data_set.cc 63.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *     Unless required by applicable law or agreed to in writing, software
 *     distributed under the License is distributed on an "AS IS" BASIS,
 *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *     See the License for the specific language governing permissions and
 *     limitations under the License. */

15
#include "paddle/fluid/framework/data_set.h"
16

17
#include "google/protobuf/text_format.h"
W
wangzhen38 已提交
18 19 20
#if (defined PADDLE_WITH_DISTRIBUTE) && (defined PADDLE_WITH_PSCORE)
#include "paddle/fluid/distributed/index_dataset/index_sampler.h"
#endif
21
#include "paddle/fluid/framework/data_feed_factory.h"
W
wangzhen38 已提交
22
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
23
#include "paddle/fluid/framework/io/fs.h"
H
hutuxian 已提交
24
#include "paddle/fluid/platform/monitor.h"
25
#include "paddle/fluid/platform/timer.h"
26

Z
zhaocaibei123 已提交
27
#ifdef PADDLE_WITH_PSCORE
28
#include "paddle/fluid/distributed/ps/wrapper/fleet.h"
Z
zhaocaibei123 已提交
29 30
#endif

D
dongdaxiang 已提交
31 32 33 34 35
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

H
hutuxian 已提交
36
USE_INT_STAT(STAT_total_feasign_num_in_mem);
37 38 39
namespace paddle {
namespace framework {

X
xjqbest 已提交
40
// constructor
41
template <typename T>
D
dongdaxiang 已提交
42
DatasetImpl<T>::DatasetImpl() {
J
jiaqi 已提交
43
  VLOG(3) << "DatasetImpl<T>::DatasetImpl() constructor";
D
dongdaxiang 已提交
44
  thread_num_ = 1;
45
  trainer_num_ = 1;
J
jiaqi 已提交
46
  channel_num_ = 1;
47
  file_idx_ = 0;
H
hutuxian 已提交
48
  total_fea_num_ = 0;
J
jiaqi 已提交
49
  cur_channel_ = 0;
50 51
  fleet_send_batch_size_ = 1024;
  fleet_send_sleep_seconds_ = 0;
52
  merge_by_insid_ = false;
53 54
  merge_by_sid_ = true;
  enable_pv_merge_ = false;
55
  merge_size_ = 2;
56 57
  parse_ins_id_ = false;
  parse_content_ = false;
58
  parse_logkey_ = false;
59
  preload_thread_num_ = 0;
60
  global_index_ = 0;
61 62
  shuffle_by_uid_ = false;
  parse_uid_ = false;
D
dongdaxiang 已提交
63
}
64

X
xjqbest 已提交
65
// set filelist, file_idx_ will reset to zero.
66 67
template <typename T>
void DatasetImpl<T>::SetFileList(const std::vector<std::string>& filelist) {
68
  VLOG(3) << "filelist size: " << filelist.size();
69
  filelist_ = filelist;
70
  file_idx_ = 0;
71 72
}

X
xjqbest 已提交
73
// set expect thread num. actually it may change
74 75
template <typename T>
void DatasetImpl<T>::SetThreadNum(int thread_num) {
76
  VLOG(3) << "SetThreadNum thread_num=" << thread_num;
77 78 79
  thread_num_ = thread_num;
}

X
xjqbest 已提交
80 81 82
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetTrainerNum
83
template <typename T>
X
xujiaqi01 已提交
84 85
void DatasetImpl<T>::SetTrainerNum(int trainer_num) {
  trainer_num_ = trainer_num;
86 87
}

X
xjqbest 已提交
88 89 90 91 92 93 94 95
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetFleetSendBatchSize
template <typename T>
void DatasetImpl<T>::SetFleetSendBatchSize(int64_t size) {
  fleet_send_batch_size_ = size;
}

96 97 98
template <typename T>
void DatasetImpl<T>::SetHdfsConfig(const std::string& fs_name,
                                   const std::string& fs_ugi) {
X
xjqbest 已提交
99 100
  fs_name_ = fs_name;
  fs_ugi_ = fs_ugi;
101
  std::string cmd = std::string("$HADOOP_HOME/bin/hadoop fs");
102 103
  cmd += " -D fs.default.name=" + fs_name;
  cmd += " -D hadoop.job.ugi=" + fs_ugi;
104
  cmd += " -Ddfs.client.block.write.retries=15 -Ddfs.rpc.timeout=500000";
105
  paddle::framework::hdfs_set_command(cmd);
X
xujiaqi01 已提交
106
}
107

108 109 110 111 112 113 114 115 116 117
template <typename T>
void DatasetImpl<T>::SetDownloadCmd(const std::string& download_cmd) {
  paddle::framework::set_download_command(download_cmd);
}

template <typename T>
std::string DatasetImpl<T>::GetDownloadCmd() {
  return paddle::framework::download_cmd();
}

118 119
template <typename T>
void DatasetImpl<T>::SetDataFeedDesc(const std::string& data_feed_desc_str) {
120 121
  google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
                                                &data_feed_desc_);
122 123
}

Y
yaoxuefeng 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
template <typename T>
std::vector<std::string> DatasetImpl<T>::GetSlots() {
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  use_slots_.clear();
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    if (slot.type() == "uint64" || slot.type() == "uint32") {
      use_slots_.push_back(slot.name());
    }
  }
  std::cout << "dataset use slots: ";
  for (auto s : use_slots_) {
    std::cout << s << " | ";
  }
  std::cout << " end " << std::endl;
  return use_slots_;
}

142
template <typename T>
J
jiaqi 已提交
143 144 145 146
void DatasetImpl<T>::SetChannelNum(int channel_num) {
  channel_num_ = channel_num;
}

147 148 149 150 151 152 153 154 155 156
template <typename T>
void DatasetImpl<T>::SetParseInsId(bool parse_ins_id) {
  parse_ins_id_ = parse_ins_id;
}

template <typename T>
void DatasetImpl<T>::SetParseContent(bool parse_content) {
  parse_content_ = parse_content;
}

157 158 159 160 161
template <typename T>
void DatasetImpl<T>::SetParseLogKey(bool parse_logkey) {
  parse_logkey_ = parse_logkey;
}

162
template <typename T>
163
void DatasetImpl<T>::SetMergeByInsId(int merge_size) {
164
  merge_by_insid_ = true;
165
  parse_ins_id_ = true;
166
  merge_size_ = merge_size;
167 168
}

169 170 171 172 173
template <typename T>
void DatasetImpl<T>::SetMergeBySid(bool is_merge) {
  merge_by_sid_ = is_merge;
}

174 175 176 177 178 179
template <typename T>
void DatasetImpl<T>::SetShuffleByUid(bool enable_shuffle_uid) {
  shuffle_by_uid_ = enable_shuffle_uid;
  parse_uid_ = true;
}

180 181 182 183 184
template <typename T>
void DatasetImpl<T>::SetEnablePvMerge(bool enable_pv_merge) {
  enable_pv_merge_ = enable_pv_merge;
}

185 186 187 188 189 190
template <typename T>
void DatasetImpl<T>::SetGenerateUniqueFeasign(bool gen_uni_feasigns) {
  gen_uni_feasigns_ = gen_uni_feasigns;
  VLOG(3) << "Set generate unique feasigns: " << gen_uni_feasigns;
}

191 192 193 194 195 196 197 198
template <typename T>
void DatasetImpl<T>::SetFeaEval(bool fea_eval, int record_candidate_size) {
  slots_shuffle_fea_eval_ = fea_eval;
  slots_shuffle_rclist_.ReSize(record_candidate_size);
  VLOG(3) << "SetFeaEval fea eval mode: " << fea_eval
          << " with record candidate size: " << record_candidate_size;
}

J
jiaqi 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
template <typename T>
std::vector<paddle::framework::DataFeed*> DatasetImpl<T>::GetReaders() {
  std::vector<paddle::framework::DataFeed*> ret;
  ret.reserve(readers_.size());
  for (auto i : readers_) {
    ret.push_back(i.get());
  }
  return ret;
}

template <typename T>
void DatasetImpl<T>::CreateChannel() {
  if (input_channel_ == nullptr) {
    input_channel_ = paddle::framework::MakeChannel<T>();
  }
  if (multi_output_channel_.size() == 0) {
    multi_output_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_output_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
  if (multi_consume_channel_.size() == 0) {
    multi_consume_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_consume_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
  if (input_pv_channel_ == nullptr) {
    input_pv_channel_ = paddle::framework::MakeChannel<PvInstance>();
  }
  if (multi_pv_output_.size() == 0) {
    multi_pv_output_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_pv_output_.push_back(paddle::framework::MakeChannel<PvInstance>());
    }
  }
  if (multi_pv_consume_.size() == 0) {
    multi_pv_consume_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_pv_consume_.push_back(paddle::framework::MakeChannel<PvInstance>());
    }
  }
241 242
}

243 244 245
// if sent message between workers, should first call this function
template <typename T>
void DatasetImpl<T>::RegisterClientToClientMsgHandler() {
Z
zhaocaibei123 已提交
246 247 248 249 250 251
#ifdef PADDLE_WITH_PSCORE
  auto fleet_ptr = distributed::FleetWrapper::GetInstance();
#else
  auto fleet_ptr = framework::FleetWrapper::GetInstance();
#endif
  VLOG(1) << "RegisterClientToClientMsgHandler";
252 253 254 255
  fleet_ptr->RegisterClientToClientMsgHandler(
      0, [this](int msg_type, int client_id, const std::string& msg) -> int {
        return this->ReceiveFromClient(msg_type, client_id, msg);
      });
Z
zhaocaibei123 已提交
256
  VLOG(1) << "RegisterClientToClientMsgHandler done";
257
}
Y
yaoxuefeng 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
static void compute_left_batch_num(const int ins_num, const int thread_num,
                                   std::vector<std::pair<int, int>>* offset,
                                   const int start_pos) {
  int cur_pos = start_pos;
  int batch_size = ins_num / thread_num;
  int left_num = ins_num % thread_num;
  for (int i = 0; i < thread_num; ++i) {
    int batch_num_size = batch_size;
    if (i == 0) {
      batch_num_size = batch_num_size + left_num;
    }
    offset->push_back(std::make_pair(cur_pos, batch_num_size));
    cur_pos += batch_num_size;
  }
}

static void compute_batch_num(const int64_t ins_num, const int batch_size,
                              const int thread_num,
                              std::vector<std::pair<int, int>>* offset) {
  int thread_batch_num = batch_size * thread_num;
  // less data
  if (static_cast<int64_t>(thread_batch_num) > ins_num) {
    compute_left_batch_num(ins_num, thread_num, offset, 0);
    return;
  }

  int cur_pos = 0;
  int offset_num = static_cast<int>(ins_num / thread_batch_num) * thread_num;
  int left_ins_num = static_cast<int>(ins_num % thread_batch_num);
  if (left_ins_num > 0 && left_ins_num < thread_num) {
    offset_num = offset_num - thread_num;
    left_ins_num = left_ins_num + thread_batch_num;
    for (int i = 0; i < offset_num; ++i) {
      offset->push_back(std::make_pair(cur_pos, batch_size));
      cur_pos += batch_size;
    }
    // split data to thread avg two rounds
    compute_left_batch_num(left_ins_num, thread_num * 2, offset, cur_pos);
  } else {
    for (int i = 0; i < offset_num; ++i) {
      offset->push_back(std::make_pair(cur_pos, batch_size));
      cur_pos += batch_size;
    }
    if (left_ins_num > 0) {
      compute_left_batch_num(left_ins_num, thread_num, offset, cur_pos);
    }
  }
}

static int compute_thread_batch_nccl(
    const int thr_num, const int64_t total_instance_num,
    const int minibatch_size, std::vector<std::pair<int, int>>* nccl_offsets) {
  int thread_avg_batch_num = 0;
  if (total_instance_num < static_cast<int64_t>(thr_num)) {
    LOG(WARNING) << "compute_thread_batch_nccl total ins num:["
                 << total_instance_num << "], less thread num:[" << thr_num
                 << "]";
    return thread_avg_batch_num;
  }

  auto& offset = (*nccl_offsets);
  // split data avg by thread num
  compute_batch_num(total_instance_num, minibatch_size, thr_num, &offset);
  thread_avg_batch_num = static_cast<int>(offset.size() / thr_num);
#ifdef PADDLE_WITH_GLOO
  auto gloo_wrapper = paddle::framework::GlooWrapper::GetInstance();
  if (gloo_wrapper->Size() > 1) {
325 326 327 328
    if (!gloo_wrapper->IsInitialized()) {
      VLOG(0) << "GLOO is not inited";
      gloo_wrapper->Init();
    }
Y
yaoxuefeng 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
    // adjust batch num per thread for NCCL
    std::vector<int> thread_avg_batch_num_vec(1, thread_avg_batch_num);
    std::vector<int64_t> total_instance_num_vec(1, total_instance_num);
    auto thread_max_batch_num_vec =
        gloo_wrapper->AllReduce(thread_avg_batch_num_vec, "max");
    auto sum_total_ins_num_vec =
        gloo_wrapper->AllReduce(total_instance_num_vec, "sum");
    int thread_max_batch_num = thread_max_batch_num_vec[0];
    int64_t sum_total_ins_num = sum_total_ins_num_vec[0];
    int diff_batch_num = thread_max_batch_num - thread_avg_batch_num;
    VLOG(3) << "diff batch num: " << diff_batch_num
            << " thread max batch num: " << thread_max_batch_num
            << " thread avg batch num: " << thread_avg_batch_num;
    if (diff_batch_num == 0) {
      LOG(WARNING) << "total sum ins " << sum_total_ins_num << ", thread_num "
                   << thr_num << ", ins num " << total_instance_num
                   << ", batch num " << offset.size()
                   << ", thread avg batch num " << thread_avg_batch_num;
      return thread_avg_batch_num;
    }

    int need_ins_num = thread_max_batch_num * thr_num;
    // data is too less
    if ((int64_t)need_ins_num > total_instance_num) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "error instance num:[%d] less need ins num:[%d]", total_instance_num,
          need_ins_num));
      return thread_avg_batch_num;
    }

    int need_batch_num = (diff_batch_num + 1) * thr_num;
    int offset_split_index = static_cast<int>(offset.size() - thr_num);
    int split_left_num = total_instance_num - offset[offset_split_index].first;
    while (split_left_num < need_batch_num) {
      need_batch_num += thr_num;
      offset_split_index -= thr_num;
      split_left_num = total_instance_num - offset[offset_split_index].first;
    }
    int split_start = offset[offset_split_index].first;
    offset.resize(offset_split_index);
    compute_left_batch_num(split_left_num, need_batch_num, &offset,
                           split_start);
    LOG(WARNING) << "total sum ins " << sum_total_ins_num << ", thread_num "
                 << thr_num << ", ins num " << total_instance_num
                 << ", batch num " << offset.size() << ", thread avg batch num "
                 << thread_avg_batch_num << ", thread max batch num "
                 << thread_max_batch_num
                 << ", need batch num: " << (need_batch_num / thr_num)
                 << "split begin (" << split_start << ")" << split_start
                 << ", num " << split_left_num;
    thread_avg_batch_num = thread_max_batch_num;
  } else {
    LOG(WARNING) << "thread_num " << thr_num << ", ins num "
                 << total_instance_num << ", batch num " << offset.size()
                 << ", thread avg batch num " << thread_avg_batch_num;
  }
#else
  PADDLE_THROW(platform::errors::Unavailable(
      "dataset compute nccl batch number need compile with GLOO"));
#endif
  return thread_avg_batch_num;
}

Y
yaoxuefeng 已提交
392
void MultiSlotDataset::PrepareTrain() {
Y
yaoxuefeng 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
#ifdef PADDLE_WITH_GLOO
  if (enable_heterps_) {
    if (input_records_.size() == 0 && input_channel_ != nullptr &&
        input_channel_->Size() != 0) {
      input_channel_->ReadAll(input_records_);
      VLOG(3) << "read from channel to records with records size: "
              << input_records_.size();
    }
    VLOG(3) << "input records size: " << input_records_.size();
    int64_t total_ins_num = input_records_.size();
    std::vector<std::pair<int, int>> offset;
    int default_batch_size =
        reinterpret_cast<MultiSlotInMemoryDataFeed*>(readers_[0].get())
            ->GetDefaultBatchSize();
    VLOG(3) << "thread_num: " << thread_num_
            << " memory size: " << total_ins_num
            << " default batch_size: " << default_batch_size;
    compute_thread_batch_nccl(thread_num_, total_ins_num, default_batch_size,
                              &offset);
    VLOG(3) << "offset size: " << offset.size();
    for (int i = 0; i < thread_num_; i++) {
      reinterpret_cast<MultiSlotInMemoryDataFeed*>(readers_[i].get())
          ->SetRecord(&input_records_[0]);
    }
    for (size_t i = 0; i < offset.size(); i++) {
      reinterpret_cast<MultiSlotInMemoryDataFeed*>(
          readers_[i % thread_num_].get())
          ->AddBatchOffset(offset[i]);
    }
  }
#else
  PADDLE_THROW(platform::errors::Unavailable(
      "dataset set heterps need compile with GLOO"));
#endif
  return;
}
429

X
xjqbest 已提交
430 431
// load data into memory, Dataset hold this memory,
// which will later be fed into readers' channel
432 433 434
template <typename T>
void DatasetImpl<T>::LoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() begin";
435 436
  platform::Timer timeline;
  timeline.Start();
437 438
  std::vector<std::thread> load_threads;
  for (int64_t i = 0; i < thread_num_; ++i) {
D
dongdaxiang 已提交
439 440
    load_threads.push_back(std::thread(
        &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
441 442 443 444
  }
  for (std::thread& t : load_threads) {
    t.join();
  }
J
jiaqi 已提交
445 446 447
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
448

449 450
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() end"
J
jiaqi 已提交
451
          << ", memory data size=" << input_channel_->Size()
452
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
453 454
}

J
jiaqi 已提交
455 456 457
template <typename T>
void DatasetImpl<T>::PreLoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() begin";
458
  if (preload_thread_num_ != 0) {
459
    CHECK(static_cast<size_t>(preload_thread_num_) == preload_readers_.size());
460 461 462 463 464 465 466
    preload_threads_.clear();
    for (int64_t i = 0; i < preload_thread_num_; ++i) {
      preload_threads_.push_back(
          std::thread(&paddle::framework::DataFeed::LoadIntoMemory,
                      preload_readers_[i].get()));
    }
  } else {
467
    CHECK(static_cast<size_t>(thread_num_) == readers_.size());
468 469 470 471 472
    preload_threads_.clear();
    for (int64_t i = 0; i < thread_num_; ++i) {
      preload_threads_.push_back(std::thread(
          &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
    }
J
jiaqi 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
  }
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() end";
}

template <typename T>
void DatasetImpl<T>::WaitPreLoadDone() {
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() begin";
  for (std::thread& t : preload_threads_) {
    t.join();
  }
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() end";
}

489 490 491
// release memory data
template <typename T>
void DatasetImpl<T>::ReleaseMemory() {
T
Thunderbrook 已提交
492 493 494 495 496
  release_thread_ = new std::thread(&DatasetImpl<T>::ReleaseMemoryFun, this);
}

template <typename T>
void DatasetImpl<T>::ReleaseMemoryFun() {
497
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() begin";
J
jiaqi 已提交
498 499 500 501 502 503 504 505 506 507
  if (input_channel_) {
    input_channel_->Clear();
    input_channel_ = nullptr;
  }
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    if (!multi_output_channel_[i]) {
      continue;
    }
    multi_output_channel_[i]->Clear();
    multi_output_channel_[i] = nullptr;
508
  }
J
jiaqi 已提交
509 510 511 512 513 514 515 516 517
  std::vector<paddle::framework::Channel<T>>().swap(multi_output_channel_);
  for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
    if (!multi_consume_channel_[i]) {
      continue;
    }
    multi_consume_channel_[i]->Clear();
    multi_consume_channel_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<T>>().swap(multi_consume_channel_);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
  if (input_pv_channel_) {
    input_pv_channel_->Clear();
    input_pv_channel_ = nullptr;
  }
  for (size_t i = 0; i < multi_pv_output_.size(); ++i) {
    if (!multi_pv_output_[i]) {
      continue;
    }
    multi_pv_output_[i]->Clear();
    multi_pv_output_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<PvInstance>>().swap(multi_pv_output_);
  for (size_t i = 0; i < multi_pv_consume_.size(); ++i) {
    if (!multi_pv_consume_[i]) {
      continue;
    }
    multi_pv_consume_[i]->Clear();
    multi_pv_consume_[i] = nullptr;
  }
Y
yaoxuefeng 已提交
537 538 539 540 541 542 543
  if (enable_heterps_) {
    input_records_.clear();
    input_records_.shrink_to_fit();
    std::vector<T>().swap(input_records_);
    VLOG(3) << "release heterps input records records size: "
            << input_records_.size();
  }
544 545
  std::vector<paddle::framework::Channel<PvInstance>>().swap(multi_pv_consume_);

J
jiaqi 已提交
546
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
547 548
  input_records_.clear();
  std::vector<T>().swap(input_records_);
H
hutuxian 已提交
549
  std::vector<T>().swap(slots_shuffle_original_data_);
550
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() end";
H
hutuxian 已提交
551 552 553 554 555
  VLOG(3) << "total_feasign_num_(" << STAT_GET(STAT_total_feasign_num_in_mem)
          << ") - current_fea_num_(" << total_fea_num_ << ") = ("
          << STAT_GET(STAT_total_feasign_num_in_mem) - total_fea_num_
          << ")";  // For Debug
  STAT_SUB(STAT_total_feasign_num_in_mem, total_fea_num_);
556 557
}

X
xjqbest 已提交
558
// do local shuffle
559 560 561
template <typename T>
void DatasetImpl<T>::LocalShuffle() {
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() begin";
562 563
  platform::Timer timeline;
  timeline.Start();
564

J
jiaqi 已提交
565 566 567
  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, no data to shuffle";
    return;
568
  }
Z
zhaocaibei123 已提交
569
  auto fleet_ptr = framework::FleetWrapper::GetInstance();
J
jiaqi 已提交
570 571 572 573 574 575 576 577 578 579
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();
  input_channel_->Close();

580 581 582
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
583 584
}

W
wangzhen38 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
// do tdm sample
void MultiSlotDataset::TDMSample(const std::string tree_name,
                                 const std::string tree_path,
                                 const std::vector<uint16_t> tdm_layer_counts,
                                 const uint16_t start_sample_layer,
                                 const bool with_hierachy, const uint16_t seed_,
                                 const uint16_t sample_slot) {
#if (defined PADDLE_WITH_DISTRIBUTE) && (defined PADDLE_WITH_PSCORE)
  // init tdm tree
  auto wrapper_ptr = paddle::distributed::IndexWrapper::GetInstance();
  wrapper_ptr->insert_tree_index(tree_name, tree_path);
  auto tree_ptr = wrapper_ptr->get_tree_index(tree_name);
  auto _layer_wise_sample = paddle::distributed::LayerWiseSampler(tree_name);
  _layer_wise_sample.init_layerwise_conf(tdm_layer_counts, start_sample_layer,
                                         seed_);

  VLOG(0) << "DatasetImpl<T>::Sample() begin";
  platform::Timer timeline;
  timeline.Start();

  std::vector<std::vector<Record>> data;
  std::vector<std::vector<Record>> sample_results;
  if (!input_channel_ || input_channel_->Size() == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      std::vector<Record> tmp_data;
      data.push_back(tmp_data);
      if (!multi_output_channel_[i] || multi_output_channel_[i]->Size() == 0) {
        continue;
      }
      multi_output_channel_[i]->Close();
      multi_output_channel_[i]->ReadAll(data[i]);
    }
  } else {
    input_channel_->Close();
    std::vector<Record> tmp_data;
    data.push_back(tmp_data);
    input_channel_->ReadAll(data[data.size() - 1]);
  }

  VLOG(1) << "finish read src data, data.size = " << data.size()
          << "; details: ";
  auto fleet_ptr = FleetWrapper::GetInstance();
  for (unsigned int i = 0; i < data.size(); i++) {
    VLOG(1) << "data[" << i << "]: size = " << data[i].size();
    std::vector<Record> tmp_results;
    _layer_wise_sample.sample_from_dataset(sample_slot, &data[i], &tmp_results);
    VLOG(1) << "sample_results(" << sample_slot << ") = " << tmp_results.size();
    VLOG(0) << "start to put sample in vector!";
    // sample_results.push_back(tmp_results);
    for (unsigned int j = 0; j < tmp_results.size(); j++) {
      std::vector<Record> tmp_vec;
      tmp_vec.emplace_back(tmp_results[j]);
      sample_results.emplace_back(tmp_vec);
    }
    VLOG(0) << "finish to put sample in vector!";
  }

  auto output_channel_num = multi_output_channel_.size();
  for (unsigned int i = 0; i < sample_results.size(); i++) {
    auto output_idx = fleet_ptr->LocalRandomEngine()() % output_channel_num;
    multi_output_channel_[output_idx]->Open();
    // vector?
    multi_output_channel_[output_idx]->Write(std::move(sample_results[i]));
  }

  data.clear();
  sample_results.clear();
  data.shrink_to_fit();
  sample_results.shrink_to_fit();

  timeline.Pause();
  VLOG(0) << "DatasetImpl<T>::Sample() end, cost time=" << timeline.ElapsedSec()
          << " seconds";
#endif
  return;
}

Y
yaoxuefeng 已提交
662 663
void MultiSlotDataset::GlobalShuffle(int thread_num) {
  VLOG(3) << "MultiSlotDataset::GlobalShuffle() begin";
664 665
  platform::Timer timeline;
  timeline.Start();
Z
zhaocaibei123 已提交
666 667 668 669 670
#ifdef PADDLE_WITH_PSCORE
  auto fleet_ptr = distributed::FleetWrapper::GetInstance();
#else
  auto fleet_ptr = framework::FleetWrapper::GetInstance();
#endif
J
jiaqi 已提交
671 672

  if (!input_channel_ || input_channel_->Size() == 0) {
Y
yaoxuefeng 已提交
673
    VLOG(3) << "MultiSlotDataset::GlobalShuffle() end, no data to shuffle";
J
jiaqi 已提交
674 675 676 677 678
    return;
  }

  // local shuffle
  input_channel_->Close();
Y
yaoxuefeng 已提交
679
  std::vector<Record> data;
J
jiaqi 已提交
680 681 682 683 684 685 686 687 688
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();

  input_channel_->Close();
  input_channel_->SetBlockSize(fleet_send_batch_size_);
Y
yaoxuefeng 已提交
689
  VLOG(3) << "MultiSlotDataset::GlobalShuffle() input_channel_ size "
J
jiaqi 已提交
690 691
          << input_channel_->Size();

Y
yaoxuefeng 已提交
692
  auto get_client_id = [this, fleet_ptr](const Record& data) -> size_t {
693
    if (this->merge_by_insid_) {
694 695
      return XXH64(data.ins_id_.data(), data.ins_id_.length(), 0) %
             this->trainer_num_;
696 697 698 699 700
    } else if (this->shuffle_by_uid_) {
      return XXH64(data.uid_.data(), data.uid_.length(), 0) %
             this->trainer_num_;
    } else {
      return fleet_ptr->LocalRandomEngine()() % this->trainer_num_;
701 702 703 704
    }
  };

  auto global_shuffle_func = [this, get_client_id]() {
Z
zhaocaibei123 已提交
705 706 707 708 709 710
#ifdef PADDLE_WITH_PSCORE
    auto fleet_ptr = distributed::FleetWrapper::GetInstance();
#else
    auto fleet_ptr = framework::FleetWrapper::GetInstance();
#endif
    // auto fleet_ptr = framework::FleetWrapper::GetInstance();
Y
yaoxuefeng 已提交
711
    std::vector<Record> data;
J
jiaqi 已提交
712 713 714
    while (this->input_channel_->Read(data)) {
      std::vector<paddle::framework::BinaryArchive> ars(this->trainer_num_);
      for (auto& t : data) {
715
        auto client_id = get_client_id(t);
J
jiaqi 已提交
716 717 718 719 720 721 722 723 724
        ars[client_id] << t;
      }
      std::vector<std::future<int32_t>> total_status;
      std::vector<int> send_index(this->trainer_num_);
      for (int i = 0; i < this->trainer_num_; ++i) {
        send_index[i] = i;
      }
      std::shuffle(send_index.begin(), send_index.end(),
                   fleet_ptr->LocalRandomEngine());
725
      for (int index = 0; index < this->trainer_num_; ++index) {
J
jiaqi 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
        int i = send_index[index];
        if (ars[i].Length() == 0) {
          continue;
        }
        std::string msg(ars[i].Buffer(), ars[i].Length());
        auto ret = fleet_ptr->SendClientToClientMsg(0, i, msg);
        total_status.push_back(std::move(ret));
      }
      for (auto& t : total_status) {
        t.wait();
      }
      ars.clear();
      ars.shrink_to_fit();
      data.clear();
      data.shrink_to_fit();
741 742 743 744 745 746
      // currently we find bottleneck is server not able to handle large data
      // in time, so we can remove this sleep and set fleet_send_batch_size to
      // 1024, and set server thread to 24.
      if (fleet_send_sleep_seconds_ != 0) {
        sleep(this->fleet_send_sleep_seconds_);
      }
J
jiaqi 已提交
747 748 749
    }
  };

750
  std::vector<std::thread> global_shuffle_threads;
751 752 753 754 755
  if (thread_num == -1) {
    thread_num = thread_num_;
  }
  VLOG(3) << "start global shuffle threads, num = " << thread_num;
  for (int i = 0; i < thread_num; ++i) {
J
jiaqi 已提交
756
    global_shuffle_threads.push_back(std::thread(global_shuffle_func));
757 758 759
  }
  for (std::thread& t : global_shuffle_threads) {
    t.join();
760
  }
J
jiaqi 已提交
761 762 763
  global_shuffle_threads.clear();
  global_shuffle_threads.shrink_to_fit();
  input_channel_->Clear();
764 765 766
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
767 768
}

769
template <typename T>
H
hutuxian 已提交
770 771
void DatasetImpl<T>::DynamicAdjustChannelNum(int channel_num,
                                             bool discard_remaining_ins) {
772 773 774 775 776 777 778 779 780 781
  if (channel_num_ == channel_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustChannelNum channel_num_="
            << channel_num_ << ", channel_num_=channel_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust channel num from " << channel_num_ << " to "
          << channel_num;
  channel_num_ = channel_num;
  std::vector<paddle::framework::Channel<T>>* origin_channels = nullptr;
  std::vector<paddle::framework::Channel<T>>* other_channels = nullptr;
782 783 784 785 786
  std::vector<paddle::framework::Channel<PvInstance>>* origin_pv_channels =
      nullptr;
  std::vector<paddle::framework::Channel<PvInstance>>* other_pv_channels =
      nullptr;

787 788 789 790 791
  // find out which channel (output or consume) has data
  int cur_channel = 0;
  uint64_t output_channels_data_size = 0;
  uint64_t consume_channels_data_size = 0;
  CHECK(multi_output_channel_.size() == multi_consume_channel_.size());
792
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
793 794 795 796 797 798 799 800 801 802 803 804 805
    output_channels_data_size += multi_output_channel_[i]->Size();
    consume_channels_data_size += multi_consume_channel_[i]->Size();
  }
  if (output_channels_data_size != 0) {
    CHECK(consume_channels_data_size == 0);  // NOLINT
    cur_channel = 0;
  } else {
    CHECK(output_channels_data_size == 0);  // NOLINT
    cur_channel = 1;
  }
  if (cur_channel == 0) {
    origin_channels = &multi_output_channel_;
    other_channels = &multi_consume_channel_;
806 807
    origin_pv_channels = &multi_pv_output_;
    other_pv_channels = &multi_pv_consume_;
808 809 810
  } else {
    origin_channels = &multi_consume_channel_;
    other_channels = &multi_output_channel_;
811 812
    origin_pv_channels = &multi_pv_consume_;
    other_pv_channels = &multi_pv_output_;
813
  }
814 815 816 817
  CHECK(origin_channels != nullptr);     // NOLINT
  CHECK(other_channels != nullptr);      // NOLINT
  CHECK(origin_pv_channels != nullptr);  // NOLINT
  CHECK(other_pv_channels != nullptr);   // NOLINT
818 819 820 821 822

  paddle::framework::Channel<T> total_data_channel =
      paddle::framework::MakeChannel<T>();
  std::vector<paddle::framework::Channel<T>> new_channels;
  std::vector<paddle::framework::Channel<T>> new_other_channels;
823 824 825
  std::vector<paddle::framework::Channel<PvInstance>> new_pv_channels;
  std::vector<paddle::framework::Channel<PvInstance>> new_other_pv_channels;

826
  std::vector<T> local_vec;
827
  for (size_t i = 0; i < origin_channels->size(); ++i) {
828 829 830 831 832 833
    local_vec.clear();
    (*origin_channels)[i]->Close();
    (*origin_channels)[i]->ReadAll(local_vec);
    total_data_channel->Write(std::move(local_vec));
  }
  total_data_channel->Close();
H
hutuxian 已提交
834 835 836 837
  if (static_cast<int>(total_data_channel->Size()) >= channel_num) {
    total_data_channel->SetBlockSize(total_data_channel->Size() / channel_num +
                                     (discard_remaining_ins ? 0 : 1));
  }
H
hutuxian 已提交
838
  if (static_cast<int>(input_channel_->Size()) >= channel_num) {
H
hutuxian 已提交
839 840
    input_channel_->SetBlockSize(input_channel_->Size() / channel_num +
                                 (discard_remaining_ins ? 0 : 1));
H
hutuxian 已提交
841
  }
842 843 844 845 846 847
  if (static_cast<int>(input_pv_channel_->Size()) >= channel_num) {
    input_pv_channel_->SetBlockSize(input_pv_channel_->Size() / channel_num +
                                    (discard_remaining_ins ? 0 : 1));
    VLOG(3) << "now input_pv_channle block size is "
            << input_pv_channel_->BlockSize();
  }
848 849 850 851 852 853 854

  for (int i = 0; i < channel_num; ++i) {
    local_vec.clear();
    total_data_channel->Read(local_vec);
    new_other_channels.push_back(paddle::framework::MakeChannel<T>());
    new_channels.push_back(paddle::framework::MakeChannel<T>());
    new_channels[i]->Write(std::move(local_vec));
855 856 857
    new_other_pv_channels.push_back(
        paddle::framework::MakeChannel<PvInstance>());
    new_pv_channels.push_back(paddle::framework::MakeChannel<PvInstance>());
858 859 860 861 862 863 864 865
  }

  total_data_channel->Clear();
  origin_channels->clear();
  other_channels->clear();
  *origin_channels = new_channels;
  *other_channels = new_other_channels;

866 867 868 869 870
  origin_pv_channels->clear();
  other_pv_channels->clear();
  *origin_pv_channels = new_pv_channels;
  *other_pv_channels = new_other_pv_channels;

871 872 873 874
  new_channels.clear();
  new_other_channels.clear();
  std::vector<paddle::framework::Channel<T>>().swap(new_channels);
  std::vector<paddle::framework::Channel<T>>().swap(new_other_channels);
875 876 877 878 879 880 881

  new_pv_channels.clear();
  new_other_pv_channels.clear();
  std::vector<paddle::framework::Channel<PvInstance>>().swap(new_pv_channels);
  std::vector<paddle::framework::Channel<PvInstance>>().swap(
      new_other_pv_channels);

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
  local_vec.clear();
  std::vector<T>().swap(local_vec);
  VLOG(3) << "adjust channel num done";
}

template <typename T>
void DatasetImpl<T>::DynamicAdjustReadersNum(int thread_num) {
  if (thread_num_ == thread_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustReadersNum thread_num_="
            << thread_num_ << ", thread_num_=thread_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust readers num from " << thread_num_ << " to " << thread_num;
  thread_num_ = thread_num;
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
  CreateReaders();
  VLOG(3) << "adjust readers num done";
}

template <typename T>
void DatasetImpl<T>::SetFleetSendSleepSeconds(int seconds) {
  fleet_send_sleep_seconds_ = seconds;
}

906 907
template <typename T>
void DatasetImpl<T>::CreateReaders() {
908
  VLOG(3) << "Calling CreateReaders()";
J
jiaqi 已提交
909 910 911 912 913 914
  VLOG(3) << "thread num in Dataset: " << thread_num_;
  VLOG(3) << "Filelist size in Dataset: " << filelist_.size();
  VLOG(3) << "channel num in Dataset: " << channel_num_;
  CHECK(thread_num_ > 0) << "thread num should > 0";
  CHECK(channel_num_ > 0) << "channel num should > 0";
  CHECK(channel_num_ <= thread_num_) << "channel num should <= thread num";
915
  VLOG(3) << "readers size: " << readers_.size();
916
  if (readers_.size() != 0) {
J
jiaqi 已提交
917 918
    VLOG(3) << "readers_.size() = " << readers_.size()
            << ", will not create again";
919 920
    return;
  }
921
  VLOG(3) << "data feed class name: " << data_feed_desc_.name();
J
jiaqi 已提交
922
  int channel_idx = 0;
923
  for (int i = 0; i < thread_num_; ++i) {
924
    readers_.push_back(DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
J
jiaqi 已提交
925 926 927 928 929
    readers_[i]->Init(data_feed_desc_);
    readers_[i]->SetThreadId(i);
    readers_[i]->SetThreadNum(thread_num_);
    readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    readers_[i]->SetFileListIndex(&file_idx_);
H
hutuxian 已提交
930 931
    readers_[i]->SetFeaNumMutex(&mutex_for_fea_num_);
    readers_[i]->SetFeaNum(&total_fea_num_);
J
jiaqi 已提交
932
    readers_[i]->SetFileList(filelist_);
933
    readers_[i]->SetParseInsId(parse_ins_id_);
934
    readers_[i]->SetParseUid(parse_uid_);
935
    readers_[i]->SetParseContent(parse_content_);
936 937 938 939 940 941
    readers_[i]->SetParseLogKey(parse_logkey_);
    readers_[i]->SetEnablePvMerge(enable_pv_merge_);
    // Notice: it is only valid for untest of test_paddlebox_datafeed.
    // In fact, it does not affect the train process when paddle is
    // complied with Box_Ps.
    readers_[i]->SetCurrentPhase(current_phase_);
J
jiaqi 已提交
942 943 944
    if (input_channel_ != nullptr) {
      readers_[i]->SetInputChannel(input_channel_.get());
    }
945 946 947
    if (input_pv_channel_ != nullptr) {
      readers_[i]->SetInputPvChannel(input_pv_channel_.get());
    }
948 949
    if (cur_channel_ == 0 &&
        static_cast<size_t>(channel_idx) < multi_output_channel_.size()) {
J
jiaqi 已提交
950 951
      readers_[i]->SetOutputChannel(multi_output_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_consume_channel_[channel_idx].get());
952 953
      readers_[i]->SetOutputPvChannel(multi_pv_output_[channel_idx].get());
      readers_[i]->SetConsumePvChannel(multi_pv_consume_[channel_idx].get());
954 955
    } else if (static_cast<size_t>(channel_idx) <
               multi_output_channel_.size()) {
J
jiaqi 已提交
956 957
      readers_[i]->SetOutputChannel(multi_consume_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_output_channel_[channel_idx].get());
958 959
      readers_[i]->SetOutputPvChannel(multi_pv_consume_[channel_idx].get());
      readers_[i]->SetConsumePvChannel(multi_pv_output_[channel_idx].get());
J
jiaqi 已提交
960 961 962 963 964
    }
    ++channel_idx;
    if (channel_idx >= channel_num_) {
      channel_idx = 0;
    }
965
  }
J
jiaqi 已提交
966
  VLOG(3) << "readers size: " << readers_.size();
967 968
}

969 970 971
template <typename T>
void DatasetImpl<T>::DestroyReaders() {
  VLOG(3) << "Calling DestroyReaders()";
972
  VLOG(3) << "readers size1: " << readers_.size();
973
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
974
  VLOG(3) << "readers size: " << readers_.size();
J
jiaqi 已提交
975 976
  file_idx_ = 0;
  cur_channel_ = 1 - cur_channel_;
977 978
}

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
template <typename T>
void DatasetImpl<T>::SetPreLoadThreadNum(int thread_num) {
  preload_thread_num_ = thread_num;
}

template <typename T>
void DatasetImpl<T>::CreatePreLoadReaders() {
  VLOG(3) << "Begin CreatePreLoadReaders";
  if (preload_thread_num_ == 0) {
    preload_thread_num_ = thread_num_;
  }
  CHECK(preload_thread_num_ > 0) << "thread num should > 0";
  CHECK(input_channel_ != nullptr);
  preload_readers_.clear();
  for (int i = 0; i < preload_thread_num_; ++i) {
    preload_readers_.push_back(
        DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
    preload_readers_[i]->Init(data_feed_desc_);
    preload_readers_[i]->SetThreadId(i);
    preload_readers_[i]->SetThreadNum(preload_thread_num_);
    preload_readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    preload_readers_[i]->SetFileListIndex(&file_idx_);
    preload_readers_[i]->SetFileList(filelist_);
H
hutuxian 已提交
1002 1003
    preload_readers_[i]->SetFeaNumMutex(&mutex_for_fea_num_);
    preload_readers_[i]->SetFeaNum(&total_fea_num_);
1004
    preload_readers_[i]->SetParseInsId(parse_ins_id_);
1005
    preload_readers_[i]->SetParseUid(parse_uid_);
1006
    preload_readers_[i]->SetParseContent(parse_content_);
1007 1008
    preload_readers_[i]->SetParseLogKey(parse_logkey_);
    preload_readers_[i]->SetEnablePvMerge(enable_pv_merge_);
1009 1010 1011
    preload_readers_[i]->SetInputChannel(input_channel_.get());
    preload_readers_[i]->SetOutputChannel(nullptr);
    preload_readers_[i]->SetConsumeChannel(nullptr);
1012 1013
    preload_readers_[i]->SetOutputPvChannel(nullptr);
    preload_readers_[i]->SetConsumePvChannel(nullptr);
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
  }
  VLOG(3) << "End CreatePreLoadReaders";
}

template <typename T>
void DatasetImpl<T>::DestroyPreLoadReaders() {
  VLOG(3) << "Begin DestroyPreLoadReaders";
  preload_readers_.clear();
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(
      preload_readers_);
  file_idx_ = 0;
  VLOG(3) << "End DestroyPreLoadReaders";
}

1028 1029
template <typename T>
int64_t DatasetImpl<T>::GetMemoryDataSize() {
J
jiaqi 已提交
1030
  return input_channel_->Size();
1031 1032
}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
template <typename T>
int64_t DatasetImpl<T>::GetPvDataSize() {
  if (enable_pv_merge_) {
    return input_pv_channel_->Size();
  } else {
    VLOG(0) << "It does not merge pv..";
    return 0;
  }
}

1043 1044 1045
template <typename T>
int64_t DatasetImpl<T>::GetShuffleDataSize() {
  int64_t sum = 0;
J
jiaqi 已提交
1046 1047
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    sum += multi_output_channel_[i]->Size() + multi_consume_channel_[i]->Size();
1048 1049 1050 1051
  }
  return sum;
}

Y
yaoxuefeng 已提交
1052 1053
int MultiSlotDataset::ReceiveFromClient(int msg_type, int client_id,
                                        const std::string& msg) {
D
dongdaxiang 已提交
1054
#ifdef _LINUX
1055
  VLOG(3) << "ReceiveFromClient msg_type=" << msg_type
1056
          << ", client_id=" << client_id << ", msg length=" << msg.length();
J
jiaqi 已提交
1057 1058 1059 1060 1061 1062 1063 1064
  if (msg.length() == 0) {
    return 0;
  }
  paddle::framework::BinaryArchive ar;
  ar.SetReadBuffer(const_cast<char*>(msg.c_str()), msg.length(), nullptr);
  if (ar.Cursor() == ar.Finish()) {
    return 0;
  }
Y
yaoxuefeng 已提交
1065
  std::vector<Record> data;
J
jiaqi 已提交
1066
  while (ar.Cursor() < ar.Finish()) {
Y
yaoxuefeng 已提交
1067
    data.push_back(ar.Get<Record>());
J
jiaqi 已提交
1068 1069 1070
  }
  CHECK(ar.Cursor() == ar.Finish());

Z
zhaocaibei123 已提交
1071
  auto fleet_ptr = framework::FleetWrapper::GetInstance();
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
  // not use random because it doesn't perform well here.
  // to make sure each channel get data equally, we just put data to
  // channel one by one.
  // int64_t index = fleet_ptr->LocalRandomEngine()() % channel_num_;
  int64_t index = 0;
  {
    std::unique_lock<std::mutex> lk(global_index_mutex_);
    index = global_index_++;
  }
  index = index % channel_num_;
1082
  VLOG(3) << "ramdom index=" << index;
J
jiaqi 已提交
1083 1084 1085 1086
  multi_output_channel_[index]->Write(std::move(data));

  data.clear();
  data.shrink_to_fit();
D
dongdaxiang 已提交
1087
#endif
1088 1089 1090
  return 0;
}

1091
// explicit instantiation
J
jiaqi 已提交
1092
template class DatasetImpl<Record>;
1093

Y
yaoxuefeng 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
void MultiSlotDataset::DynamicAdjustReadersNum(int thread_num) {
  if (thread_num_ == thread_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustReadersNum thread_num_="
            << thread_num_ << ", thread_num_=thread_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust readers num from " << thread_num_ << " to " << thread_num;
  thread_num_ = thread_num;
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
  CreateReaders();
  VLOG(3) << "adjust readers num done";
  PrepareTrain();
}

1108 1109 1110
void MultiSlotDataset::PostprocessInstance() {
  // divide pv instance, and merge to input_channel_
  if (enable_pv_merge_) {
Z
zhaocaibei123 已提交
1111
    auto fleet_ptr = framework::FleetWrapper::GetInstance();
1112 1113
    std::shuffle(input_records_.begin(), input_records_.end(),
                 fleet_ptr->LocalRandomEngine());
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
    input_channel_->Open();
    input_channel_->Write(std::move(input_records_));
    for (size_t i = 0; i < multi_pv_consume_.size(); ++i) {
      multi_pv_consume_[i]->Clear();
    }
    input_channel_->Close();
    input_records_.clear();
    input_records_.shrink_to_fit();
  } else {
    input_channel_->Open();
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      std::vector<Record> ins_data;
      multi_consume_channel_[i]->Close();
      multi_consume_channel_[i]->ReadAll(ins_data);
      input_channel_->Write(std::move(ins_data));
      ins_data.clear();
      ins_data.shrink_to_fit();
      multi_consume_channel_[i]->Clear();
    }
    input_channel_->Close();
1134
    this->LocalShuffle();
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
  }
}

void MultiSlotDataset::SetCurrentPhase(int current_phase) {
  current_phase_ = current_phase;
}

void MultiSlotDataset::PreprocessInstance() {
  if (!input_channel_ || input_channel_->Size() == 0) {
    return;
  }
  if (!enable_pv_merge_) {  // means to use Record
    this->LocalShuffle();
  } else {  // means to use Pv
Z
zhaocaibei123 已提交
1149
    auto fleet_ptr = framework::FleetWrapper::GetInstance();
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
    input_channel_->Close();
    std::vector<PvInstance> pv_data;
    input_channel_->ReadAll(input_records_);
    int all_records_num = input_records_.size();
    std::vector<Record*> all_records;
    all_records.reserve(all_records_num);
    for (int index = 0; index < all_records_num; ++index) {
      all_records.push_back(&input_records_[index]);
    }

    std::sort(all_records.data(), all_records.data() + all_records_num,
              [](const Record* lhs, const Record* rhs) {
                return lhs->search_id < rhs->search_id;
              });
    if (merge_by_sid_) {
      uint64_t last_search_id = 0;
      for (int i = 0; i < all_records_num; ++i) {
        Record* ins = all_records[i];
        if (i == 0 || last_search_id != ins->search_id) {
          PvInstance pv_instance = make_pv_instance();
          pv_instance->merge_instance(ins);
          pv_data.push_back(pv_instance);
          last_search_id = ins->search_id;
          continue;
        }
        pv_data.back()->merge_instance(ins);
      }
    } else {
      for (int i = 0; i < all_records_num; ++i) {
        Record* ins = all_records[i];
        PvInstance pv_instance = make_pv_instance();
        pv_instance->merge_instance(ins);
        pv_data.push_back(pv_instance);
      }
    }

    std::shuffle(pv_data.begin(), pv_data.end(),
                 fleet_ptr->LocalRandomEngine());
    input_pv_channel_->Open();
    input_pv_channel_->Write(std::move(pv_data));

    pv_data.clear();
    pv_data.shrink_to_fit();
    input_pv_channel_->Close();
  }
}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
void MultiSlotDataset::GenerateLocalTablesUnlock(int table_id, int feadim,
                                                 int read_thread_num,
                                                 int consume_thread_num,
                                                 int shard_num) {
  VLOG(3) << "MultiSlotDataset::GenerateUniqueFeasign begin";
  if (!gen_uni_feasigns_) {
    VLOG(3) << "generate_unique_feasign_=false, will not GenerateUniqueFeasign";
    return;
  }

  CHECK(multi_output_channel_.size() != 0);  // NOLINT
Z
zhaocaibei123 已提交
1208
  auto fleet_ptr_ = framework::FleetWrapper::GetInstance();
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
  std::vector<std::unordered_map<uint64_t, std::vector<float>>>&
      local_map_tables = fleet_ptr_->GetLocalTable();
  local_map_tables.resize(shard_num);
  // read thread
  int channel_num = multi_output_channel_.size();
  if (read_thread_num < channel_num) {
    read_thread_num = channel_num;
  }
  std::vector<std::thread> threads(read_thread_num);
  consume_task_pool_.resize(consume_thread_num);
  for (size_t i = 0; i < consume_task_pool_.size(); i++) {
    consume_task_pool_[i].reset(new ::ThreadPool(1));
  }
  auto consume_func = [&local_map_tables](int shard_id, int feadim,
                                          std::vector<uint64_t>& keys) {
    for (auto k : keys) {
      if (local_map_tables[shard_id].find(k) ==
          local_map_tables[shard_id].end()) {
        local_map_tables[shard_id][k] = std::vector<float>(feadim, 0);
      }
    }
  };
  auto gen_func = [this, &shard_num, &feadim, &local_map_tables,
                   &consume_func](int i) {
    std::vector<Record> vec_data;
    std::vector<std::vector<uint64_t>> task_keys(shard_num);
    std::vector<std::future<void>> task_futures;
    this->multi_output_channel_[i]->Close();
    this->multi_output_channel_[i]->ReadAll(vec_data);
    for (size_t j = 0; j < vec_data.size(); j++) {
      for (auto& feature : vec_data[j].uint64_feasigns_) {
        int shard = feature.sign().uint64_feasign_ % shard_num;
        task_keys[shard].push_back(feature.sign().uint64_feasign_);
      }
    }

    for (int shard_id = 0; shard_id < shard_num; shard_id++) {
      task_futures.emplace_back(consume_task_pool_[shard_id]->enqueue(
          consume_func, shard_id, feadim, task_keys[shard_id]));
    }

    multi_output_channel_[i]->Open();
    multi_output_channel_[i]->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
    for (auto& tk : task_keys) {
      tk.clear();
      std::vector<uint64_t>().swap(tk);
    }
    task_keys.clear();
    std::vector<std::vector<uint64_t>>().swap(task_keys);
    for (auto& tf : task_futures) {
      tf.wait();
    }
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(gen_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  for (size_t i = 0; i < consume_task_pool_.size(); i++) {
    consume_task_pool_[i].reset();
  }
  consume_task_pool_.clear();
  fleet_ptr_->PullSparseToLocal(table_id, feadim);
}
1276

1277 1278 1279 1280 1281 1282 1283 1284
void MultiSlotDataset::MergeByInsId() {
  VLOG(3) << "MultiSlotDataset::MergeByInsId begin";
  if (!merge_by_insid_) {
    VLOG(3) << "merge_by_insid=false, will not MergeByInsId";
    return;
  }
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  std::vector<std::string> use_slots;
1285
  std::vector<bool> use_slots_is_dense;
1286
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
1287 1288 1289
    const auto& slot = multi_slot_desc.slots(i);
    if (slot.is_used()) {
      use_slots.push_back(slot.name());
1290
      use_slots_is_dense.push_back(slot.is_dense());
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
    }
  }
  CHECK(multi_output_channel_.size() != 0);  // NOLINT
  auto channel_data = paddle::framework::MakeChannel<Record>();
  VLOG(3) << "multi_output_channel_.size() " << multi_output_channel_.size();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    multi_output_channel_[i]->Close();
    multi_output_channel_[i]->ReadAll(vec_data);
    channel_data->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
    multi_output_channel_[i]->Clear();
  }
  channel_data->Close();
  std::vector<Record> recs;
  recs.reserve(channel_data->Size());
  channel_data->ReadAll(recs);
  channel_data->Clear();
  std::sort(recs.begin(), recs.end(), [](const Record& a, const Record& b) {
    return a.ins_id_ < b.ins_id_;
  });

  std::vector<Record> results;
1315 1316 1317 1318 1319
  uint64_t drop_ins_num = 0;
  std::unordered_set<uint16_t> all_int64;
  std::unordered_set<uint16_t> all_float;
  std::unordered_set<uint16_t> local_uint64;
  std::unordered_set<uint16_t> local_float;
1320 1321 1322 1323 1324
  std::unordered_map<uint16_t, std::vector<FeatureItem>> all_dense_uint64;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> all_dense_float;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> local_dense_uint64;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> local_dense_float;
  std::unordered_map<uint16_t, bool> dense_empty;
1325

1326 1327 1328 1329 1330 1331
  VLOG(3) << "recs.size() " << recs.size();
  for (size_t i = 0; i < recs.size();) {
    size_t j = i + 1;
    while (j < recs.size() && recs[j].ins_id_ == recs[i].ins_id_) {
      j++;
    }
1332 1333 1334 1335
    if (merge_size_ > 0 && j - i != merge_size_) {
      drop_ins_num += j - i;
      LOG(WARNING) << "drop ins " << recs[i].ins_id_ << " size=" << j - i
                   << ", because merge_size=" << merge_size_;
1336 1337 1338 1339
      i = j;
      continue;
    }

1340 1341
    all_int64.clear();
    all_float.clear();
1342 1343
    all_dense_uint64.clear();
    all_dense_float.clear();
1344 1345 1346 1347 1348 1349
    bool has_conflict_slot = false;
    uint16_t conflict_slot = 0;

    Record rec;
    rec.ins_id_ = recs[i].ins_id_;
    rec.content_ = recs[i].content_;
1350

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
    for (size_t k = i; k < j; k++) {
      dense_empty.clear();
      local_dense_uint64.clear();
      local_dense_float.clear();
      for (auto& feature : recs[k].uint64_feasigns_) {
        uint16_t slot = feature.slot();
        if (!use_slots_is_dense[slot]) {
          continue;
        }
        local_dense_uint64[slot].push_back(feature);
        if (feature.sign().uint64_feasign_ != 0) {
          dense_empty[slot] = false;
        } else if (dense_empty.find(slot) == dense_empty.end() &&
                   all_dense_uint64.find(slot) == all_dense_uint64.end()) {
          dense_empty[slot] = true;
        }
      }
      for (auto& feature : recs[k].float_feasigns_) {
        uint16_t slot = feature.slot();
        if (!use_slots_is_dense[slot]) {
          continue;
        }
        local_dense_float[slot].push_back(feature);
        if (fabs(feature.sign().float_feasign_) >= 1e-6) {
          dense_empty[slot] = false;
        } else if (dense_empty.find(slot) == dense_empty.end() &&
                   all_dense_float.find(slot) == all_dense_float.end()) {
          dense_empty[slot] = true;
        }
      }
      for (auto& p : dense_empty) {
        if (local_dense_uint64.find(p.first) != local_dense_uint64.end()) {
          all_dense_uint64[p.first] = std::move(local_dense_uint64[p.first]);
        } else if (local_dense_float.find(p.first) != local_dense_float.end()) {
          all_dense_float[p.first] = std::move(local_dense_float[p.first]);
        }
      }
    }
    for (auto& f : all_dense_uint64) {
      rec.uint64_feasigns_.insert(rec.uint64_feasigns_.end(), f.second.begin(),
                                  f.second.end());
    }
    for (auto& f : all_dense_float) {
      rec.float_feasigns_.insert(rec.float_feasigns_.end(), f.second.begin(),
                                 f.second.end());
    }

1398 1399 1400
    for (size_t k = i; k < j; k++) {
      local_uint64.clear();
      local_float.clear();
1401
      for (auto& feature : recs[k].uint64_feasigns_) {
1402
        uint16_t slot = feature.slot();
1403 1404 1405
        if (use_slots_is_dense[slot]) {
          continue;
        } else if (all_int64.find(slot) != all_int64.end()) {
1406 1407 1408
          has_conflict_slot = true;
          conflict_slot = slot;
          break;
1409
        }
1410 1411 1412 1413 1414
        local_uint64.insert(slot);
        rec.uint64_feasigns_.push_back(std::move(feature));
      }
      if (has_conflict_slot) {
        break;
1415
      }
1416 1417
      all_int64.insert(local_uint64.begin(), local_uint64.end());

1418
      for (auto& feature : recs[k].float_feasigns_) {
1419
        uint16_t slot = feature.slot();
1420 1421 1422
        if (use_slots_is_dense[slot]) {
          continue;
        } else if (all_float.find(slot) != all_float.end()) {
1423 1424 1425
          has_conflict_slot = true;
          conflict_slot = slot;
          break;
1426
        }
1427 1428 1429 1430 1431
        local_float.insert(slot);
        rec.float_feasigns_.push_back(std::move(feature));
      }
      if (has_conflict_slot) {
        break;
1432
      }
1433
      all_float.insert(local_float.begin(), local_float.end());
1434 1435
    }

1436 1437 1438 1439
    if (has_conflict_slot) {
      LOG(WARNING) << "drop ins " << recs[i].ins_id_ << " size=" << j - i
                   << ", because conflict_slot=" << use_slots[conflict_slot];
      drop_ins_num += j - i;
1440
    } else {
1441
      results.push_back(std::move(rec));
1442
    }
1443
    i = j;
1444
  }
1445
  std::vector<Record>().swap(recs);
1446
  VLOG(3) << "results size " << results.size();
1447
  LOG(WARNING) << "total drop ins num: " << drop_ins_num;
1448 1449
  results.shrink_to_fit();

Z
zhaocaibei123 已提交
1450
  auto fleet_ptr = framework::FleetWrapper::GetInstance();
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
  std::shuffle(results.begin(), results.end(), fleet_ptr->LocalRandomEngine());
  channel_data->Open();
  channel_data->Write(std::move(results));
  channel_data->Close();
  results.clear();
  results.shrink_to_fit();
  VLOG(3) << "channel data size " << channel_data->Size();
  channel_data->SetBlockSize(channel_data->Size() / channel_num_ + 1);
  VLOG(3) << "channel data block size " << channel_data->BlockSize();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    channel_data->Read(vec_data);
    multi_output_channel_[i]->Open();
    multi_output_channel_[i]->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
  }
  CHECK(channel_data->Size() == 0);  // NOLINT
  channel_data->Clear();
  VLOG(3) << "MultiSlotDataset::MergeByInsId end";
}

1473 1474 1475
void MultiSlotDataset::GetRandomData(
    const std::unordered_set<uint16_t>& slots_to_replace,
    std::vector<Record>* result) {
1476 1477 1478 1479
  int debug_erase_cnt = 0;
  int debug_push_cnt = 0;
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  slots_shuffle_rclist_.ReInit();
1480 1481
  const auto& slots_shuffle_original_data = GetSlotsOriginalData();
  for (const auto& rec : slots_shuffle_original_data) {
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
    RecordCandidate rand_rec;
    Record new_rec = rec;
    slots_shuffle_rclist_.AddAndGet(rec, &rand_rec);
    for (auto it = new_rec.uint64_feasigns_.begin();
         it != new_rec.uint64_feasigns_.end();) {
      if (slots_to_replace.find(it->slot()) != slots_to_replace.end()) {
        it = new_rec.uint64_feasigns_.erase(it);
        debug_erase_cnt += 1;
      } else {
        ++it;
      }
    }
    for (auto slot : slots_to_replace) {
1495
      auto range = rand_rec.feas_.equal_range(slot);
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
      for (auto it = range.first; it != range.second; ++it) {
        new_rec.uint64_feasigns_.push_back({it->second, it->first});
        debug_push_cnt += 1;
      }
    }
    result->push_back(std::move(new_rec));
  }
  VLOG(2) << "erase feasign num: " << debug_erase_cnt
          << " repush feasign num: " << debug_push_cnt;
}

1507 1508 1509
void MultiSlotDataset::PreprocessChannel(
    const std::set<std::string>& slots_to_replace,
    std::unordered_set<uint16_t>& index_slots) {  // NOLINT
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
  int out_channel_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      out_channel_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      out_channel_size += multi_consume_channel_[i]->Size();
    }
  }
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() begin with input channel size: "
          << input_channel_->Size()
          << " output channel size: " << out_channel_size;
1523

1524 1525 1526 1527 1528
  if ((!input_channel_ || input_channel_->Size() == 0) &&
      slots_shuffle_original_data_.size() == 0 && out_channel_size == 0) {
    VLOG(3) << "DatasetImpl<T>::SlotsShuffle() end, no data to slots shuffle";
    return;
  }
1529

1530
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
1531
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
    std::string cur_slot = multi_slot_desc.slots(i).name();
    if (slots_to_replace.find(cur_slot) != slots_to_replace.end()) {
      index_slots.insert(i);
    }
  }
  if (slots_shuffle_original_data_.size() == 0) {
    // before first slots shuffle, instances could be in
    // input_channel, oupput_channel or consume_channel
    if (input_channel_ && input_channel_->Size() != 0) {
      slots_shuffle_original_data_.reserve(input_channel_->Size());
      input_channel_->Close();
      input_channel_->ReadAll(slots_shuffle_original_data_);
    } else {
      CHECK(out_channel_size > 0);  // NOLINT
      if (cur_channel_ == 0) {
        for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_output_channel_[i]->Close();
          multi_output_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_output_channel_[i]->Clear();
        }
      } else {
        for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_consume_channel_[i]->Close();
          multi_consume_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_consume_channel_[i]->Clear();
        }
      }
    }
  } else {
    // if already have original data for slots shuffle, clear channel
    input_channel_->Clear();
    if (cur_channel_ == 0) {
      for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
        if (!multi_output_channel_[i]) {
          continue;
        }
        multi_output_channel_[i]->Clear();
      }
    } else {
      for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
        if (!multi_consume_channel_[i]) {
          continue;
        }
        multi_consume_channel_[i]->Clear();
      }
    }
  }
  int end_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      if (!multi_output_channel_[i]) {
        continue;
      }
      end_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      if (!multi_consume_channel_[i]) {
        continue;
      }
      end_size += multi_consume_channel_[i]->Size();
    }
  }
  CHECK(input_channel_->Size() == 0)
      << "input channel should be empty before slots shuffle";
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
}

// slots shuffle to input_channel_ with needed-shuffle slots
void MultiSlotDataset::SlotsShuffle(
    const std::set<std::string>& slots_to_replace) {
  PADDLE_ENFORCE_EQ(slots_shuffle_fea_eval_, true,
                    platform::errors::PreconditionNotMet(
                        "fea eval mode off, need to set on for slots shuffle"));
  platform::Timer timeline;
  timeline.Start();
  std::unordered_set<uint16_t> index_slots;
  PreprocessChannel(slots_to_replace, index_slots);

1628 1629 1630 1631 1632 1633 1634 1635 1636
  std::vector<Record> random_data;
  random_data.clear();
  // get slots shuffled random_data
  GetRandomData(index_slots, &random_data);
  input_channel_->Open();
  input_channel_->Write(std::move(random_data));
  random_data.clear();
  random_data.shrink_to_fit();
  input_channel_->Close();
Y
yaoxuefeng 已提交
1637
  cur_channel_ = 0;
1638 1639 1640 1641 1642 1643 1644

  timeline.Pause();
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() end"
          << ", memory data size for slots shuffle=" << input_channel_->Size()
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
}

Y
yaoxuefeng 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
template class DatasetImpl<SlotRecord>;
void SlotRecordDataset::CreateChannel() {
  if (input_channel_ == nullptr) {
    input_channel_ = paddle::framework::MakeChannel<SlotRecord>();
  }
}
void SlotRecordDataset::CreateReaders() {
  VLOG(3) << "Calling CreateReaders()";
  VLOG(3) << "thread num in Dataset: " << thread_num_;
  VLOG(3) << "Filelist size in Dataset: " << filelist_.size();
  VLOG(3) << "channel num in Dataset: " << channel_num_;
  CHECK(thread_num_ > 0) << "thread num should > 0";
  CHECK(channel_num_ > 0) << "channel num should > 0";
  CHECK(channel_num_ <= thread_num_) << "channel num should <= thread num";
  VLOG(3) << "readers size: " << readers_.size();
  if (readers_.size() != 0) {
    VLOG(3) << "readers_.size() = " << readers_.size()
            << ", will not create again";
    return;
  }
  VLOG(3) << "data feed class name: " << data_feed_desc_.name();
  for (int i = 0; i < thread_num_; ++i) {
    readers_.push_back(DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
    readers_[i]->Init(data_feed_desc_);
    readers_[i]->SetThreadId(i);
    readers_[i]->SetThreadNum(thread_num_);
    readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    readers_[i]->SetFileListIndex(&file_idx_);
    readers_[i]->SetFeaNumMutex(&mutex_for_fea_num_);
    readers_[i]->SetFeaNum(&total_fea_num_);
    readers_[i]->SetFileList(filelist_);
    readers_[i]->SetParseInsId(parse_ins_id_);
    readers_[i]->SetParseContent(parse_content_);
    readers_[i]->SetParseLogKey(parse_logkey_);
    readers_[i]->SetEnablePvMerge(enable_pv_merge_);
    readers_[i]->SetCurrentPhase(current_phase_);
    if (input_channel_ != nullptr) {
      readers_[i]->SetInputChannel(input_channel_.get());
    }
  }
  VLOG(3) << "readers size: " << readers_.size();
}

void SlotRecordDataset::ReleaseMemory() {
  VLOG(3) << "SlotRecordDataset::ReleaseMemory() begin";
  platform::Timer timeline;
  timeline.Start();

  if (input_channel_) {
    input_channel_->Clear();
    input_channel_ = nullptr;
  }
  if (enable_heterps_) {
    VLOG(3) << "put pool records size: " << input_records_.size();
    SlotRecordPool().put(&input_records_);
    input_records_.clear();
    input_records_.shrink_to_fit();
    VLOG(3) << "release heterps input records records size: "
            << input_records_.size();
  }

  readers_.clear();
  readers_.shrink_to_fit();

  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);

  VLOG(3) << "SlotRecordDataset::ReleaseMemory() end";
  VLOG(3) << "total_feasign_num_(" << STAT_GET(STAT_total_feasign_num_in_mem)
          << ") - current_fea_num_(" << total_fea_num_ << ") = ("
          << STAT_GET(STAT_total_feasign_num_in_mem) - total_fea_num_ << ")"
          << " object pool size=" << SlotRecordPool().capacity();  // For Debug
  STAT_SUB(STAT_total_feasign_num_in_mem, total_fea_num_);
}
void SlotRecordDataset::GlobalShuffle(int thread_num) {
  // TODO(yaoxuefeng)
  return;
}

void SlotRecordDataset::DynamicAdjustChannelNum(int channel_num,
                                                bool discard_remaining_ins) {
  if (channel_num_ == channel_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustChannelNum channel_num_="
            << channel_num_ << ", channel_num_=channel_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust channel num from " << channel_num_ << " to "
          << channel_num;
  channel_num_ = channel_num;

  if (static_cast<int>(input_channel_->Size()) >= channel_num) {
    input_channel_->SetBlockSize(input_channel_->Size() / channel_num +
                                 (discard_remaining_ins ? 0 : 1));
  }

  VLOG(3) << "adjust channel num done";
}

void SlotRecordDataset::PrepareTrain() {
#ifdef PADDLE_WITH_GLOO
Y
yaoxuefeng 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
  if (enable_heterps_) {
    if (input_records_.size() == 0 && input_channel_ != nullptr &&
        input_channel_->Size() != 0) {
      input_channel_->ReadAll(input_records_);
      VLOG(3) << "read from channel to records with records size: "
              << input_records_.size();
    }
    VLOG(3) << "input records size: " << input_records_.size();
    int64_t total_ins_num = input_records_.size();
    std::vector<std::pair<int, int>> offset;
    int default_batch_size =
        reinterpret_cast<SlotRecordInMemoryDataFeed*>(readers_[0].get())
            ->GetDefaultBatchSize();
    VLOG(3) << "thread_num: " << thread_num_
            << " memory size: " << total_ins_num
            << " default batch_size: " << default_batch_size;
    compute_thread_batch_nccl(thread_num_, total_ins_num, default_batch_size,
                              &offset);
    VLOG(3) << "offset size: " << offset.size();
    for (int i = 0; i < thread_num_; i++) {
      reinterpret_cast<SlotRecordInMemoryDataFeed*>(readers_[i].get())
          ->SetRecord(&input_records_[0]);
    }
    for (size_t i = 0; i < offset.size(); i++) {
      reinterpret_cast<SlotRecordInMemoryDataFeed*>(
          readers_[i % thread_num_].get())
          ->AddBatchOffset(offset[i]);
    }
  }
Y
yaoxuefeng 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
#else
  PADDLE_THROW(platform::errors::Unavailable(
      "dataset set heterps need compile with GLOO"));
#endif
  return;
}

void SlotRecordDataset::DynamicAdjustReadersNum(int thread_num) {
  if (thread_num_ == thread_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustReadersNum thread_num_="
            << thread_num_ << ", thread_num_=thread_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust readers num from " << thread_num_ << " to " << thread_num;
  thread_num_ = thread_num;
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
  CreateReaders();
  VLOG(3) << "adjust readers num done";
  PrepareTrain();
}

D
dongdaxiang 已提交
1794 1795
}  // end namespace framework
}  // end namespace paddle