data_set.cc 28.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *     Unless required by applicable law or agreed to in writing, software
 *     distributed under the License is distributed on an "AS IS" BASIS,
 *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *     See the License for the specific language governing permissions and
 *     limitations under the License. */

15
#include "paddle/fluid/framework/data_set.h"
16
#include <algorithm>
D
dongdaxiang 已提交
17
#include <random>
18
#include <unordered_map>
19 20 21
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
22
#include "paddle/fluid/framework/data_feed_factory.h"
23
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
24
#include "paddle/fluid/framework/io/fs.h"
25
#include "paddle/fluid/platform/timer.h"
26
#include "xxhash.h"  // NOLINT
27

D
dongdaxiang 已提交
28 29 30 31 32
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

33 34 35
namespace paddle {
namespace framework {

X
xjqbest 已提交
36
// constructor
37
template <typename T>
D
dongdaxiang 已提交
38
DatasetImpl<T>::DatasetImpl() {
J
jiaqi 已提交
39
  VLOG(3) << "DatasetImpl<T>::DatasetImpl() constructor";
D
dongdaxiang 已提交
40
  thread_num_ = 1;
41
  trainer_num_ = 1;
J
jiaqi 已提交
42
  channel_num_ = 1;
43
  file_idx_ = 0;
J
jiaqi 已提交
44 45 46
  cur_channel_ = 0;
  fleet_send_batch_size_ = 80000;
  fleet_send_sleep_seconds_ = 2;
47 48 49 50
  merge_by_insid_ = false;
  erase_duplicate_feas_ = true;
  keep_unmerged_ins_ = true;
  min_merge_size_ = 2;
51 52
  parse_ins_id_ = false;
  parse_content_ = false;
D
dongdaxiang 已提交
53
}
54

X
xjqbest 已提交
55
// set filelist, file_idx_ will reset to zero.
56 57
template <typename T>
void DatasetImpl<T>::SetFileList(const std::vector<std::string>& filelist) {
58
  VLOG(3) << "filelist size: " << filelist.size();
59
  filelist_ = filelist;
60
  file_idx_ = 0;
61 62
}

X
xjqbest 已提交
63
// set expect thread num. actually it may change
64 65
template <typename T>
void DatasetImpl<T>::SetThreadNum(int thread_num) {
66
  VLOG(3) << "SetThreadNum thread_num=" << thread_num;
67 68 69
  thread_num_ = thread_num;
}

X
xjqbest 已提交
70 71 72
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetTrainerNum
73
template <typename T>
X
xujiaqi01 已提交
74 75
void DatasetImpl<T>::SetTrainerNum(int trainer_num) {
  trainer_num_ = trainer_num;
76 77
}

X
xjqbest 已提交
78 79 80 81 82 83 84 85
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetFleetSendBatchSize
template <typename T>
void DatasetImpl<T>::SetFleetSendBatchSize(int64_t size) {
  fleet_send_batch_size_ = size;
}

86 87 88
template <typename T>
void DatasetImpl<T>::SetHdfsConfig(const std::string& fs_name,
                                   const std::string& fs_ugi) {
X
xjqbest 已提交
89 90
  fs_name_ = fs_name;
  fs_ugi_ = fs_ugi;
91 92 93 94
  std::string cmd = std::string("hadoop fs");
  cmd += " -D fs.default.name=" + fs_name;
  cmd += " -D hadoop.job.ugi=" + fs_ugi;
  paddle::framework::hdfs_set_command(cmd);
X
xujiaqi01 已提交
95
}
96

97 98
template <typename T>
void DatasetImpl<T>::SetDataFeedDesc(const std::string& data_feed_desc_str) {
99 100
  google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
                                                &data_feed_desc_);
101 102
}

103
template <typename T>
J
jiaqi 已提交
104 105 106 107
void DatasetImpl<T>::SetChannelNum(int channel_num) {
  channel_num_ = channel_num;
}

108 109 110 111 112 113 114 115 116 117
template <typename T>
void DatasetImpl<T>::SetParseInsId(bool parse_ins_id) {
  parse_ins_id_ = parse_ins_id;
}

template <typename T>
void DatasetImpl<T>::SetParseContent(bool parse_content) {
  parse_content_ = parse_content;
}

118 119 120 121 122 123 124 125 126 127 128
template <typename T>
void DatasetImpl<T>::SetMergeByInsId(
    const std::vector<std::string>& merge_slot_list, bool erase_duplicate_feas,
    int min_merge_size, bool keep_unmerged_ins) {
  merge_by_insid_ = true;
  merge_slots_list_ = merge_slot_list;
  erase_duplicate_feas_ = erase_duplicate_feas;
  min_merge_size_ = min_merge_size;
  keep_unmerged_ins_ = keep_unmerged_ins;
}

129 130 131 132 133 134 135 136
template <typename T>
void DatasetImpl<T>::SetFeaEval(bool fea_eval, int record_candidate_size) {
  slots_shuffle_fea_eval_ = fea_eval;
  slots_shuffle_rclist_.ReSize(record_candidate_size);
  VLOG(3) << "SetFeaEval fea eval mode: " << fea_eval
          << " with record candidate size: " << record_candidate_size;
}

J
jiaqi 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
template <typename T>
std::vector<paddle::framework::DataFeed*> DatasetImpl<T>::GetReaders() {
  std::vector<paddle::framework::DataFeed*> ret;
  ret.reserve(readers_.size());
  for (auto i : readers_) {
    ret.push_back(i.get());
  }
  return ret;
}

template <typename T>
void DatasetImpl<T>::CreateChannel() {
  if (input_channel_ == nullptr) {
    input_channel_ = paddle::framework::MakeChannel<T>();
  }
  if (multi_output_channel_.size() == 0) {
    multi_output_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_output_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
  if (multi_consume_channel_.size() == 0) {
    multi_consume_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_consume_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
164 165
}

166 167 168 169 170 171 172 173 174 175 176 177
// if sent message between workers, should first call this function
template <typename T>
void DatasetImpl<T>::RegisterClientToClientMsgHandler() {
  auto fleet_ptr = FleetWrapper::GetInstance();
  VLOG(3) << "RegisterClientToClientMsgHandler";
  fleet_ptr->RegisterClientToClientMsgHandler(
      0, [this](int msg_type, int client_id, const std::string& msg) -> int {
        return this->ReceiveFromClient(msg_type, client_id, msg);
      });
  VLOG(3) << "RegisterClientToClientMsgHandler done";
}

X
xjqbest 已提交
178 179
// load data into memory, Dataset hold this memory,
// which will later be fed into readers' channel
180 181 182
template <typename T>
void DatasetImpl<T>::LoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() begin";
183 184
  platform::Timer timeline;
  timeline.Start();
185 186
  std::vector<std::thread> load_threads;
  for (int64_t i = 0; i < thread_num_; ++i) {
D
dongdaxiang 已提交
187 188
    load_threads.push_back(std::thread(
        &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
189 190 191 192
  }
  for (std::thread& t : load_threads) {
    t.join();
  }
J
jiaqi 已提交
193 194 195
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
196 197
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() end"
J
jiaqi 已提交
198
          << ", memory data size=" << input_channel_->Size()
199
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
200 201
}

J
jiaqi 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
template <typename T>
void DatasetImpl<T>::PreLoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() begin";
  preload_threads_.clear();
  for (int64_t i = 0; i < thread_num_; ++i) {
    preload_threads_.push_back(std::thread(
        &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
  }
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() end";
}

template <typename T>
void DatasetImpl<T>::WaitPreLoadDone() {
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() begin";
  for (std::thread& t : preload_threads_) {
    t.join();
  }
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() end";
}

225 226 227 228
// release memory data
template <typename T>
void DatasetImpl<T>::ReleaseMemory() {
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() begin";
J
jiaqi 已提交
229 230 231 232 233 234 235 236 237 238
  if (input_channel_) {
    input_channel_->Clear();
    input_channel_ = nullptr;
  }
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    if (!multi_output_channel_[i]) {
      continue;
    }
    multi_output_channel_[i]->Clear();
    multi_output_channel_[i] = nullptr;
239
  }
J
jiaqi 已提交
240 241 242 243 244 245 246 247 248 249
  std::vector<paddle::framework::Channel<T>>().swap(multi_output_channel_);
  for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
    if (!multi_consume_channel_[i]) {
      continue;
    }
    multi_consume_channel_[i]->Clear();
    multi_consume_channel_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<T>>().swap(multi_consume_channel_);
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
250 251 252
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() end";
}

X
xjqbest 已提交
253
// do local shuffle
254 255 256
template <typename T>
void DatasetImpl<T>::LocalShuffle() {
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() begin";
257 258
  platform::Timer timeline;
  timeline.Start();
259

J
jiaqi 已提交
260 261 262
  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, no data to shuffle";
    return;
263
  }
J
jiaqi 已提交
264 265 266 267 268 269 270 271 272 273 274
  auto fleet_ptr = FleetWrapper::GetInstance();
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();
  input_channel_->Close();

275 276 277
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
278 279
}

280 281 282
template <typename T>
void DatasetImpl<T>::GlobalShuffle() {
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() begin";
283 284
  platform::Timer timeline;
  timeline.Start();
285
  auto fleet_ptr = FleetWrapper::GetInstance();
J
jiaqi 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, no data to shuffle";
    return;
  }

  // local shuffle
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();

  input_channel_->Close();
  input_channel_->SetBlockSize(fleet_send_batch_size_);
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() input_channel_ size "
          << input_channel_->Size();

307 308 309 310 311 312 313 314 315 316
  auto get_client_id = [this, fleet_ptr](const T& data) -> size_t {
    if (!this->merge_by_insid_) {
      return fleet_ptr->LocalRandomEngine()() % this->trainer_num_;
    } else {
      return XXH64(data.ins_id_.data(), data.ins_id_.length(), 0) %
             this->trainer_num_;
    }
  };

  auto global_shuffle_func = [this, get_client_id]() {
J
jiaqi 已提交
317 318 319 320 321
    auto fleet_ptr = FleetWrapper::GetInstance();
    std::vector<T> data;
    while (this->input_channel_->Read(data)) {
      std::vector<paddle::framework::BinaryArchive> ars(this->trainer_num_);
      for (auto& t : data) {
322
        auto client_id = get_client_id(t);
J
jiaqi 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
        ars[client_id] << t;
      }
      std::vector<std::future<int32_t>> total_status;
      std::vector<int> send_index(this->trainer_num_);
      for (int i = 0; i < this->trainer_num_; ++i) {
        send_index[i] = i;
      }
      std::shuffle(send_index.begin(), send_index.end(),
                   fleet_ptr->LocalRandomEngine());
      for (auto index = 0u; index < this->trainer_num_; ++index) {
        int i = send_index[index];
        if (ars[i].Length() == 0) {
          continue;
        }
        std::string msg(ars[i].Buffer(), ars[i].Length());
        auto ret = fleet_ptr->SendClientToClientMsg(0, i, msg);
        total_status.push_back(std::move(ret));
      }
      for (auto& t : total_status) {
        t.wait();
      }
      ars.clear();
      ars.shrink_to_fit();
      data.clear();
      data.shrink_to_fit();
      sleep(this->fleet_send_sleep_seconds_);
    }
  };

X
xujiaqi01 已提交
352
  VLOG(3) << "start global shuffle threads";
353
  std::vector<std::thread> global_shuffle_threads;
354
  for (int i = 0; i < thread_num_; ++i) {
J
jiaqi 已提交
355
    global_shuffle_threads.push_back(std::thread(global_shuffle_func));
356 357 358
  }
  for (std::thread& t : global_shuffle_threads) {
    t.join();
359
  }
J
jiaqi 已提交
360 361 362
  global_shuffle_threads.clear();
  global_shuffle_threads.shrink_to_fit();
  input_channel_->Clear();
363 364 365
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
366 367
}

368 369
template <typename T>
void DatasetImpl<T>::CreateReaders() {
370
  VLOG(3) << "Calling CreateReaders()";
J
jiaqi 已提交
371 372 373 374 375 376
  VLOG(3) << "thread num in Dataset: " << thread_num_;
  VLOG(3) << "Filelist size in Dataset: " << filelist_.size();
  VLOG(3) << "channel num in Dataset: " << channel_num_;
  CHECK(thread_num_ > 0) << "thread num should > 0";
  CHECK(channel_num_ > 0) << "channel num should > 0";
  CHECK(channel_num_ <= thread_num_) << "channel num should <= thread num";
377
  VLOG(3) << "readers size: " << readers_.size();
378
  if (readers_.size() != 0) {
J
jiaqi 已提交
379 380
    VLOG(3) << "readers_.size() = " << readers_.size()
            << ", will not create again";
381 382
    return;
  }
383
  VLOG(3) << "data feed class name: " << data_feed_desc_.name();
J
jiaqi 已提交
384
  int channel_idx = 0;
385
  for (int i = 0; i < thread_num_; ++i) {
386
    readers_.push_back(DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
J
jiaqi 已提交
387 388 389 390 391 392
    readers_[i]->Init(data_feed_desc_);
    readers_[i]->SetThreadId(i);
    readers_[i]->SetThreadNum(thread_num_);
    readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    readers_[i]->SetFileListIndex(&file_idx_);
    readers_[i]->SetFileList(filelist_);
393 394
    readers_[i]->SetParseInsId(parse_ins_id_);
    readers_[i]->SetParseContent(parse_content_);
J
jiaqi 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408
    if (input_channel_ != nullptr) {
      readers_[i]->SetInputChannel(input_channel_.get());
    }
    if (cur_channel_ == 0 && channel_idx < multi_output_channel_.size()) {
      readers_[i]->SetOutputChannel(multi_output_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_consume_channel_[channel_idx].get());
    } else if (channel_idx < multi_output_channel_.size()) {
      readers_[i]->SetOutputChannel(multi_consume_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_output_channel_[channel_idx].get());
    }
    ++channel_idx;
    if (channel_idx >= channel_num_) {
      channel_idx = 0;
    }
409
  }
J
jiaqi 已提交
410
  VLOG(3) << "readers size: " << readers_.size();
411 412
}

413 414 415
template <typename T>
void DatasetImpl<T>::DestroyReaders() {
  VLOG(3) << "Calling DestroyReaders()";
416
  VLOG(3) << "readers size1: " << readers_.size();
417
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
418
  VLOG(3) << "readers size: " << readers_.size();
J
jiaqi 已提交
419 420
  file_idx_ = 0;
  cur_channel_ = 1 - cur_channel_;
421 422
}

423 424
template <typename T>
int64_t DatasetImpl<T>::GetMemoryDataSize() {
J
jiaqi 已提交
425
  return input_channel_->Size();
426 427 428 429 430
}

template <typename T>
int64_t DatasetImpl<T>::GetShuffleDataSize() {
  int64_t sum = 0;
J
jiaqi 已提交
431 432
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    sum += multi_output_channel_[i]->Size() + multi_consume_channel_[i]->Size();
433 434 435 436
  }
  return sum;
}

437 438
template <typename T>
int DatasetImpl<T>::ReceiveFromClient(int msg_type, int client_id,
D
dongdaxiang 已提交
439
                                      const std::string& msg) {
D
dongdaxiang 已提交
440
#ifdef _LINUX
441
  VLOG(3) << "ReceiveFromClient msg_type=" << msg_type
442
          << ", client_id=" << client_id << ", msg length=" << msg.length();
J
jiaqi 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456
  if (msg.length() == 0) {
    return 0;
  }
  paddle::framework::BinaryArchive ar;
  ar.SetReadBuffer(const_cast<char*>(msg.c_str()), msg.length(), nullptr);
  if (ar.Cursor() == ar.Finish()) {
    return 0;
  }
  std::vector<T> data;
  while (ar.Cursor() < ar.Finish()) {
    data.push_back(ar.Get<T>());
  }
  CHECK(ar.Cursor() == ar.Finish());

457
  auto fleet_ptr = FleetWrapper::GetInstance();
J
jiaqi 已提交
458
  int64_t index = fleet_ptr->LocalRandomEngine()() % channel_num_;
459
  VLOG(3) << "ramdom index=" << index;
J
jiaqi 已提交
460 461 462 463
  multi_output_channel_[index]->Write(std::move(data));

  data.clear();
  data.shrink_to_fit();
D
dongdaxiang 已提交
464
#endif
465 466 467
  return 0;
}

468
// explicit instantiation
J
jiaqi 已提交
469
template class DatasetImpl<Record>;
470

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
void MultiSlotDataset::MergeByInsId() {
  VLOG(3) << "MultiSlotDataset::MergeByInsId begin";
  if (!merge_by_insid_) {
    VLOG(3) << "merge_by_insid=false, will not MergeByInsId";
    return;
  }
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  std::unordered_map<int, bool> merge_slots;
  std::vector<std::string> use_slots;
  std::vector<bool> use_slots_is_dense;
  for (size_t i = 0; i < multi_slot_desc.slots_size(); ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    if (slot.is_used()) {
      use_slots.push_back(slot.name());
      use_slots_is_dense.push_back(slot.is_dense());
    }
  }
  for (size_t i = 0; i < use_slots.size(); ++i) {
    // currently, we don't merge dense slots
    if (std::find(merge_slots_list_.begin(), merge_slots_list_.end(),
                  use_slots[i]) != merge_slots_list_.end() &&
        !use_slots_is_dense[i]) {
      merge_slots[i] = true;
    }
  }
  CHECK(multi_output_channel_.size() != 0);  // NOLINT
  auto channel_data = paddle::framework::MakeChannel<Record>();
  VLOG(3) << "multi_output_channel_.size() " << multi_output_channel_.size();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    multi_output_channel_[i]->Close();
    multi_output_channel_[i]->ReadAll(vec_data);
    channel_data->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
    multi_output_channel_[i]->Clear();
  }
  channel_data->Close();
  std::vector<Record> recs;
  recs.reserve(channel_data->Size());
  channel_data->ReadAll(recs);
  channel_data->Clear();
  std::sort(recs.begin(), recs.end(), [](const Record& a, const Record& b) {
    return a.ins_id_ < b.ins_id_;
  });

  auto sort_cmp_uint64 = [&merge_slots](const FeatureItem& a,
                                        const FeatureItem& b) {
    auto& a_sign = a.sign().uint64_feasign_;
    auto& b_sign = b.sign().uint64_feasign_;
    return a_sign < b_sign || (a_sign == b_sign && a.slot() < b.slot());
  };
  auto sort_cmp_float = [&merge_slots](const FeatureItem& a,
                                       const FeatureItem& b) {
    auto& a_sign = a.sign().float_feasign_;
    auto& b_sign = b.sign().float_feasign_;
    return a_sign < b_sign || (a_sign == b_sign && a.slot() < b.slot());
  };
  auto unique_eq_uint64 = [&merge_slots](const FeatureItem& a,
                                         const FeatureItem& b) {
    if (a.slot() == b.slot() &&
        merge_slots.find(a.slot()) == merge_slots.end()) {
      return true;
    }
    auto& a_sign = a.sign().uint64_feasign_;
    auto& b_sign = b.sign().uint64_feasign_;
    return a_sign == b_sign && a.slot() == b.slot();
  };
  auto unique_eq_float = [&merge_slots](const FeatureItem& a,
                                        const FeatureItem& b) {
    if (a.slot() == b.slot() &&
        merge_slots.find(a.slot()) == merge_slots.end()) {
      return true;
    }
    auto& a_sign = a.sign().float_feasign_;
    auto& b_sign = b.sign().float_feasign_;
    return a_sign == b_sign && a.slot() == b.slot();
  };

  std::vector<Record> results;
  VLOG(3) << "recs.size() " << recs.size();
  for (size_t i = 0; i < recs.size();) {
    size_t j = i + 1;
    while (j < recs.size() && recs[j].ins_id_ == recs[i].ins_id_) {
      j++;
    }
    if (j - i < min_merge_size_) {
      if (keep_unmerged_ins_) {
        for (size_t k = i; k < j; ++k) {
          results.push_back(std::move(recs[k]));
        }
      }
      i = j;
      continue;
    }

    std::vector<FeatureItem> merge_uint64_feasigns;
    std::vector<FeatureItem> merge_float_feasigns;
    Record rec = std::move(recs[i]);

    for (size_t k = i + 1; k < j; k++) {
      for (auto& feature : recs[k].uint64_feasigns_) {
        if (merge_slots.find(feature.slot()) != merge_slots.end()) {
          merge_uint64_feasigns.push_back(std::move(feature));
        }
      }
      for (auto& feature : recs[k].float_feasigns_) {
        if (merge_slots.find(feature.slot()) != merge_slots.end()) {
          merge_float_feasigns.push_back(std::move(feature));
        }
      }
      recs[k] = Record();
    }
    i = j;

    if (!erase_duplicate_feas_) {
      rec.uint64_feasigns_.insert(rec.uint64_feasigns_.end(),
                                  merge_uint64_feasigns.begin(),
                                  merge_uint64_feasigns.end());
      rec.float_feasigns_.insert(rec.float_feasigns_.end(),
                                 merge_float_feasigns.begin(),
                                 merge_float_feasigns.end());
    } else {
      std::vector<FeatureItem> not_merge_uint64_feasigns;
      std::vector<FeatureItem> not_merge_float_feasigns;

      for (auto& feature : rec.uint64_feasigns_) {
        if (merge_slots.find(feature.slot()) != merge_slots.end()) {
          merge_uint64_feasigns.push_back(std::move(feature));
        } else {
          not_merge_uint64_feasigns.push_back(std::move(feature));
        }
      }
      for (auto& feature : rec.float_feasigns_) {
        if (merge_slots.find(feature.slot()) != merge_slots.end()) {
          merge_float_feasigns.push_back(std::move(feature));
        } else {
          not_merge_float_feasigns.push_back(std::move(feature));
        }
      }
      rec.uint64_feasigns_.clear();
      rec.float_feasigns_.clear();

      // erase duplicate uint64 feasigns
      std::sort(merge_uint64_feasigns.begin(), merge_uint64_feasigns.end(),
                sort_cmp_uint64);
      merge_uint64_feasigns.erase(
          std::unique(merge_uint64_feasigns.begin(),
                      merge_uint64_feasigns.end(), unique_eq_uint64),
          merge_uint64_feasigns.end());
      rec.uint64_feasigns_.insert(rec.uint64_feasigns_.end(),
                                  merge_uint64_feasigns.begin(),
                                  merge_uint64_feasigns.end());
      rec.uint64_feasigns_.insert(rec.uint64_feasigns_.end(),
                                  not_merge_uint64_feasigns.begin(),
                                  not_merge_uint64_feasigns.end());

      // erase duplicate float feasigns
      std::sort(merge_float_feasigns.begin(), merge_float_feasigns.end(),
                sort_cmp_float);
      merge_float_feasigns.erase(
          std::unique(merge_float_feasigns.begin(), merge_float_feasigns.end(),
                      unique_eq_float),
          merge_float_feasigns.end());
      rec.float_feasigns_.insert(rec.float_feasigns_.end(),
                                 merge_float_feasigns.begin(),
                                 merge_float_feasigns.end());
      rec.float_feasigns_.insert(rec.float_feasigns_.end(),
                                 not_merge_float_feasigns.begin(),
                                 not_merge_float_feasigns.end());
    }
    results.push_back(rec);
  }
  VLOG(3) << "results size " << results.size();
  results.shrink_to_fit();

  auto fleet_ptr = FleetWrapper::GetInstance();
  std::shuffle(results.begin(), results.end(), fleet_ptr->LocalRandomEngine());
  channel_data->Open();
  channel_data->Write(std::move(results));
  channel_data->Close();
  results.clear();
  results.shrink_to_fit();
  VLOG(3) << "channel data size " << channel_data->Size();
  channel_data->SetBlockSize(channel_data->Size() / channel_num_ + 1);
  VLOG(3) << "channel data block size " << channel_data->BlockSize();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    channel_data->Read(vec_data);
    multi_output_channel_[i]->Open();
    multi_output_channel_[i]->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
  }
  CHECK(channel_data->Size() == 0);  // NOLINT
  channel_data->Clear();
  VLOG(3) << "MultiSlotDataset::MergeByInsId end";
}

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
void MultiSlotDataset::GetRandomData(const std::set<uint16_t>& slots_to_replace,
                                     std::vector<Record>* result) {
  int debug_erase_cnt = 0;
  int debug_push_cnt = 0;
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  slots_shuffle_rclist_.ReInit();
  for (const auto& rec : slots_shuffle_original_data_) {
    RecordCandidate rand_rec;
    Record new_rec = rec;
    slots_shuffle_rclist_.AddAndGet(rec, &rand_rec);
    for (auto it = new_rec.uint64_feasigns_.begin();
         it != new_rec.uint64_feasigns_.end();) {
      if (slots_to_replace.find(it->slot()) != slots_to_replace.end()) {
        it = new_rec.uint64_feasigns_.erase(it);
        debug_erase_cnt += 1;
      } else {
        ++it;
      }
    }
    for (auto slot : slots_to_replace) {
      auto range = rand_rec.feas.equal_range(slot);
      for (auto it = range.first; it != range.second; ++it) {
        new_rec.uint64_feasigns_.push_back({it->second, it->first});
        debug_push_cnt += 1;
      }
    }
    result->push_back(std::move(new_rec));
  }
  VLOG(2) << "erase feasign num: " << debug_erase_cnt
          << " repush feasign num: " << debug_push_cnt;
}

// slots shuffle to input_channel_ with needed-shuffle slots
void MultiSlotDataset::SlotsShuffle(
    const std::set<std::string>& slots_to_replace) {
  int out_channel_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      out_channel_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      out_channel_size += multi_consume_channel_[i]->Size();
    }
  }
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() begin with input channel size: "
          << input_channel_->Size()
          << " output channel size: " << out_channel_size;
  if (!slots_shuffle_fea_eval_) {
    VLOG(3) << "DatasetImpl<T>::SlotsShuffle() end,"
               "fea eval mode off, need to set on for slots shuffle";
    return;
  }
  if ((!input_channel_ || input_channel_->Size() == 0) &&
      slots_shuffle_original_data_.size() == 0 && out_channel_size == 0) {
    VLOG(3) << "DatasetImpl<T>::SlotsShuffle() end, no data to slots shuffle";
    return;
  }
  platform::Timer timeline;
  timeline.Start();
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  std::set<uint16_t> index_slots;
  for (size_t i = 0; i < multi_slot_desc.slots_size(); ++i) {
    std::string cur_slot = multi_slot_desc.slots(i).name();
    if (slots_to_replace.find(cur_slot) != slots_to_replace.end()) {
      index_slots.insert(i);
    }
  }
  if (slots_shuffle_original_data_.size() == 0) {
    // before first slots shuffle, instances could be in
    // input_channel, oupput_channel or consume_channel
    if (input_channel_ && input_channel_->Size() != 0) {
      slots_shuffle_original_data_.reserve(input_channel_->Size());
      input_channel_->Close();
      input_channel_->ReadAll(slots_shuffle_original_data_);
    } else {
      CHECK(out_channel_size > 0);  // NOLINT
      if (cur_channel_ == 0) {
        for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_output_channel_[i]->Close();
          multi_output_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_output_channel_[i]->Clear();
        }
      } else {
        for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_consume_channel_[i]->Close();
          multi_consume_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_consume_channel_[i]->Clear();
        }
      }
    }
  } else {
    // if already have original data for slots shuffle, clear channel
    input_channel_->Clear();
    if (cur_channel_ == 0) {
      for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
        if (!multi_output_channel_[i]) {
          continue;
        }
        multi_output_channel_[i]->Clear();
      }
    } else {
      for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
        if (!multi_consume_channel_[i]) {
          continue;
        }
        multi_consume_channel_[i]->Clear();
      }
    }
  }
  int end_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      if (!multi_output_channel_[i]) {
        continue;
      }
      end_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      if (!multi_consume_channel_[i]) {
        continue;
      }
      end_size += multi_consume_channel_[i]->Size();
    }
  }
  CHECK(input_channel_->Size() == 0)
      << "input channel should be empty before slots shuffle";
  std::vector<Record> random_data;
  random_data.clear();
  // get slots shuffled random_data
  GetRandomData(index_slots, &random_data);
  input_channel_->Open();
  input_channel_->Write(std::move(random_data));
  random_data.clear();
  random_data.shrink_to_fit();
  input_channel_->Close();

  timeline.Pause();
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() end"
          << ", memory data size for slots shuffle=" << input_channel_->Size()
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
}

D
dongdaxiang 已提交
832 833
}  // end namespace framework
}  // end namespace paddle