4741 4742 4743

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4744
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4745 4746
    """
    helper = LayerHelper("unsqueeze", **locals())
4747
    out = helper.create_tmp_variable(dtype=input.dtype)
4748
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4749
    helper.append_op(
4750
        type="unsqueeze2",
4751
        inputs={"X": input},
Y
Yibing Liu 已提交
4752
        attrs={"axes": axes},
4753 4754
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4755

4756 4757
    return out

4758

Y
yangyaming 已提交
4759
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4760
    """
Y
Yibing Liu 已提交
4761
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4762 4763 4764 4765
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4766
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4767 4768 4769 4770 4771 4772

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4773
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4774 4775 4776
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4777
            target_lod: [4, 2]
Y
yangyaming 已提交
4778 4779

            then we get a 1-level LoDTensor:
4780
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4781 4782 4783 4784 4785 4786
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4787
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4788 4789 4790 4791
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4792
                y.data = [[2, 4]]
Y
yangyaming 已提交
4793 4794 4795
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4796
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4797 4798 4799 4800 4801 4802
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4803
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4804 4805 4806 4807
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4808
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4809 4810 4811 4812
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4813
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4814 4815 4816 4817 4818
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4819
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4820
                           from :attr:`y`.
Y
yangyaming 已提交
4821
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4822
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4823 4824

    Returns:
Y
Yibing Liu 已提交
4825
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4826 4827

    Raises:
Y
Yibing Liu 已提交
4828
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4864
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4893 4894
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4922 4923 4924 4925


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4926
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4927
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4928

G
guosheng 已提交
4929 4930 4931 4932
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4955
                         The length of :attr:paddings must be
G
guosheng 已提交
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4966

G
guosheng 已提交
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4981 4982


C
chengduo 已提交
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5063 5064 5065 5066 5067 5068 5069
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5070 5071
    called label-smoothing regularization (LSR).

5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5095
                              be :math:`(1, class\_num)`.
5096 5097
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5098
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5126 5127


Y
yi.wu 已提交
5128
@templatedoc()
5129 5130
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5131
    ${comment}
5132 5133

    Args:
Y
yi.wu 已提交
5134 5135
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5136 5137 5138
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5139 5140

    Returns:
Y
update  
yi.wu 已提交
5141
        Variable: ${out_comment}.
5142 5143

    Examples:
5144 5145
        .. code-block:: python

5146
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5192 5193
        .. code-block:: python

W
whs 已提交
5194 5195 5196 5197
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5198
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5199 5200 5201 5202 5203 5204
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5205 5206


5207 5208 5209 5210 5211
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5212
    """
Q
qiaolongfei 已提交
5213
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5214

5215
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5216 5217 5218
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5219

5220
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5221

5222
    Args:
5223
        input (Variable): The input tensor of image resize layer,
5224 5225
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5226
        out_shape(list|tuple|Variable|None): Output shape of image resize
5227 5228
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5229
        scale(float|None): The multiplier for the input height or width.
5230 5231 5232
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5233 5234
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5235 5236
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5237 5238

    Returns:
Q
update  
qiaolongfei 已提交
5239 5240
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5241

5242 5243 5244
    Examples:
        .. code-block:: python

5245
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5246
    """
5247 5248 5249 5250
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5251 5252
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5253 5254
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5255 5256 5257 5258

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5259 5260 5261
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5262
    if out_shape is not None:
B
baiyf 已提交
5263 5264 5265
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5266 5267 5268 5269 5270 5271
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5272 5273 5274 5275
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5276 5277
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5278
        type=resample_methods[resample],
5279
        inputs=inputs,
5280 5281 5282 5283
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5284 5285


Y
yuyang18 已提交
5286
@templatedoc(op_type="bilinear_interp")
5287 5288
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5289 5290 5291 5292 5293 5294
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5295

Y
yuyang18 已提交
5296 5297 5298 5299 5300 5301 5302 5303
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5304 5305 5306 5307 5308 5309 5310
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5311 5312 5313
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5314 5315 5316 5317 5318 5319 5320
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5321
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5322

5323
    Returns:
Q
update  
qiaolongfei 已提交
5324
        Variable: The output is a 4-D tensor of the shape
5325
        (num_batches, channls, out_h, out_w).
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5336 5337 5338
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5339 5340 5341
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5342 5343
def gather(input, index):
    """
Q
qiaolongfei 已提交
5344 5345
    **Gather Layer**

5346
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5347 5348 5349 5350
    of X indexed by `index` and concatenate them together.

    .. math::

5351
        Out = X[Index]
W
whs 已提交
5352 5353 5354 5355 5356 5357 5358


    .. code-block:: text


                Given:

5359 5360
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5371
        input (Variable): The source input with rank>=1.
W
whs 已提交
5372 5373 5374 5375 5376 5377
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5378

W
whs 已提交
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5508

5509 5510 5511
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5512
    """
F
stash  
fengjiayi 已提交
5513
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5514
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5515
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5516
    if seed is None:
5517
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5518
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5519
    if isinstance(seed, int):
F
fengjiayi 已提交
5520 5521 5522 5523 5524
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5525 5526 5527 5528
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5529
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5530 5531
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5532 5533
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5534
    return out
W
whs 已提交
5535 5536


5537
def log(x, name=None):
W
wanghaoshuang 已提交
5538 5539 5540 5541 5542
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5543
        Out = \\ln(x)
W
wanghaoshuang 已提交
5544 5545

    Args:
5546
        x (Variable): Input tensor.
5547 5548
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5549 5550 5551 5552 5553 5554 5555 5556

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5557
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5558 5559
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5560
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5561
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5562
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5563 5564 5565
    return out


5566
def relu(x, name=None):
W
wanghaoshuang 已提交
5567 5568
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5569
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5570 5571 5572 5573
    the tensor elementwise.

    .. math::

5574
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5575 5576

    Args:
5577
        x (Variable): The input tensor.
5578 5579
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5580 5581 5582 5583 5584 5585 5586 5587

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5588
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5589 5590
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5591
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5592
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5593
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5594
    return out
5595 5596


W
whs 已提交
5597 5598 5599
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5600 5601 5602 5603
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5604
    .. math::
5605 5606

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5607

5608
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5609 5610 5611 5612 5613
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5614
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5615
                           Its shape should be the same as input.
5616
        num_classes (int): The possible number of labels.
W
whs 已提交
5617 5618 5619 5620

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5621
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5622 5623 5624 5625

    Examples:

        .. code-block:: python
5626

W
whs 已提交
5627 5628 5629 5630 5631 5632 5633 5634 5635
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5636 5637
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5638
        outputs={
W
whs 已提交
5639 5640 5641
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5642 5643 5644
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5719
                    isinstance(shape, Variable)):
5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5753

5754 5755
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5756

5757 5758 5759 5760
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5761

5762 5763 5764 5765 5766
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5767 5768 5769

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5814 5815


W
whs 已提交
5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
      
      X = [[1, 2, 3],
           [4, 5, 6]]
      
      Case 0:
      
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
        
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
      
      Case 1:
      
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
        
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
        
      Case 2:
      
        paddings = [0, 1, 2, 1],
        mode = 'edge'
        
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
    
  
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6060 6061
	name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 
J
jerrywgz 已提交
6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6112

6113 6114 6115 6116 6117 6118 6119 6120 6121 6122
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6123 6124
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6140
        ValueError: If axis is not in range [0, rank(x)].
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6158
    x_shape = helper.create_tmp_variable(x.dtype)
6159
    helper.append_op(
6160
        type='flatten2',
6161
        inputs={"X": x},
6162 6163
        outputs={'Out': out,
                 'XShape': x_shape},
6164 6165
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6166 6167


C
chenweihang 已提交
6168
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6169
    """
C
chenweihang 已提交
6170
    Generate a new sequence for the input index sequence, which enumerates all the
C
chenweihang 已提交
6171 6172 6173
    sub-sequences with length `win_size` of the input. 
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
C
chenweihang 已提交
6174 6175 6176 6177 6178
    
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6179
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6180 6181 6182 6183 6184 6185
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6186
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6187 6188 6189
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6190 6191 6192
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6204
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6205 6206 6207 6208 6209 6210
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
6211

6212

S
sneaxiy 已提交
6213 6214 6215 6216 6217 6218 6219 6220 6221
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6222

S
sneaxiy 已提交
6223
    .. math::
6224

S
sneaxiy 已提交
6225 6226 6227
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6228
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6229 6230 6231 6232
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6233 6234 6235
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6236 6237
    Returns:
        Variable: The output sequence mask.
6238

S
sneaxiy 已提交
6239 6240
    """

Q
qingqing01 已提交
6241
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6242 6243 6244 6245 6246
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6247 6248 6249
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6250 6251
        outputs={'Y': out},
        attrs={
6252
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6253 6254 6255
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6256 6257


X
Xin Pan 已提交
6258
def stack(x, axis=0):
S
sneaxiy 已提交
6259 6260 6261 6262
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6263 6264 6265 6266 6267 6268 6269

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6270
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6271
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6272 6273

    Args:
6274
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6275
        axis (int|None): The axis along which all inputs are stacked.
6276

S
sneaxiy 已提交
6277 6278
    Returns:
        Variable: The stacked variable.
6279

S
sneaxiy 已提交
6280 6281
    """

X
Xin Pan 已提交
6282 6283 6284 6285 6286 6287 6288 6289
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6290 6291
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6292

X
Xin Pan 已提交
6293
    return out
D
dzhwinter 已提交
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
   
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised. 

    Args:
        x (Variable): Input variable. 
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
    
    Returns:
        list(Variable): The unstacked variables.
    
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
        
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
        
        Attr(expand_times):  [1, 2, 2]
        
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
        
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
        
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out