data_set.cc 67.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *     Unless required by applicable law or agreed to in writing, software
 *     distributed under the License is distributed on an "AS IS" BASIS,
 *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *     See the License for the specific language governing permissions and
 *     limitations under the License. */

15
#include "paddle/fluid/framework/data_set.h"
16

D
danleifeng 已提交
17
#include "gflags/gflags.h"
18
#include "google/protobuf/text_format.h"
W
wangzhen38 已提交
19 20 21
#if (defined PADDLE_WITH_DISTRIBUTE) && (defined PADDLE_WITH_PSCORE)
#include "paddle/fluid/distributed/index_dataset/index_sampler.h"
#endif
22
#include "paddle/fluid/framework/data_feed_factory.h"
W
wangzhen38 已提交
23
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
24
#include "paddle/fluid/framework/io/fs.h"
H
hutuxian 已提交
25
#include "paddle/fluid/platform/monitor.h"
26
#include "paddle/fluid/platform/timer.h"
27

Z
zhaocaibei123 已提交
28
#ifdef PADDLE_WITH_PSCORE
29
#include "paddle/fluid/distributed/ps/wrapper/fleet.h"
D
danleifeng 已提交
30
#include "paddle/fluid/framework/fleet/heter_ps/graph_gpu_wrapper.h"
Z
zhaocaibei123 已提交
31 32
#endif

D
dongdaxiang 已提交
33 34 35 36 37
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

H
hutuxian 已提交
38
USE_INT_STAT(STAT_total_feasign_num_in_mem);
D
danleifeng 已提交
39 40
DECLARE_bool(graph_get_neighbor_id);

41 42 43
namespace paddle {
namespace framework {

X
xjqbest 已提交
44
// constructor
45
template <typename T>
D
dongdaxiang 已提交
46
DatasetImpl<T>::DatasetImpl() {
J
jiaqi 已提交
47
  VLOG(3) << "DatasetImpl<T>::DatasetImpl() constructor";
D
dongdaxiang 已提交
48
  thread_num_ = 1;
49
  trainer_num_ = 1;
J
jiaqi 已提交
50
  channel_num_ = 1;
51
  file_idx_ = 0;
H
hutuxian 已提交
52
  total_fea_num_ = 0;
J
jiaqi 已提交
53
  cur_channel_ = 0;
54 55
  fleet_send_batch_size_ = 1024;
  fleet_send_sleep_seconds_ = 0;
56
  merge_by_insid_ = false;
57 58
  merge_by_sid_ = true;
  enable_pv_merge_ = false;
59
  merge_size_ = 2;
60 61
  parse_ins_id_ = false;
  parse_content_ = false;
62
  parse_logkey_ = false;
63
  preload_thread_num_ = 0;
64
  global_index_ = 0;
65 66
  shuffle_by_uid_ = false;
  parse_uid_ = false;
D
dongdaxiang 已提交
67
}
68

X
xjqbest 已提交
69
// set filelist, file_idx_ will reset to zero.
70 71
template <typename T>
void DatasetImpl<T>::SetFileList(const std::vector<std::string>& filelist) {
72
  VLOG(3) << "filelist size: " << filelist.size();
73
  filelist_ = filelist;
74
  file_idx_ = 0;
75 76
}

X
xjqbest 已提交
77
// set expect thread num. actually it may change
78 79
template <typename T>
void DatasetImpl<T>::SetThreadNum(int thread_num) {
80
  VLOG(3) << "SetThreadNum thread_num=" << thread_num;
81 82 83
  thread_num_ = thread_num;
}

X
xjqbest 已提交
84 85 86
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetTrainerNum
87
template <typename T>
X
xujiaqi01 已提交
88 89
void DatasetImpl<T>::SetTrainerNum(int trainer_num) {
  trainer_num_ = trainer_num;
90 91
}

X
xjqbest 已提交
92 93 94 95 96 97 98 99
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetFleetSendBatchSize
template <typename T>
void DatasetImpl<T>::SetFleetSendBatchSize(int64_t size) {
  fleet_send_batch_size_ = size;
}

100 101 102
template <typename T>
void DatasetImpl<T>::SetHdfsConfig(const std::string& fs_name,
                                   const std::string& fs_ugi) {
X
xjqbest 已提交
103 104
  fs_name_ = fs_name;
  fs_ugi_ = fs_ugi;
105
  std::string cmd = std::string("$HADOOP_HOME/bin/hadoop fs");
106 107
  cmd += " -D fs.default.name=" + fs_name;
  cmd += " -D hadoop.job.ugi=" + fs_ugi;
108
  cmd += " -Ddfs.client.block.write.retries=15 -Ddfs.rpc.timeout=500000";
109
  paddle::framework::dataset_hdfs_set_command(cmd);
X
xujiaqi01 已提交
110
}
111

112 113 114 115 116 117 118 119 120 121
template <typename T>
void DatasetImpl<T>::SetDownloadCmd(const std::string& download_cmd) {
  paddle::framework::set_download_command(download_cmd);
}

template <typename T>
std::string DatasetImpl<T>::GetDownloadCmd() {
  return paddle::framework::download_cmd();
}

122 123
template <typename T>
void DatasetImpl<T>::SetDataFeedDesc(const std::string& data_feed_desc_str) {
124 125
  google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
                                                &data_feed_desc_);
126 127
}

Y
yaoxuefeng 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
template <typename T>
std::vector<std::string> DatasetImpl<T>::GetSlots() {
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  use_slots_.clear();
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    if (slot.type() == "uint64" || slot.type() == "uint32") {
      use_slots_.push_back(slot.name());
    }
  }
  std::cout << "dataset use slots: ";
  for (auto s : use_slots_) {
    std::cout << s << " | ";
  }
  std::cout << " end " << std::endl;
  return use_slots_;
}

146
template <typename T>
J
jiaqi 已提交
147 148 149 150
void DatasetImpl<T>::SetChannelNum(int channel_num) {
  channel_num_ = channel_num;
}

151 152 153 154 155 156 157 158 159 160
template <typename T>
void DatasetImpl<T>::SetParseInsId(bool parse_ins_id) {
  parse_ins_id_ = parse_ins_id;
}

template <typename T>
void DatasetImpl<T>::SetParseContent(bool parse_content) {
  parse_content_ = parse_content;
}

161 162 163 164 165
template <typename T>
void DatasetImpl<T>::SetParseLogKey(bool parse_logkey) {
  parse_logkey_ = parse_logkey;
}

166
template <typename T>
167
void DatasetImpl<T>::SetMergeByInsId(int merge_size) {
168
  merge_by_insid_ = true;
169
  parse_ins_id_ = true;
170
  merge_size_ = merge_size;
171 172
}

173 174 175 176 177
template <typename T>
void DatasetImpl<T>::SetMergeBySid(bool is_merge) {
  merge_by_sid_ = is_merge;
}

178 179 180 181 182 183
template <typename T>
void DatasetImpl<T>::SetShuffleByUid(bool enable_shuffle_uid) {
  shuffle_by_uid_ = enable_shuffle_uid;
  parse_uid_ = true;
}

184 185 186 187 188
template <typename T>
void DatasetImpl<T>::SetEnablePvMerge(bool enable_pv_merge) {
  enable_pv_merge_ = enable_pv_merge;
}

189 190 191 192 193 194
template <typename T>
void DatasetImpl<T>::SetGenerateUniqueFeasign(bool gen_uni_feasigns) {
  gen_uni_feasigns_ = gen_uni_feasigns;
  VLOG(3) << "Set generate unique feasigns: " << gen_uni_feasigns;
}

195 196 197 198 199 200 201 202
template <typename T>
void DatasetImpl<T>::SetFeaEval(bool fea_eval, int record_candidate_size) {
  slots_shuffle_fea_eval_ = fea_eval;
  slots_shuffle_rclist_.ReSize(record_candidate_size);
  VLOG(3) << "SetFeaEval fea eval mode: " << fea_eval
          << " with record candidate size: " << record_candidate_size;
}

D
danleifeng 已提交
203 204 205 206 207 208 209 210 211 212
template <typename T>
void DatasetImpl<T>::SetGpuGraphMode(int is_graph_mode) {
  gpu_graph_mode_ = is_graph_mode;
}

template <typename T>
int DatasetImpl<T>::GetGpuGraphMode() {
  return gpu_graph_mode_;
}

J
jiaqi 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
template <typename T>
std::vector<paddle::framework::DataFeed*> DatasetImpl<T>::GetReaders() {
  std::vector<paddle::framework::DataFeed*> ret;
  ret.reserve(readers_.size());
  for (auto i : readers_) {
    ret.push_back(i.get());
  }
  return ret;
}

template <typename T>
void DatasetImpl<T>::CreateChannel() {
  if (input_channel_ == nullptr) {
    input_channel_ = paddle::framework::MakeChannel<T>();
  }
  if (multi_output_channel_.size() == 0) {
    multi_output_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_output_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
  if (multi_consume_channel_.size() == 0) {
    multi_consume_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_consume_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
  if (input_pv_channel_ == nullptr) {
    input_pv_channel_ = paddle::framework::MakeChannel<PvInstance>();
  }
  if (multi_pv_output_.size() == 0) {
    multi_pv_output_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_pv_output_.push_back(paddle::framework::MakeChannel<PvInstance>());
    }
  }
  if (multi_pv_consume_.size() == 0) {
    multi_pv_consume_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_pv_consume_.push_back(paddle::framework::MakeChannel<PvInstance>());
    }
  }
255 256
}

257 258 259
// if sent message between workers, should first call this function
template <typename T>
void DatasetImpl<T>::RegisterClientToClientMsgHandler() {
Z
zhaocaibei123 已提交
260 261 262 263 264 265
#ifdef PADDLE_WITH_PSCORE
  auto fleet_ptr = distributed::FleetWrapper::GetInstance();
#else
  auto fleet_ptr = framework::FleetWrapper::GetInstance();
#endif
  VLOG(1) << "RegisterClientToClientMsgHandler";
266 267 268 269
  fleet_ptr->RegisterClientToClientMsgHandler(
      0, [this](int msg_type, int client_id, const std::string& msg) -> int {
        return this->ReceiveFromClient(msg_type, client_id, msg);
      });
Z
zhaocaibei123 已提交
270
  VLOG(1) << "RegisterClientToClientMsgHandler done";
271
}
272 273
static void compute_left_batch_num(const int ins_num,
                                   const int thread_num,
Y
yaoxuefeng 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
                                   std::vector<std::pair<int, int>>* offset,
                                   const int start_pos) {
  int cur_pos = start_pos;
  int batch_size = ins_num / thread_num;
  int left_num = ins_num % thread_num;
  for (int i = 0; i < thread_num; ++i) {
    int batch_num_size = batch_size;
    if (i == 0) {
      batch_num_size = batch_num_size + left_num;
    }
    offset->push_back(std::make_pair(cur_pos, batch_num_size));
    cur_pos += batch_num_size;
  }
}

289 290
static void compute_batch_num(const int64_t ins_num,
                              const int batch_size,
Y
yaoxuefeng 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
                              const int thread_num,
                              std::vector<std::pair<int, int>>* offset) {
  int thread_batch_num = batch_size * thread_num;
  // less data
  if (static_cast<int64_t>(thread_batch_num) > ins_num) {
    compute_left_batch_num(ins_num, thread_num, offset, 0);
    return;
  }

  int cur_pos = 0;
  int offset_num = static_cast<int>(ins_num / thread_batch_num) * thread_num;
  int left_ins_num = static_cast<int>(ins_num % thread_batch_num);
  if (left_ins_num > 0 && left_ins_num < thread_num) {
    offset_num = offset_num - thread_num;
    left_ins_num = left_ins_num + thread_batch_num;
    for (int i = 0; i < offset_num; ++i) {
      offset->push_back(std::make_pair(cur_pos, batch_size));
      cur_pos += batch_size;
    }
    // split data to thread avg two rounds
    compute_left_batch_num(left_ins_num, thread_num * 2, offset, cur_pos);
  } else {
    for (int i = 0; i < offset_num; ++i) {
      offset->push_back(std::make_pair(cur_pos, batch_size));
      cur_pos += batch_size;
    }
    if (left_ins_num > 0) {
      compute_left_batch_num(left_ins_num, thread_num, offset, cur_pos);
    }
  }
}

static int compute_thread_batch_nccl(
324 325 326 327
    const int thr_num,
    const int64_t total_instance_num,
    const int minibatch_size,
    std::vector<std::pair<int, int>>* nccl_offsets) {
Y
yaoxuefeng 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
  int thread_avg_batch_num = 0;
  if (total_instance_num < static_cast<int64_t>(thr_num)) {
    LOG(WARNING) << "compute_thread_batch_nccl total ins num:["
                 << total_instance_num << "], less thread num:[" << thr_num
                 << "]";
    return thread_avg_batch_num;
  }

  auto& offset = (*nccl_offsets);
  // split data avg by thread num
  compute_batch_num(total_instance_num, minibatch_size, thr_num, &offset);
  thread_avg_batch_num = static_cast<int>(offset.size() / thr_num);
#ifdef PADDLE_WITH_GLOO
  auto gloo_wrapper = paddle::framework::GlooWrapper::GetInstance();
  if (gloo_wrapper->Size() > 1) {
343 344 345 346
    if (!gloo_wrapper->IsInitialized()) {
      VLOG(0) << "GLOO is not inited";
      gloo_wrapper->Init();
    }
Y
yaoxuefeng 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    // adjust batch num per thread for NCCL
    std::vector<int> thread_avg_batch_num_vec(1, thread_avg_batch_num);
    std::vector<int64_t> total_instance_num_vec(1, total_instance_num);
    auto thread_max_batch_num_vec =
        gloo_wrapper->AllReduce(thread_avg_batch_num_vec, "max");
    auto sum_total_ins_num_vec =
        gloo_wrapper->AllReduce(total_instance_num_vec, "sum");
    int thread_max_batch_num = thread_max_batch_num_vec[0];
    int64_t sum_total_ins_num = sum_total_ins_num_vec[0];
    int diff_batch_num = thread_max_batch_num - thread_avg_batch_num;
    VLOG(3) << "diff batch num: " << diff_batch_num
            << " thread max batch num: " << thread_max_batch_num
            << " thread avg batch num: " << thread_avg_batch_num;
    if (diff_batch_num == 0) {
      LOG(WARNING) << "total sum ins " << sum_total_ins_num << ", thread_num "
                   << thr_num << ", ins num " << total_instance_num
                   << ", batch num " << offset.size()
                   << ", thread avg batch num " << thread_avg_batch_num;
      return thread_avg_batch_num;
    }

    int need_ins_num = thread_max_batch_num * thr_num;
    // data is too less
    if ((int64_t)need_ins_num > total_instance_num) {
      PADDLE_THROW(platform::errors::InvalidArgument(
372 373
          "error instance num:[%d] less need ins num:[%d]",
          total_instance_num,
Y
yaoxuefeng 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387
          need_ins_num));
      return thread_avg_batch_num;
    }

    int need_batch_num = (diff_batch_num + 1) * thr_num;
    int offset_split_index = static_cast<int>(offset.size() - thr_num);
    int split_left_num = total_instance_num - offset[offset_split_index].first;
    while (split_left_num < need_batch_num) {
      need_batch_num += thr_num;
      offset_split_index -= thr_num;
      split_left_num = total_instance_num - offset[offset_split_index].first;
    }
    int split_start = offset[offset_split_index].first;
    offset.resize(offset_split_index);
388 389
    compute_left_batch_num(
        split_left_num, need_batch_num, &offset, split_start);
Y
yaoxuefeng 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
    LOG(WARNING) << "total sum ins " << sum_total_ins_num << ", thread_num "
                 << thr_num << ", ins num " << total_instance_num
                 << ", batch num " << offset.size() << ", thread avg batch num "
                 << thread_avg_batch_num << ", thread max batch num "
                 << thread_max_batch_num
                 << ", need batch num: " << (need_batch_num / thr_num)
                 << "split begin (" << split_start << ")" << split_start
                 << ", num " << split_left_num;
    thread_avg_batch_num = thread_max_batch_num;
  } else {
    LOG(WARNING) << "thread_num " << thr_num << ", ins num "
                 << total_instance_num << ", batch num " << offset.size()
                 << ", thread avg batch num " << thread_avg_batch_num;
  }
#else
  PADDLE_THROW(platform::errors::Unavailable(
      "dataset compute nccl batch number need compile with GLOO"));
#endif
  return thread_avg_batch_num;
}

Y
yaoxuefeng 已提交
411
void MultiSlotDataset::PrepareTrain() {
Y
yaoxuefeng 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
#ifdef PADDLE_WITH_GLOO
  if (enable_heterps_) {
    if (input_records_.size() == 0 && input_channel_ != nullptr &&
        input_channel_->Size() != 0) {
      input_channel_->ReadAll(input_records_);
      VLOG(3) << "read from channel to records with records size: "
              << input_records_.size();
    }
    VLOG(3) << "input records size: " << input_records_.size();
    int64_t total_ins_num = input_records_.size();
    std::vector<std::pair<int, int>> offset;
    int default_batch_size =
        reinterpret_cast<MultiSlotInMemoryDataFeed*>(readers_[0].get())
            ->GetDefaultBatchSize();
    VLOG(3) << "thread_num: " << thread_num_
            << " memory size: " << total_ins_num
            << " default batch_size: " << default_batch_size;
429 430
    compute_thread_batch_nccl(
        thread_num_, total_ins_num, default_batch_size, &offset);
Y
yaoxuefeng 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
    VLOG(3) << "offset size: " << offset.size();
    for (int i = 0; i < thread_num_; i++) {
      reinterpret_cast<MultiSlotInMemoryDataFeed*>(readers_[i].get())
          ->SetRecord(&input_records_[0]);
    }
    for (size_t i = 0; i < offset.size(); i++) {
      reinterpret_cast<MultiSlotInMemoryDataFeed*>(
          readers_[i % thread_num_].get())
          ->AddBatchOffset(offset[i]);
    }
  }
#else
  PADDLE_THROW(platform::errors::Unavailable(
      "dataset set heterps need compile with GLOO"));
#endif
  return;
}
448

X
xjqbest 已提交
449 450
// load data into memory, Dataset hold this memory,
// which will later be fed into readers' channel
451 452 453
template <typename T>
void DatasetImpl<T>::LoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() begin";
454 455
  platform::Timer timeline;
  timeline.Start();
456
  std::vector<std::thread> load_threads;
D
danleifeng 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
  if (gpu_graph_mode_) {
    VLOG(0) << "in gpu_graph_mode";
#ifdef PADDLE_WITH_HETERPS
    graph_all_type_total_keys_.clear();
    auto gpu_graph_ptr = GraphGpuWrapper::GetInstance();
    auto node_to_id = gpu_graph_ptr->feature_to_id;
    auto edge_to_id = gpu_graph_ptr->edge_to_id;
    graph_all_type_total_keys_.resize(node_to_id.size());
    int cnt = 0;
    for (auto& iter : node_to_id) {
      int node_idx = iter.second;
      std::vector<std::vector<uint64_t>> gpu_graph_device_keys;
      gpu_graph_ptr->get_all_id(
          1, node_idx, thread_num_, &gpu_graph_device_keys);
      auto& type_total_key = graph_all_type_total_keys_[cnt];
      type_total_key.resize(thread_num_);
      for (size_t i = 0; i < gpu_graph_device_keys.size(); i++) {
        VLOG(2) << "node type: " << node_idx << ", gpu_graph_device_keys[" << i
                << "] = " << gpu_graph_device_keys[i].size();
        for (size_t j = 0; j < gpu_graph_device_keys[i].size(); j++) {
          gpu_graph_total_keys_.push_back(gpu_graph_device_keys[i][j]);
          type_total_key[i].push_back(gpu_graph_device_keys[i][j]);
        }
      }

      for (size_t i = 0; i < readers_.size(); i++) {
        readers_[i]->SetDeviceKeys(&type_total_key[i], node_idx);
        readers_[i]->SetGpuGraphMode(gpu_graph_mode_);
      }
      cnt++;
    }

    VLOG(2) << "begin add feature_id into gpu_graph_total_keys_ size["
            << gpu_graph_total_keys_.size() << "]";
    for (auto& iter : node_to_id) {
      std::vector<std::vector<uint64_t>> gpu_graph_device_keys;
      int node_idx = iter.second;
      gpu_graph_ptr->get_all_feature_ids(
          1, node_idx, thread_num_, &gpu_graph_device_keys);
      for (size_t i = 0; i < gpu_graph_device_keys.size(); i++) {
        VLOG(2) << "begin node type: " << node_idx << ", gpu_graph_device_keys["
                << i << "] = " << gpu_graph_device_keys[i].size();
        for (size_t j = 0; j < gpu_graph_device_keys[i].size(); j++) {
          gpu_graph_total_keys_.push_back(gpu_graph_device_keys[i][j]);
        }
        VLOG(2) << "end node type: " << node_idx << ", gpu_graph_device_keys["
                << i << "] = " << gpu_graph_device_keys[i].size();
      }
    }
    VLOG(2) << "end add feature_id into gpu_graph_total_keys_ size["
            << gpu_graph_total_keys_.size() << "]";

    // FIX: trick for iterate edge table
    for (auto& iter : edge_to_id) {
      int edge_idx = iter.second;
      std::vector<std::vector<uint64_t>> gpu_graph_device_keys;
      gpu_graph_ptr->get_all_id(
          0, edge_idx, thread_num_, &gpu_graph_device_keys);
      for (size_t i = 0; i < gpu_graph_device_keys.size(); i++) {
        VLOG(1) << "edge type: " << edge_idx << ", gpu_graph_device_keys[" << i
                << "] = " << gpu_graph_device_keys[i].size();
        for (size_t j = 0; j < gpu_graph_device_keys[i].size(); j++) {
          gpu_graph_total_keys_.push_back(gpu_graph_device_keys[i][j]);
        }
      }
      if (FLAGS_graph_get_neighbor_id) {
        std::vector<std::vector<uint64_t>> gpu_graph_neighbor_keys;
        gpu_graph_ptr->get_all_neighbor_id(
            0, edge_idx, thread_num_, &gpu_graph_neighbor_keys);
        for (size_t i = 0; i < gpu_graph_neighbor_keys.size(); i++) {
          for (size_t k = 0; k < gpu_graph_neighbor_keys[i].size(); k++) {
            gpu_graph_total_keys_.push_back(gpu_graph_neighbor_keys[i][k]);
          }
        }
      }
    }
#endif
  } else {
    for (int64_t i = 0; i < thread_num_; ++i) {
      load_threads.push_back(std::thread(
          &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
    }
    for (std::thread& t : load_threads) {
      t.join();
    }
542
  }
J
jiaqi 已提交
543 544 545
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
546

547 548
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() end"
J
jiaqi 已提交
549
          << ", memory data size=" << input_channel_->Size()
550
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
551 552
}

J
jiaqi 已提交
553 554 555
template <typename T>
void DatasetImpl<T>::PreLoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() begin";
556
  if (preload_thread_num_ != 0) {
557
    CHECK(static_cast<size_t>(preload_thread_num_) == preload_readers_.size());
558 559 560 561 562 563 564
    preload_threads_.clear();
    for (int64_t i = 0; i < preload_thread_num_; ++i) {
      preload_threads_.push_back(
          std::thread(&paddle::framework::DataFeed::LoadIntoMemory,
                      preload_readers_[i].get()));
    }
  } else {
565
    CHECK(static_cast<size_t>(thread_num_) == readers_.size());
566 567 568 569 570
    preload_threads_.clear();
    for (int64_t i = 0; i < thread_num_; ++i) {
      preload_threads_.push_back(std::thread(
          &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
    }
J
jiaqi 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
  }
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() end";
}

template <typename T>
void DatasetImpl<T>::WaitPreLoadDone() {
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() begin";
  for (std::thread& t : preload_threads_) {
    t.join();
  }
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() end";
}

587 588 589
// release memory data
template <typename T>
void DatasetImpl<T>::ReleaseMemory() {
T
Thunderbrook 已提交
590 591 592 593 594
  release_thread_ = new std::thread(&DatasetImpl<T>::ReleaseMemoryFun, this);
}

template <typename T>
void DatasetImpl<T>::ReleaseMemoryFun() {
595
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() begin";
J
jiaqi 已提交
596 597 598 599 600 601 602 603 604 605
  if (input_channel_) {
    input_channel_->Clear();
    input_channel_ = nullptr;
  }
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    if (!multi_output_channel_[i]) {
      continue;
    }
    multi_output_channel_[i]->Clear();
    multi_output_channel_[i] = nullptr;
606
  }
J
jiaqi 已提交
607 608 609 610 611 612 613 614 615
  std::vector<paddle::framework::Channel<T>>().swap(multi_output_channel_);
  for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
    if (!multi_consume_channel_[i]) {
      continue;
    }
    multi_consume_channel_[i]->Clear();
    multi_consume_channel_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<T>>().swap(multi_consume_channel_);
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
  if (input_pv_channel_) {
    input_pv_channel_->Clear();
    input_pv_channel_ = nullptr;
  }
  for (size_t i = 0; i < multi_pv_output_.size(); ++i) {
    if (!multi_pv_output_[i]) {
      continue;
    }
    multi_pv_output_[i]->Clear();
    multi_pv_output_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<PvInstance>>().swap(multi_pv_output_);
  for (size_t i = 0; i < multi_pv_consume_.size(); ++i) {
    if (!multi_pv_consume_[i]) {
      continue;
    }
    multi_pv_consume_[i]->Clear();
    multi_pv_consume_[i] = nullptr;
  }
Y
yaoxuefeng 已提交
635 636 637 638 639 640 641
  if (enable_heterps_) {
    input_records_.clear();
    input_records_.shrink_to_fit();
    std::vector<T>().swap(input_records_);
    VLOG(3) << "release heterps input records records size: "
            << input_records_.size();
  }
642 643
  std::vector<paddle::framework::Channel<PvInstance>>().swap(multi_pv_consume_);

J
jiaqi 已提交
644
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
645 646
  input_records_.clear();
  std::vector<T>().swap(input_records_);
H
hutuxian 已提交
647
  std::vector<T>().swap(slots_shuffle_original_data_);
648
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() end";
H
hutuxian 已提交
649 650 651 652 653
  VLOG(3) << "total_feasign_num_(" << STAT_GET(STAT_total_feasign_num_in_mem)
          << ") - current_fea_num_(" << total_fea_num_ << ") = ("
          << STAT_GET(STAT_total_feasign_num_in_mem) - total_fea_num_
          << ")";  // For Debug
  STAT_SUB(STAT_total_feasign_num_in_mem, total_fea_num_);
654 655
}

X
xjqbest 已提交
656
// do local shuffle
657 658 659
template <typename T>
void DatasetImpl<T>::LocalShuffle() {
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() begin";
660 661
  platform::Timer timeline;
  timeline.Start();
662

J
jiaqi 已提交
663 664 665
  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, no data to shuffle";
    return;
666
  }
Z
zhaocaibei123 已提交
667
  auto fleet_ptr = framework::FleetWrapper::GetInstance();
J
jiaqi 已提交
668 669 670 671 672 673 674 675 676 677
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();
  input_channel_->Close();

678 679 680
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
681 682
}

W
wangzhen38 已提交
683 684 685 686 687
// do tdm sample
void MultiSlotDataset::TDMSample(const std::string tree_name,
                                 const std::string tree_path,
                                 const std::vector<uint16_t> tdm_layer_counts,
                                 const uint16_t start_sample_layer,
688 689
                                 const bool with_hierachy,
                                 const uint16_t seed_,
W
wangzhen38 已提交
690 691 692 693 694 695 696
                                 const uint16_t sample_slot) {
#if (defined PADDLE_WITH_DISTRIBUTE) && (defined PADDLE_WITH_PSCORE)
  // init tdm tree
  auto wrapper_ptr = paddle::distributed::IndexWrapper::GetInstance();
  wrapper_ptr->insert_tree_index(tree_name, tree_path);
  auto tree_ptr = wrapper_ptr->get_tree_index(tree_name);
  auto _layer_wise_sample = paddle::distributed::LayerWiseSampler(tree_name);
697 698
  _layer_wise_sample.init_layerwise_conf(
      tdm_layer_counts, start_sample_layer, seed_);
W
wangzhen38 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760

  VLOG(0) << "DatasetImpl<T>::Sample() begin";
  platform::Timer timeline;
  timeline.Start();

  std::vector<std::vector<Record>> data;
  std::vector<std::vector<Record>> sample_results;
  if (!input_channel_ || input_channel_->Size() == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      std::vector<Record> tmp_data;
      data.push_back(tmp_data);
      if (!multi_output_channel_[i] || multi_output_channel_[i]->Size() == 0) {
        continue;
      }
      multi_output_channel_[i]->Close();
      multi_output_channel_[i]->ReadAll(data[i]);
    }
  } else {
    input_channel_->Close();
    std::vector<Record> tmp_data;
    data.push_back(tmp_data);
    input_channel_->ReadAll(data[data.size() - 1]);
  }

  VLOG(1) << "finish read src data, data.size = " << data.size()
          << "; details: ";
  auto fleet_ptr = FleetWrapper::GetInstance();
  for (unsigned int i = 0; i < data.size(); i++) {
    VLOG(1) << "data[" << i << "]: size = " << data[i].size();
    std::vector<Record> tmp_results;
    _layer_wise_sample.sample_from_dataset(sample_slot, &data[i], &tmp_results);
    VLOG(1) << "sample_results(" << sample_slot << ") = " << tmp_results.size();
    VLOG(0) << "start to put sample in vector!";
    // sample_results.push_back(tmp_results);
    for (unsigned int j = 0; j < tmp_results.size(); j++) {
      std::vector<Record> tmp_vec;
      tmp_vec.emplace_back(tmp_results[j]);
      sample_results.emplace_back(tmp_vec);
    }
    VLOG(0) << "finish to put sample in vector!";
  }

  auto output_channel_num = multi_output_channel_.size();
  for (unsigned int i = 0; i < sample_results.size(); i++) {
    auto output_idx = fleet_ptr->LocalRandomEngine()() % output_channel_num;
    multi_output_channel_[output_idx]->Open();
    // vector?
    multi_output_channel_[output_idx]->Write(std::move(sample_results[i]));
  }

  data.clear();
  sample_results.clear();
  data.shrink_to_fit();
  sample_results.shrink_to_fit();

  timeline.Pause();
  VLOG(0) << "DatasetImpl<T>::Sample() end, cost time=" << timeline.ElapsedSec()
          << " seconds";
#endif
  return;
}

Y
yaoxuefeng 已提交
761 762
void MultiSlotDataset::GlobalShuffle(int thread_num) {
  VLOG(3) << "MultiSlotDataset::GlobalShuffle() begin";
763 764
  platform::Timer timeline;
  timeline.Start();
Z
zhaocaibei123 已提交
765 766 767 768 769
#ifdef PADDLE_WITH_PSCORE
  auto fleet_ptr = distributed::FleetWrapper::GetInstance();
#else
  auto fleet_ptr = framework::FleetWrapper::GetInstance();
#endif
J
jiaqi 已提交
770 771

  if (!input_channel_ || input_channel_->Size() == 0) {
Y
yaoxuefeng 已提交
772
    VLOG(3) << "MultiSlotDataset::GlobalShuffle() end, no data to shuffle";
J
jiaqi 已提交
773 774 775 776 777
    return;
  }

  // local shuffle
  input_channel_->Close();
Y
yaoxuefeng 已提交
778
  std::vector<Record> data;
J
jiaqi 已提交
779 780 781 782 783 784 785 786 787
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();

  input_channel_->Close();
  input_channel_->SetBlockSize(fleet_send_batch_size_);
Y
yaoxuefeng 已提交
788
  VLOG(3) << "MultiSlotDataset::GlobalShuffle() input_channel_ size "
J
jiaqi 已提交
789 790
          << input_channel_->Size();

Y
yaoxuefeng 已提交
791
  auto get_client_id = [this, fleet_ptr](const Record& data) -> size_t {
792
    if (this->merge_by_insid_) {
793 794
      return XXH64(data.ins_id_.data(), data.ins_id_.length(), 0) %
             this->trainer_num_;
795 796 797 798 799
    } else if (this->shuffle_by_uid_) {
      return XXH64(data.uid_.data(), data.uid_.length(), 0) %
             this->trainer_num_;
    } else {
      return fleet_ptr->LocalRandomEngine()() % this->trainer_num_;
800 801 802 803
    }
  };

  auto global_shuffle_func = [this, get_client_id]() {
Z
zhaocaibei123 已提交
804 805 806 807 808 809
#ifdef PADDLE_WITH_PSCORE
    auto fleet_ptr = distributed::FleetWrapper::GetInstance();
#else
    auto fleet_ptr = framework::FleetWrapper::GetInstance();
#endif
    // auto fleet_ptr = framework::FleetWrapper::GetInstance();
Y
yaoxuefeng 已提交
810
    std::vector<Record> data;
J
jiaqi 已提交
811 812 813
    while (this->input_channel_->Read(data)) {
      std::vector<paddle::framework::BinaryArchive> ars(this->trainer_num_);
      for (auto& t : data) {
814
        auto client_id = get_client_id(t);
J
jiaqi 已提交
815 816 817 818 819 820 821
        ars[client_id] << t;
      }
      std::vector<std::future<int32_t>> total_status;
      std::vector<int> send_index(this->trainer_num_);
      for (int i = 0; i < this->trainer_num_; ++i) {
        send_index[i] = i;
      }
822 823
      std::shuffle(
          send_index.begin(), send_index.end(), fleet_ptr->LocalRandomEngine());
824
      for (int index = 0; index < this->trainer_num_; ++index) {
J
jiaqi 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
        int i = send_index[index];
        if (ars[i].Length() == 0) {
          continue;
        }
        std::string msg(ars[i].Buffer(), ars[i].Length());
        auto ret = fleet_ptr->SendClientToClientMsg(0, i, msg);
        total_status.push_back(std::move(ret));
      }
      for (auto& t : total_status) {
        t.wait();
      }
      ars.clear();
      ars.shrink_to_fit();
      data.clear();
      data.shrink_to_fit();
840 841 842 843 844 845
      // currently we find bottleneck is server not able to handle large data
      // in time, so we can remove this sleep and set fleet_send_batch_size to
      // 1024, and set server thread to 24.
      if (fleet_send_sleep_seconds_ != 0) {
        sleep(this->fleet_send_sleep_seconds_);
      }
J
jiaqi 已提交
846 847 848
    }
  };

849
  std::vector<std::thread> global_shuffle_threads;
850 851 852 853 854
  if (thread_num == -1) {
    thread_num = thread_num_;
  }
  VLOG(3) << "start global shuffle threads, num = " << thread_num;
  for (int i = 0; i < thread_num; ++i) {
J
jiaqi 已提交
855
    global_shuffle_threads.push_back(std::thread(global_shuffle_func));
856 857 858
  }
  for (std::thread& t : global_shuffle_threads) {
    t.join();
859
  }
J
jiaqi 已提交
860 861 862
  global_shuffle_threads.clear();
  global_shuffle_threads.shrink_to_fit();
  input_channel_->Clear();
863 864 865
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
866 867
}

868
template <typename T>
H
hutuxian 已提交
869 870
void DatasetImpl<T>::DynamicAdjustChannelNum(int channel_num,
                                             bool discard_remaining_ins) {
871 872 873 874 875 876 877 878 879 880
  if (channel_num_ == channel_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustChannelNum channel_num_="
            << channel_num_ << ", channel_num_=channel_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust channel num from " << channel_num_ << " to "
          << channel_num;
  channel_num_ = channel_num;
  std::vector<paddle::framework::Channel<T>>* origin_channels = nullptr;
  std::vector<paddle::framework::Channel<T>>* other_channels = nullptr;
881 882 883 884 885
  std::vector<paddle::framework::Channel<PvInstance>>* origin_pv_channels =
      nullptr;
  std::vector<paddle::framework::Channel<PvInstance>>* other_pv_channels =
      nullptr;

886 887 888 889 890
  // find out which channel (output or consume) has data
  int cur_channel = 0;
  uint64_t output_channels_data_size = 0;
  uint64_t consume_channels_data_size = 0;
  CHECK(multi_output_channel_.size() == multi_consume_channel_.size());
891
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
892 893 894 895 896 897 898 899 900 901 902 903 904
    output_channels_data_size += multi_output_channel_[i]->Size();
    consume_channels_data_size += multi_consume_channel_[i]->Size();
  }
  if (output_channels_data_size != 0) {
    CHECK(consume_channels_data_size == 0);  // NOLINT
    cur_channel = 0;
  } else {
    CHECK(output_channels_data_size == 0);  // NOLINT
    cur_channel = 1;
  }
  if (cur_channel == 0) {
    origin_channels = &multi_output_channel_;
    other_channels = &multi_consume_channel_;
905 906
    origin_pv_channels = &multi_pv_output_;
    other_pv_channels = &multi_pv_consume_;
907 908 909
  } else {
    origin_channels = &multi_consume_channel_;
    other_channels = &multi_output_channel_;
910 911
    origin_pv_channels = &multi_pv_consume_;
    other_pv_channels = &multi_pv_output_;
912
  }
913 914 915 916
  CHECK(origin_channels != nullptr);     // NOLINT
  CHECK(other_channels != nullptr);      // NOLINT
  CHECK(origin_pv_channels != nullptr);  // NOLINT
  CHECK(other_pv_channels != nullptr);   // NOLINT
917 918 919 920 921

  paddle::framework::Channel<T> total_data_channel =
      paddle::framework::MakeChannel<T>();
  std::vector<paddle::framework::Channel<T>> new_channels;
  std::vector<paddle::framework::Channel<T>> new_other_channels;
922 923 924
  std::vector<paddle::framework::Channel<PvInstance>> new_pv_channels;
  std::vector<paddle::framework::Channel<PvInstance>> new_other_pv_channels;

925
  std::vector<T> local_vec;
926
  for (size_t i = 0; i < origin_channels->size(); ++i) {
927 928 929 930 931 932
    local_vec.clear();
    (*origin_channels)[i]->Close();
    (*origin_channels)[i]->ReadAll(local_vec);
    total_data_channel->Write(std::move(local_vec));
  }
  total_data_channel->Close();
H
hutuxian 已提交
933 934 935 936
  if (static_cast<int>(total_data_channel->Size()) >= channel_num) {
    total_data_channel->SetBlockSize(total_data_channel->Size() / channel_num +
                                     (discard_remaining_ins ? 0 : 1));
  }
H
hutuxian 已提交
937
  if (static_cast<int>(input_channel_->Size()) >= channel_num) {
H
hutuxian 已提交
938 939
    input_channel_->SetBlockSize(input_channel_->Size() / channel_num +
                                 (discard_remaining_ins ? 0 : 1));
H
hutuxian 已提交
940
  }
941 942 943 944 945 946
  if (static_cast<int>(input_pv_channel_->Size()) >= channel_num) {
    input_pv_channel_->SetBlockSize(input_pv_channel_->Size() / channel_num +
                                    (discard_remaining_ins ? 0 : 1));
    VLOG(3) << "now input_pv_channle block size is "
            << input_pv_channel_->BlockSize();
  }
947 948 949 950 951 952 953

  for (int i = 0; i < channel_num; ++i) {
    local_vec.clear();
    total_data_channel->Read(local_vec);
    new_other_channels.push_back(paddle::framework::MakeChannel<T>());
    new_channels.push_back(paddle::framework::MakeChannel<T>());
    new_channels[i]->Write(std::move(local_vec));
954 955 956
    new_other_pv_channels.push_back(
        paddle::framework::MakeChannel<PvInstance>());
    new_pv_channels.push_back(paddle::framework::MakeChannel<PvInstance>());
957 958 959 960 961 962 963 964
  }

  total_data_channel->Clear();
  origin_channels->clear();
  other_channels->clear();
  *origin_channels = new_channels;
  *other_channels = new_other_channels;

965 966 967 968 969
  origin_pv_channels->clear();
  other_pv_channels->clear();
  *origin_pv_channels = new_pv_channels;
  *other_pv_channels = new_other_pv_channels;

970 971 972 973
  new_channels.clear();
  new_other_channels.clear();
  std::vector<paddle::framework::Channel<T>>().swap(new_channels);
  std::vector<paddle::framework::Channel<T>>().swap(new_other_channels);
974 975 976 977 978 979 980

  new_pv_channels.clear();
  new_other_pv_channels.clear();
  std::vector<paddle::framework::Channel<PvInstance>>().swap(new_pv_channels);
  std::vector<paddle::framework::Channel<PvInstance>>().swap(
      new_other_pv_channels);

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
  local_vec.clear();
  std::vector<T>().swap(local_vec);
  VLOG(3) << "adjust channel num done";
}

template <typename T>
void DatasetImpl<T>::DynamicAdjustReadersNum(int thread_num) {
  if (thread_num_ == thread_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustReadersNum thread_num_="
            << thread_num_ << ", thread_num_=thread_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust readers num from " << thread_num_ << " to " << thread_num;
  thread_num_ = thread_num;
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
  CreateReaders();
  VLOG(3) << "adjust readers num done";
}

template <typename T>
void DatasetImpl<T>::SetFleetSendSleepSeconds(int seconds) {
  fleet_send_sleep_seconds_ = seconds;
}

1005 1006
template <typename T>
void DatasetImpl<T>::CreateReaders() {
1007
  VLOG(3) << "Calling CreateReaders()";
J
jiaqi 已提交
1008 1009 1010 1011 1012 1013
  VLOG(3) << "thread num in Dataset: " << thread_num_;
  VLOG(3) << "Filelist size in Dataset: " << filelist_.size();
  VLOG(3) << "channel num in Dataset: " << channel_num_;
  CHECK(thread_num_ > 0) << "thread num should > 0";
  CHECK(channel_num_ > 0) << "channel num should > 0";
  CHECK(channel_num_ <= thread_num_) << "channel num should <= thread num";
1014
  VLOG(3) << "readers size: " << readers_.size();
1015
  if (readers_.size() != 0) {
J
jiaqi 已提交
1016 1017
    VLOG(3) << "readers_.size() = " << readers_.size()
            << ", will not create again";
1018 1019
    return;
  }
1020
  VLOG(3) << "data feed class name: " << data_feed_desc_.name();
J
jiaqi 已提交
1021
  int channel_idx = 0;
1022
  for (int i = 0; i < thread_num_; ++i) {
1023
    readers_.push_back(DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
J
jiaqi 已提交
1024 1025 1026 1027 1028
    readers_[i]->Init(data_feed_desc_);
    readers_[i]->SetThreadId(i);
    readers_[i]->SetThreadNum(thread_num_);
    readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    readers_[i]->SetFileListIndex(&file_idx_);
H
hutuxian 已提交
1029 1030
    readers_[i]->SetFeaNumMutex(&mutex_for_fea_num_);
    readers_[i]->SetFeaNum(&total_fea_num_);
J
jiaqi 已提交
1031
    readers_[i]->SetFileList(filelist_);
1032
    readers_[i]->SetParseInsId(parse_ins_id_);
1033
    readers_[i]->SetParseUid(parse_uid_);
1034
    readers_[i]->SetParseContent(parse_content_);
1035 1036 1037 1038 1039 1040
    readers_[i]->SetParseLogKey(parse_logkey_);
    readers_[i]->SetEnablePvMerge(enable_pv_merge_);
    // Notice: it is only valid for untest of test_paddlebox_datafeed.
    // In fact, it does not affect the train process when paddle is
    // complied with Box_Ps.
    readers_[i]->SetCurrentPhase(current_phase_);
J
jiaqi 已提交
1041 1042 1043
    if (input_channel_ != nullptr) {
      readers_[i]->SetInputChannel(input_channel_.get());
    }
1044 1045 1046
    if (input_pv_channel_ != nullptr) {
      readers_[i]->SetInputPvChannel(input_pv_channel_.get());
    }
1047 1048
    if (cur_channel_ == 0 &&
        static_cast<size_t>(channel_idx) < multi_output_channel_.size()) {
J
jiaqi 已提交
1049 1050
      readers_[i]->SetOutputChannel(multi_output_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_consume_channel_[channel_idx].get());
1051 1052
      readers_[i]->SetOutputPvChannel(multi_pv_output_[channel_idx].get());
      readers_[i]->SetConsumePvChannel(multi_pv_consume_[channel_idx].get());
1053 1054
    } else if (static_cast<size_t>(channel_idx) <
               multi_output_channel_.size()) {
J
jiaqi 已提交
1055 1056
      readers_[i]->SetOutputChannel(multi_consume_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_output_channel_[channel_idx].get());
1057 1058
      readers_[i]->SetOutputPvChannel(multi_pv_consume_[channel_idx].get());
      readers_[i]->SetConsumePvChannel(multi_pv_output_[channel_idx].get());
J
jiaqi 已提交
1059 1060 1061 1062 1063
    }
    ++channel_idx;
    if (channel_idx >= channel_num_) {
      channel_idx = 0;
    }
1064
  }
J
jiaqi 已提交
1065
  VLOG(3) << "readers size: " << readers_.size();
1066 1067
}

1068 1069 1070
template <typename T>
void DatasetImpl<T>::DestroyReaders() {
  VLOG(3) << "Calling DestroyReaders()";
1071
  VLOG(3) << "readers size1: " << readers_.size();
1072
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
1073
  VLOG(3) << "readers size: " << readers_.size();
J
jiaqi 已提交
1074 1075
  file_idx_ = 0;
  cur_channel_ = 1 - cur_channel_;
1076 1077
}

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
template <typename T>
void DatasetImpl<T>::SetPreLoadThreadNum(int thread_num) {
  preload_thread_num_ = thread_num;
}

template <typename T>
void DatasetImpl<T>::CreatePreLoadReaders() {
  VLOG(3) << "Begin CreatePreLoadReaders";
  if (preload_thread_num_ == 0) {
    preload_thread_num_ = thread_num_;
  }
  CHECK(preload_thread_num_ > 0) << "thread num should > 0";
  CHECK(input_channel_ != nullptr);
  preload_readers_.clear();
  for (int i = 0; i < preload_thread_num_; ++i) {
    preload_readers_.push_back(
        DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
    preload_readers_[i]->Init(data_feed_desc_);
    preload_readers_[i]->SetThreadId(i);
    preload_readers_[i]->SetThreadNum(preload_thread_num_);
    preload_readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    preload_readers_[i]->SetFileListIndex(&file_idx_);
    preload_readers_[i]->SetFileList(filelist_);
H
hutuxian 已提交
1101 1102
    preload_readers_[i]->SetFeaNumMutex(&mutex_for_fea_num_);
    preload_readers_[i]->SetFeaNum(&total_fea_num_);
1103
    preload_readers_[i]->SetParseInsId(parse_ins_id_);
1104
    preload_readers_[i]->SetParseUid(parse_uid_);
1105
    preload_readers_[i]->SetParseContent(parse_content_);
1106 1107
    preload_readers_[i]->SetParseLogKey(parse_logkey_);
    preload_readers_[i]->SetEnablePvMerge(enable_pv_merge_);
1108 1109 1110
    preload_readers_[i]->SetInputChannel(input_channel_.get());
    preload_readers_[i]->SetOutputChannel(nullptr);
    preload_readers_[i]->SetConsumeChannel(nullptr);
1111 1112
    preload_readers_[i]->SetOutputPvChannel(nullptr);
    preload_readers_[i]->SetConsumePvChannel(nullptr);
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
  }
  VLOG(3) << "End CreatePreLoadReaders";
}

template <typename T>
void DatasetImpl<T>::DestroyPreLoadReaders() {
  VLOG(3) << "Begin DestroyPreLoadReaders";
  preload_readers_.clear();
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(
      preload_readers_);
  file_idx_ = 0;
  VLOG(3) << "End DestroyPreLoadReaders";
}

1127 1128
template <typename T>
int64_t DatasetImpl<T>::GetMemoryDataSize() {
J
jiaqi 已提交
1129
  return input_channel_->Size();
1130 1131
}

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
template <typename T>
int64_t DatasetImpl<T>::GetPvDataSize() {
  if (enable_pv_merge_) {
    return input_pv_channel_->Size();
  } else {
    VLOG(0) << "It does not merge pv..";
    return 0;
  }
}

1142 1143 1144
template <typename T>
int64_t DatasetImpl<T>::GetShuffleDataSize() {
  int64_t sum = 0;
J
jiaqi 已提交
1145 1146
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    sum += multi_output_channel_[i]->Size() + multi_consume_channel_[i]->Size();
1147 1148 1149 1150
  }
  return sum;
}

1151 1152
int MultiSlotDataset::ReceiveFromClient(int msg_type,
                                        int client_id,
Y
yaoxuefeng 已提交
1153
                                        const std::string& msg) {
D
dongdaxiang 已提交
1154
#ifdef _LINUX
1155
  VLOG(3) << "ReceiveFromClient msg_type=" << msg_type
1156
          << ", client_id=" << client_id << ", msg length=" << msg.length();
J
jiaqi 已提交
1157 1158 1159 1160 1161 1162 1163 1164
  if (msg.length() == 0) {
    return 0;
  }
  paddle::framework::BinaryArchive ar;
  ar.SetReadBuffer(const_cast<char*>(msg.c_str()), msg.length(), nullptr);
  if (ar.Cursor() == ar.Finish()) {
    return 0;
  }
Y
yaoxuefeng 已提交
1165
  std::vector<Record> data;
J
jiaqi 已提交
1166
  while (ar.Cursor() < ar.Finish()) {
Y
yaoxuefeng 已提交
1167
    data.push_back(ar.Get<Record>());
J
jiaqi 已提交
1168 1169 1170
  }
  CHECK(ar.Cursor() == ar.Finish());

Z
zhaocaibei123 已提交
1171
  auto fleet_ptr = framework::FleetWrapper::GetInstance();
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
  // not use random because it doesn't perform well here.
  // to make sure each channel get data equally, we just put data to
  // channel one by one.
  // int64_t index = fleet_ptr->LocalRandomEngine()() % channel_num_;
  int64_t index = 0;
  {
    std::unique_lock<std::mutex> lk(global_index_mutex_);
    index = global_index_++;
  }
  index = index % channel_num_;
1182
  VLOG(3) << "ramdom index=" << index;
J
jiaqi 已提交
1183 1184 1185 1186
  multi_output_channel_[index]->Write(std::move(data));

  data.clear();
  data.shrink_to_fit();
D
dongdaxiang 已提交
1187
#endif
1188 1189 1190
  return 0;
}

1191
// explicit instantiation
J
jiaqi 已提交
1192
template class DatasetImpl<Record>;
1193

Y
yaoxuefeng 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
void MultiSlotDataset::DynamicAdjustReadersNum(int thread_num) {
  if (thread_num_ == thread_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustReadersNum thread_num_="
            << thread_num_ << ", thread_num_=thread_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust readers num from " << thread_num_ << " to " << thread_num;
  thread_num_ = thread_num;
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
  CreateReaders();
  VLOG(3) << "adjust readers num done";
  PrepareTrain();
}

1208 1209 1210
void MultiSlotDataset::PostprocessInstance() {
  // divide pv instance, and merge to input_channel_
  if (enable_pv_merge_) {
Z
zhaocaibei123 已提交
1211
    auto fleet_ptr = framework::FleetWrapper::GetInstance();
1212 1213
    std::shuffle(input_records_.begin(),
                 input_records_.end(),
1214
                 fleet_ptr->LocalRandomEngine());
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
    input_channel_->Open();
    input_channel_->Write(std::move(input_records_));
    for (size_t i = 0; i < multi_pv_consume_.size(); ++i) {
      multi_pv_consume_[i]->Clear();
    }
    input_channel_->Close();
    input_records_.clear();
    input_records_.shrink_to_fit();
  } else {
    input_channel_->Open();
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      std::vector<Record> ins_data;
      multi_consume_channel_[i]->Close();
      multi_consume_channel_[i]->ReadAll(ins_data);
      input_channel_->Write(std::move(ins_data));
      ins_data.clear();
      ins_data.shrink_to_fit();
      multi_consume_channel_[i]->Clear();
    }
    input_channel_->Close();
1235
    this->LocalShuffle();
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
  }
}

void MultiSlotDataset::SetCurrentPhase(int current_phase) {
  current_phase_ = current_phase;
}

void MultiSlotDataset::PreprocessInstance() {
  if (!input_channel_ || input_channel_->Size() == 0) {
    return;
  }
  if (!enable_pv_merge_) {  // means to use Record
    this->LocalShuffle();
  } else {  // means to use Pv
Z
zhaocaibei123 已提交
1250
    auto fleet_ptr = framework::FleetWrapper::GetInstance();
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    input_channel_->Close();
    std::vector<PvInstance> pv_data;
    input_channel_->ReadAll(input_records_);
    int all_records_num = input_records_.size();
    std::vector<Record*> all_records;
    all_records.reserve(all_records_num);
    for (int index = 0; index < all_records_num; ++index) {
      all_records.push_back(&input_records_[index]);
    }

1261 1262
    std::sort(all_records.data(),
              all_records.data() + all_records_num,
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
              [](const Record* lhs, const Record* rhs) {
                return lhs->search_id < rhs->search_id;
              });
    if (merge_by_sid_) {
      uint64_t last_search_id = 0;
      for (int i = 0; i < all_records_num; ++i) {
        Record* ins = all_records[i];
        if (i == 0 || last_search_id != ins->search_id) {
          PvInstance pv_instance = make_pv_instance();
          pv_instance->merge_instance(ins);
          pv_data.push_back(pv_instance);
          last_search_id = ins->search_id;
          continue;
        }
        pv_data.back()->merge_instance(ins);
      }
    } else {
      for (int i = 0; i < all_records_num; ++i) {
        Record* ins = all_records[i];
        PvInstance pv_instance = make_pv_instance();
        pv_instance->merge_instance(ins);
        pv_data.push_back(pv_instance);
      }
    }

1288 1289
    std::shuffle(
        pv_data.begin(), pv_data.end(), fleet_ptr->LocalRandomEngine());
1290 1291 1292 1293 1294 1295 1296 1297 1298
    input_pv_channel_->Open();
    input_pv_channel_->Write(std::move(pv_data));

    pv_data.clear();
    pv_data.shrink_to_fit();
    input_pv_channel_->Close();
  }
}

1299 1300
void MultiSlotDataset::GenerateLocalTablesUnlock(int table_id,
                                                 int feadim,
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
                                                 int read_thread_num,
                                                 int consume_thread_num,
                                                 int shard_num) {
  VLOG(3) << "MultiSlotDataset::GenerateUniqueFeasign begin";
  if (!gen_uni_feasigns_) {
    VLOG(3) << "generate_unique_feasign_=false, will not GenerateUniqueFeasign";
    return;
  }

  CHECK(multi_output_channel_.size() != 0);  // NOLINT
Z
zhaocaibei123 已提交
1311
  auto fleet_ptr_ = framework::FleetWrapper::GetInstance();
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
  std::vector<std::unordered_map<uint64_t, std::vector<float>>>&
      local_map_tables = fleet_ptr_->GetLocalTable();
  local_map_tables.resize(shard_num);
  // read thread
  int channel_num = multi_output_channel_.size();
  if (read_thread_num < channel_num) {
    read_thread_num = channel_num;
  }
  std::vector<std::thread> threads(read_thread_num);
  consume_task_pool_.resize(consume_thread_num);
  for (size_t i = 0; i < consume_task_pool_.size(); i++) {
    consume_task_pool_[i].reset(new ::ThreadPool(1));
  }
1325 1326
  auto consume_func = [&local_map_tables](int shard_id,
                                          int feadim,
1327 1328 1329 1330 1331 1332 1333 1334
                                          std::vector<uint64_t>& keys) {
    for (auto k : keys) {
      if (local_map_tables[shard_id].find(k) ==
          local_map_tables[shard_id].end()) {
        local_map_tables[shard_id][k] = std::vector<float>(feadim, 0);
      }
    }
  };
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
  auto gen_func =
      [this, &shard_num, &feadim, &local_map_tables, &consume_func](int i) {
        std::vector<Record> vec_data;
        std::vector<std::vector<uint64_t>> task_keys(shard_num);
        std::vector<std::future<void>> task_futures;
        this->multi_output_channel_[i]->Close();
        this->multi_output_channel_[i]->ReadAll(vec_data);
        for (size_t j = 0; j < vec_data.size(); j++) {
          for (auto& feature : vec_data[j].uint64_feasigns_) {
            int shard = feature.sign().uint64_feasign_ % shard_num;
            task_keys[shard].push_back(feature.sign().uint64_feasign_);
          }
        }
1348

1349 1350 1351 1352
        for (int shard_id = 0; shard_id < shard_num; shard_id++) {
          task_futures.emplace_back(consume_task_pool_[shard_id]->enqueue(
              consume_func, shard_id, feadim, task_keys[shard_id]));
        }
1353

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
        multi_output_channel_[i]->Open();
        multi_output_channel_[i]->Write(std::move(vec_data));
        vec_data.clear();
        vec_data.shrink_to_fit();
        for (auto& tk : task_keys) {
          tk.clear();
          std::vector<uint64_t>().swap(tk);
        }
        task_keys.clear();
        std::vector<std::vector<uint64_t>>().swap(task_keys);
        for (auto& tf : task_futures) {
          tf.wait();
        }
      };
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(gen_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  for (size_t i = 0; i < consume_task_pool_.size(); i++) {
    consume_task_pool_[i].reset();
  }
  consume_task_pool_.clear();
  fleet_ptr_->PullSparseToLocal(table_id, feadim);
}
1380

1381 1382 1383 1384 1385 1386 1387 1388
void MultiSlotDataset::MergeByInsId() {
  VLOG(3) << "MultiSlotDataset::MergeByInsId begin";
  if (!merge_by_insid_) {
    VLOG(3) << "merge_by_insid=false, will not MergeByInsId";
    return;
  }
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  std::vector<std::string> use_slots;
1389
  std::vector<bool> use_slots_is_dense;
1390
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
1391 1392 1393
    const auto& slot = multi_slot_desc.slots(i);
    if (slot.is_used()) {
      use_slots.push_back(slot.name());
1394
      use_slots_is_dense.push_back(slot.is_dense());
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
    }
  }
  CHECK(multi_output_channel_.size() != 0);  // NOLINT
  auto channel_data = paddle::framework::MakeChannel<Record>();
  VLOG(3) << "multi_output_channel_.size() " << multi_output_channel_.size();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    multi_output_channel_[i]->Close();
    multi_output_channel_[i]->ReadAll(vec_data);
    channel_data->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
    multi_output_channel_[i]->Clear();
  }
  channel_data->Close();
  std::vector<Record> recs;
  recs.reserve(channel_data->Size());
  channel_data->ReadAll(recs);
  channel_data->Clear();
  std::sort(recs.begin(), recs.end(), [](const Record& a, const Record& b) {
    return a.ins_id_ < b.ins_id_;
  });

  std::vector<Record> results;
1419 1420 1421 1422 1423
  uint64_t drop_ins_num = 0;
  std::unordered_set<uint16_t> all_int64;
  std::unordered_set<uint16_t> all_float;
  std::unordered_set<uint16_t> local_uint64;
  std::unordered_set<uint16_t> local_float;
1424 1425 1426 1427 1428
  std::unordered_map<uint16_t, std::vector<FeatureItem>> all_dense_uint64;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> all_dense_float;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> local_dense_uint64;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> local_dense_float;
  std::unordered_map<uint16_t, bool> dense_empty;
1429

1430 1431 1432 1433 1434 1435
  VLOG(3) << "recs.size() " << recs.size();
  for (size_t i = 0; i < recs.size();) {
    size_t j = i + 1;
    while (j < recs.size() && recs[j].ins_id_ == recs[i].ins_id_) {
      j++;
    }
1436 1437 1438 1439
    if (merge_size_ > 0 && j - i != merge_size_) {
      drop_ins_num += j - i;
      LOG(WARNING) << "drop ins " << recs[i].ins_id_ << " size=" << j - i
                   << ", because merge_size=" << merge_size_;
1440 1441 1442 1443
      i = j;
      continue;
    }

1444 1445
    all_int64.clear();
    all_float.clear();
1446 1447
    all_dense_uint64.clear();
    all_dense_float.clear();
1448 1449 1450 1451 1452 1453
    bool has_conflict_slot = false;
    uint16_t conflict_slot = 0;

    Record rec;
    rec.ins_id_ = recs[i].ins_id_;
    rec.content_ = recs[i].content_;
1454

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
    for (size_t k = i; k < j; k++) {
      dense_empty.clear();
      local_dense_uint64.clear();
      local_dense_float.clear();
      for (auto& feature : recs[k].uint64_feasigns_) {
        uint16_t slot = feature.slot();
        if (!use_slots_is_dense[slot]) {
          continue;
        }
        local_dense_uint64[slot].push_back(feature);
        if (feature.sign().uint64_feasign_ != 0) {
          dense_empty[slot] = false;
        } else if (dense_empty.find(slot) == dense_empty.end() &&
                   all_dense_uint64.find(slot) == all_dense_uint64.end()) {
          dense_empty[slot] = true;
        }
      }
      for (auto& feature : recs[k].float_feasigns_) {
        uint16_t slot = feature.slot();
        if (!use_slots_is_dense[slot]) {
          continue;
        }
        local_dense_float[slot].push_back(feature);
        if (fabs(feature.sign().float_feasign_) >= 1e-6) {
          dense_empty[slot] = false;
        } else if (dense_empty.find(slot) == dense_empty.end() &&
                   all_dense_float.find(slot) == all_dense_float.end()) {
          dense_empty[slot] = true;
        }
      }
      for (auto& p : dense_empty) {
        if (local_dense_uint64.find(p.first) != local_dense_uint64.end()) {
          all_dense_uint64[p.first] = std::move(local_dense_uint64[p.first]);
        } else if (local_dense_float.find(p.first) != local_dense_float.end()) {
          all_dense_float[p.first] = std::move(local_dense_float[p.first]);
        }
      }
    }
    for (auto& f : all_dense_uint64) {
1494 1495
      rec.uint64_feasigns_.insert(
          rec.uint64_feasigns_.end(), f.second.begin(), f.second.end());
1496 1497
    }
    for (auto& f : all_dense_float) {
1498 1499
      rec.float_feasigns_.insert(
          rec.float_feasigns_.end(), f.second.begin(), f.second.end());
1500 1501
    }

1502 1503 1504
    for (size_t k = i; k < j; k++) {
      local_uint64.clear();
      local_float.clear();
1505
      for (auto& feature : recs[k].uint64_feasigns_) {
1506
        uint16_t slot = feature.slot();
1507 1508 1509
        if (use_slots_is_dense[slot]) {
          continue;
        } else if (all_int64.find(slot) != all_int64.end()) {
1510 1511 1512
          has_conflict_slot = true;
          conflict_slot = slot;
          break;
1513
        }
1514 1515 1516 1517 1518
        local_uint64.insert(slot);
        rec.uint64_feasigns_.push_back(std::move(feature));
      }
      if (has_conflict_slot) {
        break;
1519
      }
1520 1521
      all_int64.insert(local_uint64.begin(), local_uint64.end());

1522
      for (auto& feature : recs[k].float_feasigns_) {
1523
        uint16_t slot = feature.slot();
1524 1525 1526
        if (use_slots_is_dense[slot]) {
          continue;
        } else if (all_float.find(slot) != all_float.end()) {
1527 1528 1529
          has_conflict_slot = true;
          conflict_slot = slot;
          break;
1530
        }
1531 1532 1533 1534 1535
        local_float.insert(slot);
        rec.float_feasigns_.push_back(std::move(feature));
      }
      if (has_conflict_slot) {
        break;
1536
      }
1537
      all_float.insert(local_float.begin(), local_float.end());
1538 1539
    }

1540 1541 1542 1543
    if (has_conflict_slot) {
      LOG(WARNING) << "drop ins " << recs[i].ins_id_ << " size=" << j - i
                   << ", because conflict_slot=" << use_slots[conflict_slot];
      drop_ins_num += j - i;
1544
    } else {
1545
      results.push_back(std::move(rec));
1546
    }
1547
    i = j;
1548
  }
1549
  std::vector<Record>().swap(recs);
1550
  VLOG(3) << "results size " << results.size();
1551
  LOG(WARNING) << "total drop ins num: " << drop_ins_num;
1552 1553
  results.shrink_to_fit();

Z
zhaocaibei123 已提交
1554
  auto fleet_ptr = framework::FleetWrapper::GetInstance();
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
  std::shuffle(results.begin(), results.end(), fleet_ptr->LocalRandomEngine());
  channel_data->Open();
  channel_data->Write(std::move(results));
  channel_data->Close();
  results.clear();
  results.shrink_to_fit();
  VLOG(3) << "channel data size " << channel_data->Size();
  channel_data->SetBlockSize(channel_data->Size() / channel_num_ + 1);
  VLOG(3) << "channel data block size " << channel_data->BlockSize();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    channel_data->Read(vec_data);
    multi_output_channel_[i]->Open();
    multi_output_channel_[i]->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
  }
  CHECK(channel_data->Size() == 0);  // NOLINT
  channel_data->Clear();
  VLOG(3) << "MultiSlotDataset::MergeByInsId end";
}

1577 1578 1579
void MultiSlotDataset::GetRandomData(
    const std::unordered_set<uint16_t>& slots_to_replace,
    std::vector<Record>* result) {
1580 1581 1582 1583
  int debug_erase_cnt = 0;
  int debug_push_cnt = 0;
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  slots_shuffle_rclist_.ReInit();
1584 1585
  const auto& slots_shuffle_original_data = GetSlotsOriginalData();
  for (const auto& rec : slots_shuffle_original_data) {
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
    RecordCandidate rand_rec;
    Record new_rec = rec;
    slots_shuffle_rclist_.AddAndGet(rec, &rand_rec);
    for (auto it = new_rec.uint64_feasigns_.begin();
         it != new_rec.uint64_feasigns_.end();) {
      if (slots_to_replace.find(it->slot()) != slots_to_replace.end()) {
        it = new_rec.uint64_feasigns_.erase(it);
        debug_erase_cnt += 1;
      } else {
        ++it;
      }
    }
    for (auto slot : slots_to_replace) {
1599
      auto range = rand_rec.feas_.equal_range(slot);
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
      for (auto it = range.first; it != range.second; ++it) {
        new_rec.uint64_feasigns_.push_back({it->second, it->first});
        debug_push_cnt += 1;
      }
    }
    result->push_back(std::move(new_rec));
  }
  VLOG(2) << "erase feasign num: " << debug_erase_cnt
          << " repush feasign num: " << debug_push_cnt;
}

1611 1612 1613
void MultiSlotDataset::PreprocessChannel(
    const std::set<std::string>& slots_to_replace,
    std::unordered_set<uint16_t>& index_slots) {  // NOLINT
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
  int out_channel_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      out_channel_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      out_channel_size += multi_consume_channel_[i]->Size();
    }
  }
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() begin with input channel size: "
          << input_channel_->Size()
          << " output channel size: " << out_channel_size;
1627

1628 1629 1630 1631 1632
  if ((!input_channel_ || input_channel_->Size() == 0) &&
      slots_shuffle_original_data_.size() == 0 && out_channel_size == 0) {
    VLOG(3) << "DatasetImpl<T>::SlotsShuffle() end, no data to slots shuffle";
    return;
  }
1633

1634
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
1635
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
    std::string cur_slot = multi_slot_desc.slots(i).name();
    if (slots_to_replace.find(cur_slot) != slots_to_replace.end()) {
      index_slots.insert(i);
    }
  }
  if (slots_shuffle_original_data_.size() == 0) {
    // before first slots shuffle, instances could be in
    // input_channel, oupput_channel or consume_channel
    if (input_channel_ && input_channel_->Size() != 0) {
      slots_shuffle_original_data_.reserve(input_channel_->Size());
      input_channel_->Close();
      input_channel_->ReadAll(slots_shuffle_original_data_);
    } else {
      CHECK(out_channel_size > 0);  // NOLINT
      if (cur_channel_ == 0) {
        for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_output_channel_[i]->Close();
          multi_output_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_output_channel_[i]->Clear();
        }
      } else {
        for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_consume_channel_[i]->Close();
          multi_consume_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_consume_channel_[i]->Clear();
        }
      }
    }
  } else {
    // if already have original data for slots shuffle, clear channel
    input_channel_->Clear();
    if (cur_channel_ == 0) {
      for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
        if (!multi_output_channel_[i]) {
          continue;
        }
        multi_output_channel_[i]->Clear();
      }
    } else {
      for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
        if (!multi_consume_channel_[i]) {
          continue;
        }
        multi_consume_channel_[i]->Clear();
      }
    }
  }
  int end_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      if (!multi_output_channel_[i]) {
        continue;
      }
      end_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      if (!multi_consume_channel_[i]) {
        continue;
      }
      end_size += multi_consume_channel_[i]->Size();
    }
  }
  CHECK(input_channel_->Size() == 0)
      << "input channel should be empty before slots shuffle";
1719 1720 1721 1722 1723
}

// slots shuffle to input_channel_ with needed-shuffle slots
void MultiSlotDataset::SlotsShuffle(
    const std::set<std::string>& slots_to_replace) {
1724 1725
  PADDLE_ENFORCE_EQ(slots_shuffle_fea_eval_,
                    true,
1726 1727 1728 1729 1730 1731 1732
                    platform::errors::PreconditionNotMet(
                        "fea eval mode off, need to set on for slots shuffle"));
  platform::Timer timeline;
  timeline.Start();
  std::unordered_set<uint16_t> index_slots;
  PreprocessChannel(slots_to_replace, index_slots);

1733 1734 1735 1736 1737 1738 1739 1740 1741
  std::vector<Record> random_data;
  random_data.clear();
  // get slots shuffled random_data
  GetRandomData(index_slots, &random_data);
  input_channel_->Open();
  input_channel_->Write(std::move(random_data));
  random_data.clear();
  random_data.shrink_to_fit();
  input_channel_->Close();
Y
yaoxuefeng 已提交
1742
  cur_channel_ = 0;
1743 1744 1745 1746 1747 1748 1749

  timeline.Pause();
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() end"
          << ", memory data size for slots shuffle=" << input_channel_->Size()
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
}

Y
yaoxuefeng 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
template class DatasetImpl<SlotRecord>;
void SlotRecordDataset::CreateChannel() {
  if (input_channel_ == nullptr) {
    input_channel_ = paddle::framework::MakeChannel<SlotRecord>();
  }
}
void SlotRecordDataset::CreateReaders() {
  VLOG(3) << "Calling CreateReaders()";
  VLOG(3) << "thread num in Dataset: " << thread_num_;
  VLOG(3) << "Filelist size in Dataset: " << filelist_.size();
  VLOG(3) << "channel num in Dataset: " << channel_num_;
  CHECK(thread_num_ > 0) << "thread num should > 0";
  CHECK(channel_num_ > 0) << "channel num should > 0";
  CHECK(channel_num_ <= thread_num_) << "channel num should <= thread num";
  VLOG(3) << "readers size: " << readers_.size();
  if (readers_.size() != 0) {
    VLOG(3) << "readers_.size() = " << readers_.size()
            << ", will not create again";
    return;
  }
  VLOG(3) << "data feed class name: " << data_feed_desc_.name();
  for (int i = 0; i < thread_num_; ++i) {
    readers_.push_back(DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
    readers_[i]->Init(data_feed_desc_);
    readers_[i]->SetThreadId(i);
    readers_[i]->SetThreadNum(thread_num_);
    readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    readers_[i]->SetFileListIndex(&file_idx_);
    readers_[i]->SetFeaNumMutex(&mutex_for_fea_num_);
    readers_[i]->SetFeaNum(&total_fea_num_);
    readers_[i]->SetFileList(filelist_);
    readers_[i]->SetParseInsId(parse_ins_id_);
    readers_[i]->SetParseContent(parse_content_);
    readers_[i]->SetParseLogKey(parse_logkey_);
    readers_[i]->SetEnablePvMerge(enable_pv_merge_);
    readers_[i]->SetCurrentPhase(current_phase_);
    if (input_channel_ != nullptr) {
      readers_[i]->SetInputChannel(input_channel_.get());
    }
  }
  VLOG(3) << "readers size: " << readers_.size();
}

void SlotRecordDataset::ReleaseMemory() {
  VLOG(3) << "SlotRecordDataset::ReleaseMemory() begin";
  platform::Timer timeline;
  timeline.Start();

  if (input_channel_) {
    input_channel_->Clear();
    input_channel_ = nullptr;
  }
  if (enable_heterps_) {
    VLOG(3) << "put pool records size: " << input_records_.size();
    SlotRecordPool().put(&input_records_);
    input_records_.clear();
    input_records_.shrink_to_fit();
    VLOG(3) << "release heterps input records records size: "
            << input_records_.size();
  }

  readers_.clear();
  readers_.shrink_to_fit();

  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);

  VLOG(3) << "SlotRecordDataset::ReleaseMemory() end";
  VLOG(3) << "total_feasign_num_(" << STAT_GET(STAT_total_feasign_num_in_mem)
          << ") - current_fea_num_(" << total_fea_num_ << ") = ("
          << STAT_GET(STAT_total_feasign_num_in_mem) - total_fea_num_ << ")"
          << " object pool size=" << SlotRecordPool().capacity();  // For Debug
  STAT_SUB(STAT_total_feasign_num_in_mem, total_fea_num_);
}
void SlotRecordDataset::GlobalShuffle(int thread_num) {
  // TODO(yaoxuefeng)
  return;
}

void SlotRecordDataset::DynamicAdjustChannelNum(int channel_num,
                                                bool discard_remaining_ins) {
  if (channel_num_ == channel_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustChannelNum channel_num_="
            << channel_num_ << ", channel_num_=channel_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust channel num from " << channel_num_ << " to "
          << channel_num;
  channel_num_ = channel_num;

  if (static_cast<int>(input_channel_->Size()) >= channel_num) {
    input_channel_->SetBlockSize(input_channel_->Size() / channel_num +
                                 (discard_remaining_ins ? 0 : 1));
  }

  VLOG(3) << "adjust channel num done";
}

void SlotRecordDataset::PrepareTrain() {
#ifdef PADDLE_WITH_GLOO
Y
yaoxuefeng 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
  if (enable_heterps_) {
    if (input_records_.size() == 0 && input_channel_ != nullptr &&
        input_channel_->Size() != 0) {
      input_channel_->ReadAll(input_records_);
      VLOG(3) << "read from channel to records with records size: "
              << input_records_.size();
    }
    VLOG(3) << "input records size: " << input_records_.size();
    int64_t total_ins_num = input_records_.size();
    std::vector<std::pair<int, int>> offset;
    int default_batch_size =
        reinterpret_cast<SlotRecordInMemoryDataFeed*>(readers_[0].get())
            ->GetDefaultBatchSize();
    VLOG(3) << "thread_num: " << thread_num_
            << " memory size: " << total_ins_num
            << " default batch_size: " << default_batch_size;
1865 1866
    compute_thread_batch_nccl(
        thread_num_, total_ins_num, default_batch_size, &offset);
Y
yaoxuefeng 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
    VLOG(3) << "offset size: " << offset.size();
    for (int i = 0; i < thread_num_; i++) {
      reinterpret_cast<SlotRecordInMemoryDataFeed*>(readers_[i].get())
          ->SetRecord(&input_records_[0]);
    }
    for (size_t i = 0; i < offset.size(); i++) {
      reinterpret_cast<SlotRecordInMemoryDataFeed*>(
          readers_[i % thread_num_].get())
          ->AddBatchOffset(offset[i]);
    }
  }
Y
yaoxuefeng 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
#else
  PADDLE_THROW(platform::errors::Unavailable(
      "dataset set heterps need compile with GLOO"));
#endif
  return;
}

void SlotRecordDataset::DynamicAdjustReadersNum(int thread_num) {
  if (thread_num_ == thread_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustReadersNum thread_num_="
            << thread_num_ << ", thread_num_=thread_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust readers num from " << thread_num_ << " to " << thread_num;
  thread_num_ = thread_num;
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
  CreateReaders();
  VLOG(3) << "adjust readers num done";
  PrepareTrain();
}

D
dongdaxiang 已提交
1899 1900
}  // end namespace framework
}  // end namespace paddle