op_teller.cc 77.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/op_teller.h"
16

17
#include <bitset>
18

19
#include "paddle/fluid/framework/block_desc.h"
20
#include "paddle/fluid/framework/data_layout.h"
21

W
wanghuancoder 已提交
22 23 24 25 26 27
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
}  // namespace paddle

28 29 30 31 32 33
namespace paddle {
namespace inference {
namespace tensorrt {

// Just tell by the op_types.
struct SimpleOpTypeSetTeller : public Teller {
34
  SimpleOpTypeSetTeller() {
35
#if IS_TRT_VERSION_GE(7130)
36
    // use TensorRT plugin
37
    teller_set.insert("group_norm");
38 39
    teller_set.insert("multiclass_nms3");
    teller_set.insert("multiclass_nms");
40
#endif
W
wenbin 已提交
41 42
#if IS_TRT_VERSION_GE(7000)
    teller_set.insert("tile");
43
    teller_set.insert("flatten_contiguous_range");
Z
zhoutianzi666 已提交
44 45 46 47
    teller_set.insert("rnn");
    int8_teller_set.insert("rnn");
    teller_set.insert("fill_constant_batch_size_like");
    int8_teller_set.insert("fill_constant_batch_size_like");
W
wenbin 已提交
48
#endif
W
wenbin 已提交
49
#if CUDA_VERSION >= 10020
W
Wangzheee 已提交
50 51
    teller_set.insert("reshape");
    teller_set.insert("reshape2");
52 53
    int8_teller_set.insert("reshape");
    int8_teller_set.insert("reshape2");
54 55 56 57 58 59
#endif
#if IS_TRT_VERSION_GE(8000)
    teller_set.insert("sparse_fc");
    int8_teller_set.insert("sparse_fc");
    teller_set.insert("sparse_multihead_matmul");
    int8_teller_set.insert("sparse_multihead_matmul");
60 61
#endif
  }
62

C
ccrrong 已提交
63 64
  bool operator()(const std::string& op_type,
                  const framework::OpDesc& desc,
65 66 67 68 69 70
                  bool use_no_calib_int8) override {
    if (use_no_calib_int8) {
      return int8_teller_set.count(op_type);
    } else {
      return teller_set.count(op_type);
    }
71 72 73
  }

 private:
74
  // use this set for no calib int8.
75 76 77 78 79 80 81
  std::unordered_set<std::string> int8_teller_set{
      "mul",
      "matmul",
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
82 83 84 85 86 87
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
Z
zhupengyang 已提交
88 89
      "exp",
      "log",
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
      "atanh",
      "ceil",
      "floor",
      "erf",
105 106 107 108 109 110 111 112 113
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
      "pad",
      "elementwise_add",
114
      "elementwise_sub",
115
      "elementwise_mul",
116
      "elementwise_div",
S
shentanyue 已提交
117
      "elementwise_pow",
C
ccrrong 已提交
118
      "equal",
119 120 121 122 123 124 125 126
      "dropout",
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "fc",
      "shuffle_channel",
      "swish",
L
LielinJiang 已提交
127
      "silu",
128 129 130 131 132 133 134 135
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
136 137
      "top_k",
      "top_k_v2",
138 139 140 141 142
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
      "yolo_box",
143
      "yolo_box_head",
144
      "arg_max",
145 146 147 148 149 150 151 152 153 154
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
      "reduce_sum",
      "reduce_mean",
      "conv3d",
      "conv3d_transpose",
      "mish",
      "nearest_interp_v2",
155
      "bilinear_interp_v2",
156 157 158 159 160 161 162 163 164
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
      "skip_layernorm",
      "slice",
F
feng_shuai 已提交
165
      "strided_slice",
166
      "fused_preln_embedding_eltwise_layernorm",
167 168 169 170 171
      "preln_residual_bias",
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
F
feng_shuai 已提交
172
      "roll",
C
ccrrong 已提交
173
      "cast",
174 175 176
      "preln_skip_layernorm",
      "transformer_input_convert",
      "recover_padding",
177
      "remove_padding",
178
      "fill_constant",
179 180
      "sum",
      "shape",
181
      "squeeze2",
W
wenbin 已提交
182 183
      "unsqueeze2",
      "layernorm_shift_partition"};
184 185 186 187 188 189 190
  std::unordered_set<std::string> teller_set{
      "mul",
      "matmul",
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
191 192 193 194 195 196
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
Z
zhupengyang 已提交
197 198
      "exp",
      "log",
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
      "atanh",
      "ceil",
      "floor",
      "erf",
214 215 216 217 218 219 220 221 222
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
      "pad",
      "elementwise_add",
223
      "elementwise_sub",
224
      "elementwise_mul",
225
      "elementwise_div",
S
shentanyue 已提交
226
      "elementwise_pow",
C
ccrrong 已提交
227
      "equal",
228 229 230 231 232 233 234 235
      "dropout",
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "fc",
      "shuffle_channel",
      "swish",
L
LielinJiang 已提交
236
      "silu",
237 238 239 240 241 242 243 244
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
245 246
      "top_k",
      "top_k_v2",
247 248 249 250 251
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
      "yolo_box",
252
      "yolo_box_head",
253
      "arg_max",
254 255 256 257 258 259 260 261 262
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
      "reduce_sum",
      "reduce_mean",
      "conv3d",
      "conv3d_transpose",
      "mish",
263
      "bilinear_interp_v2",
264 265 266 267 268 269 270 271 272 273
      "nearest_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
      "skip_layernorm",
      "slice",
F
feng_shuai 已提交
274
      "strided_slice",
275
      "fused_preln_embedding_eltwise_layernorm",
276
      "preln_skip_layernorm",
277 278 279 280 281
      "preln_residual_bias",
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
F
feng_shuai 已提交
282
      "roll",
C
ccrrong 已提交
283
      "cast",
284 285
      "transformer_input_convert",
      "recover_padding",
286
      "remove_padding",
287
      "fill_constant",
288 289
      "sum",
      "shape",
290
      "squeeze2",
291
      "unsqueeze2",
W
wenbin 已提交
292 293
      "fused_token_prune",
      "layernorm_shift_partition"};
294 295
};

C
ccrrong 已提交
296 297
bool OpTeller::Tell(const framework::ir::Node* node,
                    bool use_no_calib_int8,
298 299 300
                    bool with_dynamic_shape) {
  const std::string op_type = node->Op()->Type();
  const framework::OpDesc desc = *node->Op();
301
  // do not support the op which is labeled the `skip_quant`
302
  if ((desc.HasAttr("namescope") &&
R
Ruibiao Chen 已提交
303
       PADDLE_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
304 305
           "/skip_quant_2/") ||
      desc.HasAttr("skip_quant"))
306
    return false;
307

308
  for (auto& teller : tellers_) {
309 310 311 312 313 314 315 316 317
    std::unordered_set<std::string> act_op_list = {
        "relu",     "relu6", "sigmoid",
        "elu",      "selu",  "softsign",
        "softplus", "stanh", "thresholded_relu",
        "exp",      "log",   "sqrt",
        "abs",      "sin",   "cos",
        "tan",      "tanh",  "sinh",
        "cosh",     "asin",  "acos",
        "atan",     "asinh", "atanh",
L
LielinJiang 已提交
318 319
        "ceil",     "floor", "erf",
        "silu"};
320
    if (act_op_list.find(op_type) != act_op_list.end()) {
J
JingZhuangzhuang 已提交
321
      auto* block = desc.Block();
322 323 324 325 326 327
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
J
JingZhuangzhuang 已提交
328 329 330 331 332 333 334 335
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << op_type
                << " op does not support input's dim is 1 in tensorrt.";
        return false;
      }
336 337 338 339 340 341
#if !IS_TRT_VERSION_GE(7000)
      if (op_type == "erf") {
        VLOG(3) << op_type << " op does not support tensorrt.";
        return false;
      }
#endif
J
JingZhuangzhuang 已提交
342 343
    }

344 345 346 347 348 349
    // In static shape mode in TRT, we can't allow that op's input is a
    // 1D-tensor So we filter it here. Some op like elementwise having "Y" too,
    // but that is dealt with in the specified op, here just the common case
    if (!with_dynamic_shape) {
      std::string X_name;
      auto inputs = desc.Inputs();
350
      if (inputs.count("X") && !desc.Input("X").empty()) {
351
        X_name = desc.Input("X")[0];
352
      } else if (inputs.count("Input") && !desc.Input("Input").empty()) {
353 354 355 356 357 358 359 360 361 362 363 364 365
        X_name = desc.Input("Input")[0];
      }
      auto* block = desc.Block();
      if (block) {
        auto* x_var_desc = block->FindVar(X_name);
        // Can't get feed op's TensorDesc
        if (op_type != "feed" && x_var_desc && !x_var_desc->Persistable()) {
          const auto x_shape = x_var_desc->GetShape();
          if (x_shape.size() == 1) return false;
        }
      }
    }

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
    if (op_type == "dropout") {
      /*
       * Some OpDescs Attribute support both constant value and dynamic
       * runtime value (which is a Variable(s) type). But TensorRT maybe
       * only support constant value Attribute, so we shall distinguish
       * this case in time and return False in OpTeller.Tell().
       * If Attribute is Variable(s), HasAttr() will return False
       */
      if (!desc.HasAttr("dropout_prob", /*with_attr_var=*/false)) {
        VLOG(3)
            << "Skip to convert into TRT while found Attribute('dropout_prob') "
               "is Variable type in dropout.";
        return false;
      }
    }

382
    if (op_type == "pool2d") {
383 384 385 386 387 388 389
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("ksize", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('ksize') is "
                   "Variable type in pool2d.";
        return false;
      }

390
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
391
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
392 393
      if (paddings.size() > 2) {
        return false;
394
      }
395 396 397 398 399 400 401 402 403 404
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "TRT Pool2d expect 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "TRT Pool2d has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
W
wenbin 已提交
405 406
      if (desc.HasAttr("data_format")) {
        std::string data_format =
R
Ruibiao Chen 已提交
407
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_format"));
W
wenbin 已提交
408 409 410 411
        if (data_format == "NHWC" || data_format == "NDHWC") {
          return false;
        }
      }
412 413 414 415
      if (!desc.HasAttr("pooling_type")) {
        return false;
      } else {
        std::string pool_type =
R
Ruibiao Chen 已提交
416
            PADDLE_GET_CONST(std::string, desc.GetAttr("pooling_type"));
417 418 419 420 421
        if (pool_type != "max" && pool_type != "avg") {
          VLOG(3) << "Wrong pool op type, the trt do not support the "
                  << pool_type << " pool type.";
          return false;
        }
422 423
        if (pool_type == "avg") {
          if (desc.HasAttr("global_pooling")) {
R
Ruibiao Chen 已提交
424
            if (!PADDLE_GET_CONST(bool, desc.GetAttr("global_pooling"))) {
425
              if (desc.HasAttr("exclusive")) {
R
Ruibiao Chen 已提交
426
                if (PADDLE_GET_CONST(bool, desc.GetAttr("exclusive"))) {
427
                  std::vector<int> ksize =
R
Ruibiao Chen 已提交
428
                      PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ksize"));
429 430 431 432 433 434 435 436 437 438 439 440 441
                  for (size_t i = 0; i < ksize.size(); i++) {
                    if (ksize[i] <= paddings[i]) {
                      VLOG(3) << "the padding size should be less than the "
                                 "filter size "
                                 "for exclusive-counting pooling.";
                      return false;
                    }
                  }
                }
              }
            }
          }
        }
442 443 444 445
      }
    }

    if (op_type == "conv2d" || op_type == "conv2d_transpose" ||
446 447
        op_type == "conv2d_fusion" || op_type == "depthwise_conv2d" ||
        op_type == "depthwise_conv2d_transpose") {
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (desc.HasAttr("enable_int8")) {
        if (op_type == "conv2d" || op_type == "conv2d_fusion") {
          if (!desc.HasAttr("Input_scale")) {
            VLOG(3) << "Input scale not found. TRT int8"
                       " requires conv/deconv to have "
                       "input quantization scales.";
            return false;
          }
        }
      }

471 472
      if (op_type == "conv2d_transpose" ||
          op_type == "depthwise_conv2d_transpose") {
473 474 475 476
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
477
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
478 479 480 481 482 483 484 485 486 487 488 489 490 491
          if (dilations[0] != 1 || dilations[1] != 1) {
            VLOG(3) << "In conv2d_transpose, Dilations must be (1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
492

W
wenbin 已提交
493
// strides > 1 and 'SAME' is only supported by trt7.0 above
494
#if !IS_TRT_VERSION_GE(7000)
W
wenbin 已提交
495 496 497 498
      if (op_type == "conv2d" || op_type == "conv2d_fusion" ||
          op_type == "depthwise_conv2d") {
        if (desc.HasAttr("padding_algorithm") && with_dynamic_shape) {
          auto padding_algorithm =
R
Ruibiao Chen 已提交
499
              PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
500 501
          if (padding_algorithm == "SAME" && desc.HasAttr("strides")) {
            const std::vector<int> strides =
R
Ruibiao Chen 已提交
502
                PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wenbin 已提交
503 504 505 506 507 508
            // there is no issue if strides.size() less than 2
            if (strides.size() > 1) {
              for (size_t i = 0; i < strides.size(); i++) {
                if (strides[i] > 1) return false;
              }
            }
509 510 511 512
          }
        }
      }
#endif
513 514
    }

W
wangxinxin08 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
    if (op_type == "deformable_conv") {
      if (with_dynamic_shape) {
        VLOG(3) << "Deformable conv trt plugin does not support dynamic shape";
        return false;
      }
      auto* block = desc.Block();
      auto input_name = desc.Input("Input")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      if (input_shape.size() != 4) {
        VLOG(3) << "Input of deformable conv should be 4-D Tensor, but got "
                << input_shape.size();
        return false;
      }

      auto filter_name = desc.Input("Filter")[0];
      auto* filter_desc = block->FindVar(filter_name);
      const auto filter_shape = filter_desc->GetShape();

R
Ruibiao Chen 已提交
535
      int groups = PADDLE_GET_CONST(int, desc.GetAttr("groups"));
W
wangxinxin08 已提交
536 537 538 539 540 541 542 543
      if (input_shape[1] != filter_shape[1] * groups) {
        VLOG(3) << "The number of input channels should be equal to filter "
                << "channels * groups. But got input channels "
                << input_shape[1] << "filter channels " << filter_shape[1];
        return false;
      }

      const std::vector<int> strides =
R
Ruibiao Chen 已提交
544
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wangxinxin08 已提交
545 546 547 548 549 550 551
      if (strides.size() != 2) {
        VLOG(3) << "The size of strides should be 2, but got "
                << strides.size();
        return false;
      }

      const std::vector<int> paddings =
R
Ruibiao Chen 已提交
552
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wangxinxin08 已提交
553 554 555 556 557 558 559
      if (paddings.size() != 2) {
        VLOG(3) << "The size of paddings shoule be 2, but got "
                << paddings.size();
        return false;
      }
    }

560 561
    if (op_type == "matmul") {
      auto* block = desc.Block();
562 563 564 565 566 567
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587

      // not support broadcast
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
      if (x_shape.size() != y_shape.size()) {
        VLOG(3)
            << "matmul op not support broadcast, please check inputs'shape. ";
        return false;
      }
      uint64_t dims = 2;
      for (size_t i = 0; i < x_shape.size() - dims; ++i) {
        if (x_shape[i] != y_shape[i] && (x_shape[i] == 1 || y_shape[i] == 1)) {
          VLOG(3) << "matmul op not support broadcast, please check "
                     "inputs'shape[i]. ";
          return false;
        }
      }

588 589 590 591 592
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() < 3) {
593
            VLOG(3)
P
Pei Yang 已提交
594 595
                << "matmul op dims < 3 not supported in tensorrt, but got dims "
                << shape.size() << ", so jump it.";
596 597 598 599 600
            return false;
          }
        }
      }
    }
W
Wilber 已提交
601 602 603 604 605 606 607 608 609 610 611 612
    if (op_type == "softmax") {
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
    }
613 614 615 616 617
    if (op_type == "group_norm") {
      bool has_attrs = (desc.HasAttr("epsilon") && desc.HasAttr("groups"));
      if (has_attrs == false) return false;
      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
      std::string layout_str =
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout"));
      if (layout_str != "NCHW") {
        VLOG(3) << "Group norm trt plugin only support NCHW layout, but got "
                << layout_str;
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) return false;
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto dtype = x_var_desc->GetDataType();
      if (dtype != 5) {
        VLOG(3) << "Group norm trt plugin only support float32";
        return false;
      }
634 635 636 637
    }
    if (op_type == "concat") {
      if (!desc.HasAttr("axis")) {
        return false;
W
Wilber 已提交
638
      }
R
Ruibiao Chen 已提交
639
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
640 641
      if (!with_dynamic_shape) {
        if (axis == 0) return false;
W
Wilber 已提交
642 643 644 645 646
      }
      auto concat_inputs = desc.Inputs();
      if (concat_inputs.find("AxisTensor") != concat_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
647
        }
648 649
      }
    }
650 651 652
    if (op_type == "transpose2" || op_type == "transpose") {
      if (!desc.HasAttr("axis")) {
        return false;
653 654
      }
      std::vector<int> axis =
R
Ruibiao Chen 已提交
655
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axis"));
656 657 658 659
      if (!with_dynamic_shape && axis[0] != 0) return false;
      if (axis.size() >= nvinfer1::Dims::MAX_DIMS) return false;

      auto* block = desc.Block();
660 661 662 663 664 665
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
666 667 668
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
W
wenbin 已提交
669
      if (axis.size() != x_shape.size()) return false;
670
      int dims = x_shape.size();
W
wenbin 已提交
671

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
      std::vector<int> perm(nvinfer1::Dims::MAX_DIMS);
      for (int i = 0; i < dims; i++) {
        perm[i] = axis[i];
      }
      auto is_valid_permutation = [&](int dims,
                                      const std::vector<int>& permutation) {
        std::bitset<nvinfer1::Dims::MAX_DIMS> found;
        for (int i = 0; i < dims; ++i) {
          const int x = permutation[i];
          if ((x < 0) || (x >= dims) || found[x])
            return false;  // Out of bounds or duplicate
          found.set(x);
        }
        return true;
      };
      if (!is_valid_permutation(dims, perm)) {
        VLOG(3) << "Invalid permutation dimensions for trt transpose op "
                   "converter: duplicate or out of bound.";
W
wenbin 已提交
690
        return false;
691 692
      }
    }
693
    if (op_type == "flatten2" || op_type == "flatten") {
694 695 696
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
697 698
#if IS_TRT_VERSION_GE(7130)
#else
699
        if (with_dynamic_shape) return false;
700
#endif
R
Ruibiao Chen 已提交
701
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
702 703 704
        if (axis != 1) return false;
      }
    }
705 706
    if (op_type == "flatten_contiguous_range") {
      if (!with_dynamic_shape) {
R
Ruibiao Chen 已提交
707 708
        int start_axis = PADDLE_GET_CONST(int, desc.GetAttr("start_axis"));
        int stop_axis = PADDLE_GET_CONST(int, desc.GetAttr("stop_axis"));
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
        auto x_var_name = desc.Input("X")[0];
        auto* block = desc.Block();
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
        int dims = x_shape.size();
        if (start_axis < 0) start_axis += dims;
        if (start_axis == 0) {
          VLOG(3) << "TRT flatten_contiguous_range not support the "
                     "batch-dimension being changed";
          return false;
        }
        if (stop_axis < 0) stop_axis += dims;
        for (int i = start_axis; i <= stop_axis; ++i) {
          if (x_shape[i] < 0) {
            VLOG(3) << "On TRT static shape,flatten_contiguous_range input dim "
                       "should be > 0";
            return false;
          }
        }
      }
    }
736

737
    if (op_type == "gather") {
738 739 740 741 742 743 744 745 746
      auto gather_inputs = desc.Inputs();
      if (gather_inputs.find("Axis") != gather_inputs.end()) {
        if (desc.Input("Axis").size() >= 1) {
          return false;
        }
      }
      if (!with_dynamic_shape) {
        return false;
      } else {
747
        auto* block = desc.Block();
748 749 750 751 752 753
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
F
feng_shuai 已提交
754
#if !IS_TRT_VERSION_GE(7000)
755 756 757 758 759 760
        auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
        const auto x_shape = x_var_desc->GetShape();
        if (x_shape.size() == 1) {
          VLOG(3) << "Gather does not support 1-dimensional input in tensorrt";
          return false;
        }
F
feng_shuai 已提交
761
#endif
762
      }
763
    }
Z
zlsh80826 已提交
764

765
    if (op_type == "gather_nd") {
766 767
      if (!with_dynamic_shape) return false;

768
      auto* block = desc.Block();
769 770 771 772 773 774
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
775 776 777 778 779 780 781 782 783 784 785 786 787 788
      auto x_var_name = desc.Input("X")[0];
      auto index_var_name = desc.Input("Index")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto* index_var_desc = block->FindVar(index_var_name);

      // The index input must be int32 datatype.
      if (index_var_desc->GetDataType() !=
          paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
        VLOG(3) << "gather_nd op Index input data type must be int32";
        return false;
      }

      const auto index_shape = index_var_desc->GetShape();
      const auto x_shape = x_var_desc->GetShape();
789 790 791 792 793 794
      if (x_shape.size() <= 2) {
        VLOG(3) << "gather_nd op requires the input's dimension to be greater "
                   "than 2";
        return false;
      }

795 796 797 798 799 800 801
      if (x_shape.size() != index_shape.size()) {
        VLOG(3) << "gather_nd op Index input dims size [" << index_shape.size()
                << " ] not equal to x dims size [" << x_shape.size() << "]";
        return false;
      }
    }

802 803 804 805
    if (op_type == "anchor_generator") {
      if (!with_dynamic_shape) return false;
    }

Z
zlsh80826 已提交
806 807 808 809 810 811
    if (op_type == "yolo_box") {
      if (with_dynamic_shape) return false;
      bool has_attrs =
          (desc.HasAttr("class_num") && desc.HasAttr("anchors") &&
           desc.HasAttr("downsample_ratio") && desc.HasAttr("conf_thresh") &&
           desc.HasAttr("clip_bbox") && desc.HasAttr("scale_x_y"));
Z
zlsh80826 已提交
812
      if (!has_attrs) return false;
Z
zlsh80826 已提交
813 814
    }

815 816 817 818 819 820
    if (op_type == "yolo_box_head") {
      if (with_dynamic_shape) return false;
      bool has_attrs = desc.HasAttr("class_num") && desc.HasAttr("anchors");
      if (!has_attrs) return false;
    }

821
    if (op_type == "arg_max") {
822 823 824 825 826 827
      if (!desc.HasAttr("axis", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axis') is "
                   "Variable type in arg_max.";
        return false;
      }

828
      int axis = desc.HasAttr("axis")
R
Ruibiao Chen 已提交
829
                     ? PADDLE_GET_CONST(int64_t, desc.GetAttr("axis"))
830
                     : -1;
R
Ruibiao Chen 已提交
831 832
      bool flatten = PADDLE_GET_CONST(bool, desc.GetAttr("flatten"));
      int dtype = PADDLE_GET_CONST(int, desc.GetAttr("dtype"));
833 834 835
      if (axis == 0 || flatten || dtype != 2) return false;
    }

836 837 838
    if (op_type == "affine_channel") {
      if (!desc.HasAttr("data_layout")) return false;
      auto data_layout = framework::StringToDataLayout(
R
Ruibiao Chen 已提交
839
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
840
      if (data_layout != framework::DataLayout::kNCHW) return false;
841 842

      auto* block = desc.Block();
843 844 845 846 847 848
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
849 850 851 852 853 854
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 2) {
        return false;
      }
855 856
    }

857
    if (op_type == "multiclass_nms" || op_type == "multiclass_nms3") {
Z
zlsh80826 已提交
858
      auto* block = desc.Block();
859 860 861 862 863 864
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
865 866 867 868 869 870 871 872
      auto multiclass_nms_inputs = desc.Inputs();
      if (multiclass_nms_inputs.find("RoisNum") !=
          multiclass_nms_inputs.end()) {
        if (desc.Input("RoisNum").size() >= 1) {
          return false;
        }
      }
      for (auto& param_name : multiclass_nms_inputs) {
Z
zlsh80826 已提交
873 874 875 876
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() != 3) {
877
            VLOG(3) << "multiclass_nms op dims != 3 not supported in tensorrt, "
Z
zlsh80826 已提交
878 879 880 881 882 883 884 885 886 887 888 889
                       "but got dims "
                    << shape.size() << ", so jump it.";
            return false;
          }
        }
      }
      bool has_attrs =
          (desc.HasAttr("background_label") &&
           desc.HasAttr("score_threshold") && desc.HasAttr("nms_top_k") &&
           desc.HasAttr("keep_top_k") && desc.HasAttr("normalized"));
      if (has_attrs == false) return false;

890 891 892
      // TODO(wangxinxin08): tricky solution because the outputs of batchedNMS
      // plugin are not constient with those of multiclass_nms3
      if (desc.HasAttr("nms_eta") == false) return false;
R
Ruibiao Chen 已提交
893
      auto nms_eta = PADDLE_GET_CONST(float, desc.GetAttr("nms_eta"));
894 895
      if (nms_eta <= 1.0) return false;

R
Ruibiao Chen 已提交
896
      auto nms_top_k = PADDLE_GET_CONST(int, desc.GetAttr("nms_top_k"));
Z
zlsh80826 已提交
897 898
      if (nms_top_k < 0) return false;

R
Ruibiao Chen 已提交
899
      auto keep_top_k = PADDLE_GET_CONST(int, desc.GetAttr("keep_top_k"));
Z
zlsh80826 已提交
900 901 902 903 904 905
      if (keep_top_k < 0) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }

906
    if (op_type == "nearest_interp") {
C
ccrrong 已提交
907 908
      std::vector<std::string> attrs{
          "interp_method", "align_corners", "scale", "out_h", "out_w"};
909 910 911
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }
912 913
      if (desc.HasAttr("data_layout")) {
        auto data_layout = framework::StringToDataLayout(
R
Ruibiao Chen 已提交
914
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
915 916 917 918
        if (data_layout != framework::DataLayout::kNCHW &&
            data_layout != framework::DataLayout::kNHWC)
          return false;
      }
919
      auto interp_method =
R
Ruibiao Chen 已提交
920
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
921
      if (interp_method != "nearest") return false;
R
Ruibiao Chen 已提交
922 923 924 925 926
      auto scale = PADDLE_GET_CONST(float, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
927 928 929 930
      if (!(scale > 0.f && (out_h <= 0 && out_w <= 0))) {
        if (out_h <= 0) {
          VLOG(3) << "out_h must be greater than 0 if scale is not set.";
          return false;
931
        }
932 933
        if (out_w <= 0) {
          VLOG(3) << "out_w must be greater than 0 if scale is not set.";
已提交
934 935
          return false;
        }
936
      }
937 938 939 940 941 942 943 944 945
      if ((scale <= 0.f) && with_dynamic_shape) {
        VLOG(3) << "dynamic shape not support scale not set.";
        return false;
      }
      // When align_corners = true, the paddle's and trt_layer's results has
      // diff
      if (align_corners && scale != 1) {
        return false;
      }
946
    }
947

948
    if (op_type == "nearest_interp_v2") {
C
ccrrong 已提交
949 950 951 952 953 954
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
955 956 957 958
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }
      auto data_layout = framework::StringToDataLayout(
R
Ruibiao Chen 已提交
959
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
960 961 962 963
      if (data_layout != framework::DataLayout::kNCHW &&
          data_layout != framework::DataLayout::kNHWC)
        return false;
      auto interp_method =
R
Ruibiao Chen 已提交
964
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
965
      if (interp_method != "nearest") return false;
R
Ruibiao Chen 已提交
966 967 968
      auto scale = PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
969
      if (!(out_h > 0 && out_w > 0)) {
W
wenbin 已提交
970
        if (scale.size() < 2) return false;
971 972 973 974 975 976 977 978
        if (scale[0] <= 0.f || scale[1] <= 0.f) {
          VLOG(3) << "scale factor must be greater than 0 if out_h or out_w is "
                     "not set.";
          return false;
        }
      }
    }

979
    if (op_type == "bilinear_interp_v2") {
C
ccrrong 已提交
980 981 982 983 984 985
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) {
          VLOG(3) << "The op_type " << op_type << " doesn't have the attr "
                  << attr << " and return false";
          return false;
        }
      }

      auto resize_inputs = desc.Inputs();
      if (resize_inputs.find("SizeTensor") != resize_inputs.end()) {
        if (desc.Input("SizeTensor").size() >= 1) {
          VLOG(3)
              << "The Paddle-TRT doesn't support the SizeTensor for op_type "
              << op_type;
          return false;
        }
      }

      if (resize_inputs.find("OutSize") != resize_inputs.end()) {
        if (desc.Input("OutSize").size() >= 1) {
          VLOG(3) << "The Paddle-TRT doesn't support the OutSize for op_type "
                  << op_type;
          return false;
        }
      }

      auto data_layout = framework::StringToDataLayout(
R
Ruibiao Chen 已提交
1013
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
1014 1015 1016 1017 1018 1019 1020
      if (data_layout != framework::DataLayout::kNCHW &&
          data_layout != framework::DataLayout::kNHWC) {
        VLOG(3) << "The op_type " << op_type
                << " is not NCHW or NHWC return false";
        return false;
      }
      auto interp_method =
R
Ruibiao Chen 已提交
1021
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
1022 1023 1024 1025 1026 1027
      if (interp_method != "bilinear") {
        VLOG(3) << "The interp_method of op_type " << op_type
                << " is not bilinear";
        return false;
      }

R
Ruibiao Chen 已提交
1028 1029
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
      if (align_corners != false) {
        VLOG(3)
            << "The bilinear_interp_v2 only supports align_corners with false.";
        return false;
      }

      bool has_scale_input_size =
          (resize_inputs.find("Scale") != resize_inputs.end());

      if (has_scale_input_size && desc.Input("Scale").size() != 1) {
        const std::vector<float> scale =
R
Ruibiao Chen 已提交
1041
            PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
1042 1043 1044 1045 1046 1047 1048
        if (scale.size() <= 1) {
          if (!desc.HasAttr("out_h") || !desc.HasAttr("out_w")) {
            VLOG(3) << "The op_type " << op_type
                    << " doesn't have Scale and the scale size <=1 and without "
                       "out_h / out_w, it will return false";
            return false;
          }
R
Ruibiao Chen 已提交
1049 1050
          auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
          auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
          if (!(out_h <= 0 && out_w <= 0)) {
            if (out_h <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_h must be greater than 0 if scale is not set.";
              return false;
            }
            if (out_w <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_w must be greater than 0 if scale is not set.";
              return false;
            }
          }
        } else {
          for (size_t i = 0; i < scale.size(); i++) {
            if (scale[i] <= 0 && with_dynamic_shape) {
              VLOG(3) << "dynamic shape not support Attr(scale[" << i << "]) "
                      << scale[i]
                      << " less than 1 and Input(Scale) vector not set.";
              return false;
            }
          }
        }
      }
    }

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    if (op_type == "hard_swish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }

      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
    }

1090
    if (op_type == "squeeze2") {
1091 1092 1093 1094 1095 1096 1097
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("axes", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axes') is "
                   "Variable type in squeeze2.";
        return false;
      }

1098 1099
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
1100
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
      }
      if (axes.size() == 0) {
        VLOG(3) << "The necessary attributes of the squeeze2 operator axes is "
                   "missing.";
        return false;
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

    if (op_type == "unsqueeze2") {
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
1119
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
      }
      if (axes.size() == 0) {
        VLOG(3) << "The necessary attributes of the squeeze2 operator axes is "
                   "missing.";
        return false;
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

1135
    if (op_type == "batch_norm") {
C
ccrrong 已提交
1136 1137
      const std::vector<std::string> bn_inputs = {
          "X", "Bias", "Mean", "Scale", "Variance"};
1138 1139 1140 1141 1142 1143 1144 1145 1146
      for (unsigned int i = 0; i < bn_inputs.size(); i++) {
        if (desc.Input(bn_inputs[i]).size() != 1) {
          VLOG(3) << "Invalid " << bn_inputs[i]
                  << "'s size of batch_norm TRT "
                     "converter. Expected 1, received "
                  << desc.Input(bn_inputs[i]).size() << ".";
          return false;
        }
      }
1147 1148 1149 1150 1151 1152
      auto batch_norm_inputs = desc.Inputs();
      if (batch_norm_inputs.find("MomentumTensor") != batch_norm_inputs.end()) {
        if (desc.Input("MomentumTensor").size() >= 1) {
          return false;
        }
      }
1153 1154 1155 1156 1157 1158
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "Invalid output Y's size of batch_norm TRT "
                   "converter. Expected 1, received "
                << desc.Output("Y").size() << ".";
        return false;
      }
W
Wilber 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1169 1170 1171 1172 1173 1174 1175 1176 1177
    }

    if (op_type == "split") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of split TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
      auto split_inputs = desc.Inputs();
      if (split_inputs.find("AxisTensor") != split_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
        }
      }
      if (split_inputs.find("SectionsTensorList") != split_inputs.end()) {
        if (desc.Input("SectionsTensorList").size() >= 1) {
          return false;
        }
      }
1189 1190
      if (!desc.HasAttr("axis")) {
        return false;
1191
      }
R
Ruibiao Chen 已提交
1192
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
1193 1194 1195 1196 1197 1198 1199

      if (axis == 0) {
        VLOG(3) << "Invalid split axis. Split on batch is not supported in "
                   "TensorRT";
        return false;
      }
      auto* block = desc.Block();
1200 1201 1202 1203 1204 1205
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1206 1207 1208 1209 1210 1211 1212
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      size_t output_num = desc.Output("Out").size();
      std::vector<int> output_lengths;
      int num = 0;
      if (desc.HasAttr("num")) {
R
Ruibiao Chen 已提交
1213
        num = PADDLE_GET_CONST(int, desc.GetAttr("num"));
1214 1215 1216
      }
      if (desc.HasAttr("sections")) {
        output_lengths =
R
Ruibiao Chen 已提交
1217
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("sections"));
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
      }
      if (output_lengths.size() == 0 && num == 0) {
        VLOG(3) << "sections and num cannot be equal to 0 at the same time";
        return false;
      }
      if (with_dynamic_shape) {
#if IS_TRT_VERSION_GE(6000)
#else
        VLOG(3) << "You are running the TRT Dynamic Shape mode, need to "
                   "confirm that "
                   "your TRT version is no less than 6.0";
        return false;
#endif
      }
      axis += (axis < 0) ? x_shape.size() : 0;
      if (x_shape[axis] == -1) {
        VLOG(3) << "The (" << axis << ") dim of input should not be -1";
        return false;
      }
      if (output_lengths.size() == 0) {
        if (num > 0) {
          int64_t in_axis_dim = x_shape[axis];
          if (in_axis_dim % num != 0) {
            VLOG(3) << "Invalid number to split. Tensor split does not result"
                       " in an equal division of dimensions. Axis dim = "
                    << in_axis_dim << " num = " << num << "!= 0";
            return false;
          }
          size_t out_axis_dim = in_axis_dim / num;
          for (int i = 0; i < num; ++i) {
            output_lengths.push_back(out_axis_dim);
          }
1250 1251
        }
      }
1252 1253 1254 1255
      if (output_lengths.size() != output_num) {
        VLOG(3) << "The output_length should be equal to the output size.";
        return false;
      }
1256
    }
1257

1258 1259 1260 1261 1262 1263 1264 1265
    if (op_type == "scale") {
      auto scale_inputs = desc.Inputs();
      if (scale_inputs.find("ScaleTensor") != scale_inputs.end()) {
        if (desc.Input("ScaleTensor").size() >= 1) {
          return false;
        }
      }
      auto* block = desc.Block();
1266 1267 1268 1269 1270 1271
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1272 1273 1274
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1275 1276 1277 1278 1279
      auto dtype = x_var_desc->GetDataType();
      // At present, only support float32 or float16 into trt.
      if (!(dtype == 5 || dtype == 4)) {
        return false;
      }
1280 1281 1282 1283
      if (!with_dynamic_shape && x_shape.size() == 1) {
        VLOG(3) << "Scale op does not support 1-dimensional input in tensorrt";
        return false;
      }
1284
    }
1285

F
feng_shuai 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
    if (op_type == "roll") {
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3) << "roll converter does not support trt versions below 7.0";
      return false;
#endif
      if (!with_dynamic_shape) {
        return false;
      }
    }

    if (op_type == "strided_slice") {
1297 1298 1299 1300 1301
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3)
          << "strided_slice converter does not support trt versions below 7.0";
      return false;
#endif
F
feng_shuai 已提交
1302 1303 1304 1305 1306 1307 1308 1309
      if (!desc.HasAttr("axes") || !desc.HasAttr("starts") ||
          !desc.HasAttr("ends") || !desc.HasAttr("strides")) {
        VLOG(3)
            << "The necessary attributes of the strided_slice operator miss ";
        return false;
      }
    }

Z
zhoutianzi666 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
    if (op_type == "rnn") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (desc.HasAttr("mode")) {
        std::string mode = PADDLE_GET_CONST(std::string, desc.GetAttr("mode"));
        if (mode != "LSTM") return false;
      }
      if (desc.HasAttr("dropout_prob")) {
        float dropout_prob =
            PADDLE_GET_CONST(float, desc.GetAttr("dropout_prob"));
        if (dropout_prob > 1e-5) return false;
      }
      // not support following four inputs for rnn in paddle-trt
      auto rnn_inputs = desc.Inputs();
      if (rnn_inputs.find("SequenceLength") != rnn_inputs.end()) {
        if (desc.Input("SequenceLength").size()) {
          return false;
        }
      }
    }

    if (op_type == "fill_constant_batch_size_like") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (!desc.HasAttr("input_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("output_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("shape")) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("Input")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto dtype = x_var_desc->GetDataType();
      // At present, only support float32 into trt.
      if (dtype != 5) {
        return false;
      }
    }

1361
    if (op_type == "slice") {
1362 1363
      if (desc.HasAttr("decrease_axis")) {
        std::vector<int> decrease_axis =
R
Ruibiao Chen 已提交
1364
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("decrease_axis"));
1365 1366 1367
        if (!with_dynamic_shape) {
          if (decrease_axis.end() !=
              std::find(decrease_axis.begin(), decrease_axis.end(), 0)) {
1368 1369
            return false;
          }
1370 1371 1372
        }
      }

1373
      if (!desc.HasAttr("axes") || !desc.HasAttr("starts") ||
1374 1375 1376
          !desc.HasAttr("ends")) {
        VLOG(3) << "The necessary attributes of the slice operator axes "
                   "or starts or ends are missing.";
1377 1378 1379
        return false;
      } else {
        std::vector<int> axes =
R
Ruibiao Chen 已提交
1380
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1381
        std::vector<int> starts =
R
Ruibiao Chen 已提交
1382
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("starts"));
1383
        std::vector<int> ends =
R
Ruibiao Chen 已提交
1384
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ends"));
1385

1386
        if (axes.size() != starts.size() || axes.size() != ends.size()) {
1387 1388
          VLOG(3) << "The shape of attributes of the slice operator axes "
                     "or starts or ends are not equal.";
已提交
1389 1390
          return false;
        }
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
        if (!with_dynamic_shape) {
          for (size_t i = 0; i < axes.size(); i++) {
            if (axes[i] == 0) {
              VLOG(3) << "Invalid slice axis. Slice on batch axis is not "
                         "supported in TensorRT";
              return false;
            }
          }
        }
      }
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
      // not support following four inputs for slice in paddle-trt
      auto slice_inputs = desc.Inputs();  // its size == 5
      if (slice_inputs.find("StartsTensor") != slice_inputs.end()) {
        if (desc.Input("StartsTensor").size()) {
          return false;
        }
      }
      if (slice_inputs.find("EndsTensor") != slice_inputs.end()) {
        if (desc.Input("EndsTensor").size()) {
          return false;
        }
      }
      if (slice_inputs.find("StartsTensorList") != slice_inputs.end()) {
        if (desc.Input("StartsTensorList").size()) {
          return false;
        }
      }
      if (slice_inputs.find("EndsTensorList") != slice_inputs.end()) {
        if (desc.Input("EndsTensorList").size()) {
          return false;
        }
      }
1423 1424
    }

1425
    if (op_type == "elementwise_add" || op_type == "elementwise_mul" ||
S
shentanyue 已提交
1426 1427
        op_type == "elementwise_sub" || op_type == "elementwise_div" ||
        op_type == "elementwise_pow") {
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "The input op's Input(\"X\").size() "
                   "should equal to 1, but received Input(\"X\").size() = "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Input("Y").size() != 1) {
        VLOG(3) << "The input op's Input(\"Y\").size() "
                   "should equal to 1, but received Input(\"Y\").size() = "
                << desc.Input("Y").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "The input op's Output(\"Out\").size() "
                   "should equal to 1, but reveceid Output(\"Out\").size() = "
                << desc.Output("Out").size() << ".";
        return false;
      }
1446
      auto* block = desc.Block();
1447 1448 1449 1450 1451 1452
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1453 1454 1455 1456
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
1457 1458 1459 1460 1461 1462 1463

      // The case when x_shape.size() == 1 is dealt with in common case
      if (!with_dynamic_shape && (!y_var_desc->Persistable()) &&
          y_shape.size() == 1) {
        VLOG(3) << "Static shape in trt not support y is  a 1D intermediate "
                   "tensor in "
                   "elementwise op.";
1464 1465
        return false;
      }
1466 1467 1468 1469
      if (x_var_desc->Persistable() && !with_dynamic_shape) {
        VLOG(3)
            << "Input X is a parameter which is not supported for "
               "elementwise in tensorrt's static shape, swap x and y will work";
S
shentanyue 已提交
1470
        return false;
1471
      }
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
    }

    if (op_type == "stack") {
      if (!with_dynamic_shape) {
        VLOG(3)
            << "static shape mode is not supported for TRT stack.\n"
               "You can use the config.SetTRTDynamicShapeInfo(...) interface"
               " to set the shape information to run the dynamic shape "
               "mode.";
        return false;
      }
    }
1484 1485 1486 1487 1488 1489 1490 1491
    // remember that 1D input in static shape mode is filtered at the beginning
    if (op_type == "sum") {
      return true;
    }

    if (op_type == "shape" && !with_dynamic_shape) {
      return false;
    }
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

    if (op_type == "fused_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_embedding_eltwise_layernorm should run on dynamic "
                   "shape mode.";
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        return false;
      }
    }

1504 1505
    if (op_type == "fused_preln_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
1506 1507 1508
        VLOG(3) << "fused_preln_embedding_eltwise_layernorm should run on "
                   "dynamic "
                   "shape mode.";
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        VLOG(3) << "The id and emb size of fused PrelnEmbEltwiseLayerNormOp "
                   "should be same ";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
    if (op_type == "gelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "gelu op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "gelu op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
1533

1534
#if IS_TRT_VERSION_LT(7000)
1535
      if (desc.HasAttr("approximate")) {
1536
        VLOG(3) << "approximate gelu op needs TensorRT 7.0 and after";
R
Ruibiao Chen 已提交
1537
        if (PADDLE_GET_CONST(bool, desc.GetAttr("approximate"))) return false;
1538
      }
1539
#endif
1540 1541

      auto* block = desc.Block();
1542 1543 1544 1545 1546 1547
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1548

1549 1550 1551 1552 1553 1554 1555
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "gelu op does not support input's dim is 1 in tensorrt.";
        return false;
      }
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
    }

    if (op_type == "layer_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of layer_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of layer_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of layer_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
    }

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
    if (op_type == "fill_constant") {
      auto fill_constant_inputs = desc.Inputs();
      if (fill_constant_inputs.find("ValueTensor") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ValueTensor").size()) return false;
      }
      if (fill_constant_inputs.find("ShapeTensor") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ShapeTensor").size()) return false;
      }
      if (fill_constant_inputs.find("ShapeTensorList") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ShapeTensorList").size()) return false;
      }
R
Ruibiao Chen 已提交
1595
      int dtype = PADDLE_GET_CONST(int, desc.GetAttr("dtype"));
1596 1597 1598 1599 1600 1601
      // only support int32, int64, float32
      if (!(dtype == 2 || dtype == 3 || dtype == 5)) {
        return false;
      }
    }

已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
    if (op_type == "instance_norm") {
      if (with_dynamic_shape) {
        VLOG(3) << "trt instance_norm op does not support dynamic shape ";
        return false;
      }
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of instance_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of instance_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of instance_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() != 4) {
        VLOG(3) << "The instance_norm op only support 4-dimensional input in "
                   "tensorrt.";
        return false;
      }
已提交
1643 1644
    }

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
    if (op_type == "leaky_relu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid number of TRT leaky_relu op converter "
                   "inputs. Expected 1, but received "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "output of leaky_relu op converter should be 1, got "
                << desc.Output("Out").size();
        return false;
      }
    }

    if (op_type == "pad") {
R
Ruibiao Chen 已提交
1660 1661
      const float pad_value =
          PADDLE_GET_CONST(float, desc.GetAttr("pad_value"));
1662 1663 1664 1665
      if (pad_value != 0.0f) {
        VLOG(3) << "The pad layer of TRT only support zero.";
        return false;
      }
已提交
1666 1667
      std::vector<int64_t> shape;
      auto* block = desc.Block();
1668 1669 1670 1671 1672 1673
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
已提交
1674 1675 1676 1677 1678 1679 1680 1681
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          shape = var_desc->GetShape();
        }
      }
      int nbDims = shape.size();
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
1682
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
      int pad_size = paddings.size();
      if (nbDims < 2) {
        return false;
      }
      if (nbDims * 2 != pad_size) {
        return false;
      }
      for (int i = 0; i < pad_size - 4; i++) {
        if (paddings[i] != 0) {
          return false;
        }
      }
1695 1696
    }

1697 1698
    if (op_type == "swish") {
      auto* block = desc.Block();
1699 1700 1701 1702 1703 1704
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1705 1706 1707 1708 1709 1710 1711 1712 1713
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "swish op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
    if (op_type == "prelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }
1727 1728

      auto* block = desc.Block();
1729 1730 1731 1732 1733 1734
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1735 1736 1737 1738 1739 1740 1741 1742 1743
      auto* var_desc = block->FindVar(desc.Input("Alpha")[0]);
      if (!var_desc) {
        VLOG(3) << "Variable Alpha of prelu TRT converter not found.";
        return false;
      }

      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1744 1745 1746
      if (!with_dynamic_shape && x_shape.size() == 1) {
        VLOG(3) << "prelu op does not support input's dim is 1 in tensorrt "
                   "with static shape.";
1747 1748 1749
        return false;
      }

W
Wilber 已提交
1750 1751 1752 1753 1754 1755 1756
#if IS_TRT_VERSION_LT(7000)
      if (!with_dynamic_shape) {
        // TODO(inference): fix trt6 static plugin error.
        VLOG(3) << "prelu static plugin in trt6 has bug.";
        return false;
      }
#endif
1757 1758
    }

W
wangxinxin08 已提交
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
    if (op_type == "mish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "mish op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

1790 1791 1792 1793 1794 1795 1796
    if (op_type == "roi_align") {
      if (!with_dynamic_shape) {
        VLOG(3) << "TRT roi align plugin only accept the dynamic shape, "
                   "because that "
                   "the roi_align will change the batch size.";
        return false;
      }
C
ccrrong 已提交
1797 1798 1799 1800
      std::vector<std::string> attrs{"pooled_height",
                                     "pooled_width",
                                     "spatial_scale",
                                     "sampling_ratio",
F
fengkuangxiaxia 已提交
1801
                                     "aligned"};
1802 1803 1804 1805 1806
      for (auto const attr : attrs) {
        if (!desc.HasAttr(attr)) return false;
      }

      const auto pooled_height =
R
Ruibiao Chen 已提交
1807
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_height"));
1808 1809 1810
      if (pooled_height <= 0) return false;

      const auto pooled_width =
R
Ruibiao Chen 已提交
1811
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_width"));
1812 1813 1814
      if (pooled_width <= 0) return false;

      const auto spatial_scale =
R
Ruibiao Chen 已提交
1815
          PADDLE_GET_CONST(float, desc.GetAttr("spatial_scale"));
1816 1817 1818 1819 1820 1821 1822 1823
      if (spatial_scale <= 0.f) return false;

      auto roi_align_inputs = desc.Inputs();
      if (roi_align_inputs.find("RoisNum") != roi_align_inputs.end()) {
        if (desc.Input("RoisNum").size() >= 1) {
          return false;
        }
      }
1824 1825 1826
    }

    if (op_type == "shuffle_channel") {
1827
#if !IS_TRT_VERSION_GE(8000)
1828 1829
      if (with_dynamic_shape) {
        VLOG(3) << "You are running the TRT Dynamic Shape mode, "
1830 1831
                   "the shuffle_channel op does not support dynamic shape "
                   "trt versions below 8.0 yet";
1832 1833
        return false;
      }
1834
#endif
1835 1836 1837 1838 1839 1840 1841 1842 1843
    }

    if (op_type == "skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the skip_layernorm does not support static shape yet";
        return false;
      }
    }

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
    if (op_type == "preln_skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the preln_skip_layernorm does not support static shape yet";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

1855 1856 1857 1858 1859
    if (op_type == "multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul does not support static shape yet";
        return false;
      }
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
R
Ruibiao Chen 已提交
1876
          PADDLE_GET_CONST(int, desc.GetAttr("head_number"));
F
feng_shuai 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885
      auto inputs = desc.Inputs();
      bool has_bias_qk = (inputs.find("BiasQK") == inputs.end()) ? false : true;
      if (has_bias_qk) {
        auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
        const auto biasqk_shape = biasqk_desc->GetShape();
        // The BiasQK's shape requires to be
        // [batch, 1, 1, length] or [batch, head, length, length].
        bool has_same_shape = head_number == biasqk_shape[1] &&
                              input_shape[1] == biasqk_shape[2] &&
1886
                              input_shape[1] == biasqk_shape[3];
F
feng_shuai 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
        bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                                input_shape[1] == biasqk_shape[3];
        if (!(has_same_shape || is_broadcastable)) {
          VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
                  << ", 1, 1, " << input_shape[1] << "] or [" << input_shape[0]
                  << ", " << head_number << ", " << input_shape[1] << ", "
                  << input_shape[1] << "] but [" << biasqk_shape[0] << ", "
                  << biasqk_shape[1] << ", " << biasqk_shape[2] << ", "
                  << biasqk_shape[3] << "].";
          return false;
        }
      } else {
#if !IS_TRT_VERSION_GE(8000)
        VLOG(3) << "The version of TRT must be greater than 8000";
1901
        return false;
F
feng_shuai 已提交
1902
#endif
1903
      }
1904 1905
    }

1906
    if (op_type == "fc") {
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      // y'shapes == 2
      auto fc_inputs = desc.Inputs();
      std::string fc_y = "";
      if (fc_inputs.find("Y") != fc_inputs.end()) {
        fc_y = "Y";
      } else if (fc_inputs.find("W") != fc_inputs.end()) {
        fc_y = "W";
      } else {
        VLOG(3) << " input_y(fc_op) must be Y or W ";
        return false;
      }

      //  There is currently no input: Y(weight) more than two dimensions
      /*
      auto* y_var_desc = block->FindVar(desc.Input(fc_y)[0]);
      const auto y_shape = y_var_desc->GetShape();
      if (y_shape.size() != 2) {
        VLOG(3)
1933 1934
            << " input_y(fc_op)'shapes must be 2, but input_y(fc_op)'shapes =
      "
1935 1936 1937 1938 1939 1940
            << y_shape.size();
        return false;
      }
      // y_num_col_dims ==1
      if (desc.HasAttr("y_num_col_dims")) {
        int y_num_col_dims =
R
Ruibiao Chen 已提交
1941
            PADDLE_GET_CONST(int, desc.GetAttr("y_num_col_dims"));
1942 1943 1944 1945 1946 1947 1948
        if (y_num_col_dims != 1) {
          VLOG(3) << " fc_op'y_num_col_dims must be 1, but y_num_col_dims = "
                  << y_num_col_dims;
          return false;
        }
      }
      */
1949 1950
      int x_num_col_dims =
          desc.HasAttr("x_num_col_dims")
R
Ruibiao Chen 已提交
1951
              ? PADDLE_GET_CONST(int, desc.GetAttr("x_num_col_dims"))
1952
              : (desc.HasAttr("in_num_col_dims")
R
Ruibiao Chen 已提交
1953
                     ? PADDLE_GET_CONST(int, desc.GetAttr("in_num_col_dims"))
1954 1955
                     : 1);
      if (x_num_col_dims < 1) {
1956 1957 1958
        VLOG(3) << "fc_op expects x_num_col_dims >= 1, "
                   "but x_num_col_dims = "
                << x_num_col_dims;
1959 1960 1961
        return false;
      }
    }
1962

W
Wangzheee 已提交
1963
    if (op_type == "reshape" || op_type == "reshape2") {
1964 1965 1966
      if (with_dynamic_shape) {
        return true;
      }
W
Wangzheee 已提交
1967 1968
      if (!desc.HasAttr("shape")) {
        return false;
W
Wilber 已提交
1969 1970
      }
      // Paddle-TRT does not support the input tensors: Shape and ShapeTensor
1971
      auto reshape_inputs = desc.Inputs();
1972 1973 1974 1975 1976 1977 1978 1979 1980
      if (reshape_inputs.find("Shape") != reshape_inputs.end()) {
        if (desc.Input("Shape").size() >= 1) {
          return false;
        }
      }
      if (reshape_inputs.find("ShapeTensor") != reshape_inputs.end()) {
        if (desc.Input("ShapeTensor").size() >= 1) {
          return false;
        }
W
Wangzheee 已提交
1981
      }
W
Wilber 已提交
1982
      std::vector<int> shape =
R
Ruibiao Chen 已提交
1983
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("shape"));
W
Wilber 已提交
1984
      if (shape.size() >= nvinfer1::Dims::MAX_DIMS) return false;
X
xiaoxiaohehe001 已提交
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
      if (!with_dynamic_shape) {
        if (shape.size() == 1) {
          return false;
        }
        if (shape[0] == 0) {
          return true;
        } else {
          auto* block = desc.Block();
          auto x_var_name = desc.Input("X")[0];
          auto* x_var_desc = block->FindVar(x_var_name);
          const auto x_shape = x_var_desc->GetShape();
C
ccrrong 已提交
1996 1997 1998 1999
          int input_num = std::accumulate(
              x_shape.begin() + 1, x_shape.end(), 1, std::multiplies<int>());
          int shape_num = std::accumulate(
              shape.begin() + 1, shape.end(), 1, std::multiplies<int>());
X
xiaoxiaohehe001 已提交
2000 2001 2002 2003
          if (input_num == shape_num) {
            return true;
          }
        }
2004
        return false;
X
xiaoxiaohehe001 已提交
2005
      }
W
Wangzheee 已提交
2006
    }
2007

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
    if (op_type == "clip") {
      // Paddle-TRT does not support the input tensors: Min and Max
      auto clip_inputs = desc.Inputs();
      if (clip_inputs.find("Min") != clip_inputs.end()) {
        if (desc.Input("Min").size() >= 1) {
          return false;
        }
      }
      if (clip_inputs.find("Max") != clip_inputs.end()) {
        if (desc.Input("Max").size() >= 1) {
          return false;
        }
      }

      auto* block = desc.Block();
2023 2024 2025 2026 2027 2028
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
2029 2030 2031 2032 2033 2034 2035 2036 2037
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "clip op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

W
wenbin 已提交
2038
    if (op_type == "reduce_sum" || op_type == "reduce_mean") {
2039 2040 2041 2042 2043 2044 2045
      if (!desc.HasAttr("dim", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('dim') is "
                   "Variable type in "
                << desc.Type();
        return false;
      }

2046 2047
      if (!(desc.HasAttr("keep_dim") && desc.HasAttr("dim") &&
            desc.HasAttr("reduce_all"))) {
W
wenbin 已提交
2048 2049
        VLOG(3) << "the " << op_type
                << " does not have attr (keep_dim or dim or "
2050
                   "reduce_all)";
2051 2052 2053 2054 2055 2056 2057 2058
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
2059 2060
        return false;
      }
W
wenbin 已提交
2061 2062

      // The batch size dimension cannot be reduced if it's not dynamic shape.
2063
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
W
wenbin 已提交
2064
      if (!with_dynamic_shape) {
R
Ruibiao Chen 已提交
2065
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all"))) return false;
W
wenbin 已提交
2066
        std::vector<int32_t> dim =
R
Ruibiao Chen 已提交
2067
            PADDLE_GET_CONST(std::vector<int32_t>, desc.GetAttr("dim"));
2068
        const auto input_shape = x_var_desc->GetShape();
W
wenbin 已提交
2069
        for (auto x : dim) {
2070
          if (x == 0 || (x + input_shape.size() == 0)) return false;
W
wenbin 已提交
2071
        }
2072

2073
      } else {
R
Ruibiao Chen 已提交
2074 2075
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all")) &&
            !PADDLE_GET_CONST(bool, desc.GetAttr("keep_dim")))
2076 2077
          return false;
      }
2078 2079 2080 2081 2082 2083 2084

      auto dtype = x_var_desc->GetDataType();
#if IS_TRT_VERSION_GE(7000)
      if (dtype != framework::proto::VarType::INT32 &&
          dtype != framework::proto::VarType::FP32) {
        VLOG(3) << "reduce op input data type must be int32 or float32";
        return false;
W
wenbin 已提交
2085
      }
2086 2087
#else
      if (dtype != framework::proto::VarType::FP32) {
2088 2089
        VLOG(3) << "reduce op input data type must be float32 using TensorRT "
                   "< 7.0";
2090 2091 2092
        return false;
      }
#endif
2093
    }
W
wenbin 已提交
2094 2095 2096
#if IS_TRT_VERSION_GE(7000)
    if (op_type == "tile") {
      // Paddle-TRT does not support the input tensors.
2097 2098 2099
      auto tile_inputs = desc.Inputs();
      if (tile_inputs.find("repeat_times_tensor") != tile_inputs.end()) {
        if (desc.Input("repeat_times_tensor").size() >= 1) {
W
wenbin 已提交
2100
          return false;
2101 2102 2103 2104
        }
      }
      if (tile_inputs.find("RepeatTimes") != tile_inputs.end()) {
        if (desc.Input("RepeatTimes").size() >= 1) {
W
wenbin 已提交
2105
          return false;
2106
        }
W
wenbin 已提交
2107 2108 2109 2110 2111
      }
      if (with_dynamic_shape) return false;
      if (!with_dynamic_shape && !desc.HasAttr("repeat_times")) return false;
    }
#endif
2112

2113 2114 2115 2116 2117
    // conv3d_transpose
    if (op_type == "conv3d_transpose") {
      // trt doen't support output_padding when < 8406
      // output_padding is usually set when stride > 1
#if !IS_TRT_VERSION_GE(8400)
2118 2119
      if (desc.HasAttr("output_padding")) {
        const std::vector<int> output_padding =
R
Ruibiao Chen 已提交
2120
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("output_padding"));
2121 2122 2123 2124 2125 2126
        if (output_padding.size() > 0) {
          int max_padding =
              *std::max_element(output_padding.begin(), output_padding.end());
          if (max_padding > 0) return false;
        }
      }
2127
#endif
2128 2129
    }

W
wenbin 已提交
2130 2131 2132
    if (op_type == "conv3d" || op_type == "conv3d_transpose") {
      if (desc.HasAttr("padding_algorithm")) {
        std::string padding_algorithm =
R
Ruibiao Chen 已提交
2133
            PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148

        // trt error is arised if conv3d_transpose and SAME
        if (op_type == "conv3d_transpose" && padding_algorithm == "SAME" &&
            !with_dynamic_shape) {
          return false;
        }
      }

#if !IS_TRT_VERSION_GE(7000)
      // looks like some issues with trt6.0
      if (with_dynamic_shape) {
        return false;
      }
#endif
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
2149
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wenbin 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

      // conv3d and conv3d_transpose need padding check
      if (paddings.size() > 3) return false;

      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (op_type == "conv3d_transpose") {
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
2171
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
W
wenbin 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
          if (dilations[0] != 1 || dilations[1] != 1 || dilations[2] != 1) {
            VLOG(3) << "In conv3d_transpose, Dilations must be (1, 1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ", "
                    << dilations[2] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
    }

2189 2190 2191 2192
    if (op_type == "hard_sigmoid") {
      if (!with_dynamic_shape) {
        auto* block = desc.Block();
        if (block == nullptr) {
2193 2194 2195
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
2196 2197 2198 2199 2200
          return false;
        }
        auto x_var_name = desc.Input("X")[0];
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
2201 2202 2203
        if (x_shape.size() == 1) {
          VLOG(3) << "Hard sigmoid does not support 1-dimensional input in "
                     "tensorrt";
2204 2205 2206 2207 2208
          return false;
        }
      }
    }

C
ccrrong 已提交
2209
    if (op_type == "cast") {
Z
zhoutianzi666 已提交
2210 2211 2212 2213
// trt 6015 result in Windows ppyolo_mbv3 TRT fp32 diff
#if !IS_TRT_VERSION_GE(7000)
      return false;
#endif
C
ccrrong 已提交
2214 2215 2216 2217 2218 2219
      if (!(desc.HasAttr("in_dtype") && desc.HasAttr("out_dtype"))) {
        VLOG(3) << "the " << op_type
                << " does not have attr (in_dtype or "
                   "out_dtype)";
        return false;
      }
R
Ruibiao Chen 已提交
2220 2221
      int in_dtype = PADDLE_GET_CONST(int, desc.GetAttr("in_dtype"));
      int out_dtype = PADDLE_GET_CONST(int, desc.GetAttr("out_dtype"));
C
ccrrong 已提交
2222 2223 2224 2225
      if ((in_dtype == 4 || in_dtype == 5) && out_dtype == 4) {
        VLOG(3) << "unsupport data type conversion";
        return false;
      }
2226 2227 2228 2229 2230
      if (in_dtype == 0) {
        VLOG(3) << "do not support input data type as bool now";
        return false;
      }
      if (!((in_dtype == 5 || in_dtype == 4 || in_dtype == 2) &&
C
ccrrong 已提交
2231
            (out_dtype == 5 || out_dtype == 4 || out_dtype == 2))) {
2232 2233
        VLOG(3) << "only valid conversions are: "
                   "(kFLOAT | kHALF | kINT32) -> (kFLOAT | kHALF | kINT32)";
C
ccrrong 已提交
2234 2235 2236 2237
        return false;
      }
    }

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
    if (op_type == "top_k_v2" || op_type == "top_k") {
      auto* block = desc.Block();
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "top_k/top_k_v2 does not support 1-dimensional input in "
                   "tensorrt";
        return false;
      }
      if (desc.HasAttr("axis")) {
R
Ruibiao Chen 已提交
2249
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
2250 2251 2252 2253 2254 2255 2256
        if (axis == 0) {
          VLOG(3) << "top_k_v2 does not support axis == 0 in "
                     "tensorrt";
          return false;
        }
      }
      if (desc.HasAttr("sorted")) {
R
Ruibiao Chen 已提交
2257
        bool sorted = PADDLE_GET_CONST(bool, desc.GetAttr("sorted"));
2258 2259 2260 2261 2262 2263 2264 2265
        if (!sorted) {
          VLOG(3) << "top_k_v2 does not support results not sorted in "
                     "tensorrt";
          return false;
        }
      }
    }

2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
#if IS_TRT_VERSION_GE(8000)
    if (op_type == "sparse_fc" || op_type == "sparse_multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the sparse_fc and sparse_multihead_matmul does not support "
                   "static shape yet";
        return false;
      }
    }
#endif

C
ccrrong 已提交
2276 2277 2278 2279 2280
    if (op_type == "equal") {
#if !IS_TRT_VERSION_GE(8000)
      VLOG(3) << "compare is not supported when TensorRT < 8.0";
      return false;
#else
R
Ruibiao Chen 已提交
2281
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
C
ccrrong 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
      if (axis == 0) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
#endif
    }

W
wenbin 已提交
2295 2296 2297 2298 2299 2300 2301 2302
    if (op_type == "layernorm_shift_partition") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the layernorm_shift_partition does not support "
                   "static shape yet";
        return false;
      }
    }

2303
    if ((*teller)(op_type, desc, use_no_calib_int8)) return true;
2304
  }
W
wenbin 已提交
2305

2306 2307
  return false;
}
2308

2309 2310 2311 2312
OpTeller::OpTeller() { tellers_.emplace_back(new SimpleOpTypeSetTeller); }
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle