data_set.cc 28.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *     Unless required by applicable law or agreed to in writing, software
 *     distributed under the License is distributed on an "AS IS" BASIS,
 *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *     See the License for the specific language governing permissions and
 *     limitations under the License. */

15
#include "paddle/fluid/framework/data_set.h"
16
#include <algorithm>
D
dongdaxiang 已提交
17
#include <random>
18
#include <unordered_map>
19 20 21
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
22
#include "paddle/fluid/framework/data_feed_factory.h"
23
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
24
#include "paddle/fluid/framework/io/fs.h"
25
#include "paddle/fluid/platform/timer.h"
26
#include "xxhash.h"  // NOLINT
27

D
dongdaxiang 已提交
28 29 30 31 32
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

33 34 35
namespace paddle {
namespace framework {

X
xjqbest 已提交
36
// constructor
37
template <typename T>
D
dongdaxiang 已提交
38
DatasetImpl<T>::DatasetImpl() {
J
jiaqi 已提交
39
  VLOG(3) << "DatasetImpl<T>::DatasetImpl() constructor";
D
dongdaxiang 已提交
40
  thread_num_ = 1;
41
  trainer_num_ = 1;
J
jiaqi 已提交
42
  channel_num_ = 1;
43
  file_idx_ = 0;
J
jiaqi 已提交
44 45 46
  cur_channel_ = 0;
  fleet_send_batch_size_ = 80000;
  fleet_send_sleep_seconds_ = 2;
47 48 49 50
  merge_by_insid_ = false;
  erase_duplicate_feas_ = true;
  keep_unmerged_ins_ = true;
  min_merge_size_ = 2;
D
dongdaxiang 已提交
51
}
52

X
xjqbest 已提交
53
// set filelist, file_idx_ will reset to zero.
54 55
template <typename T>
void DatasetImpl<T>::SetFileList(const std::vector<std::string>& filelist) {
56
  VLOG(3) << "filelist size: " << filelist.size();
57
  filelist_ = filelist;
58
  file_idx_ = 0;
59 60
}

X
xjqbest 已提交
61
// set expect thread num. actually it may change
62 63
template <typename T>
void DatasetImpl<T>::SetThreadNum(int thread_num) {
64
  VLOG(3) << "SetThreadNum thread_num=" << thread_num;
65 66 67
  thread_num_ = thread_num;
}

X
xjqbest 已提交
68 69 70
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetTrainerNum
71
template <typename T>
X
xujiaqi01 已提交
72 73
void DatasetImpl<T>::SetTrainerNum(int trainer_num) {
  trainer_num_ = trainer_num;
74 75
}

X
xjqbest 已提交
76 77 78 79 80 81 82 83
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetFleetSendBatchSize
template <typename T>
void DatasetImpl<T>::SetFleetSendBatchSize(int64_t size) {
  fleet_send_batch_size_ = size;
}

84 85 86
template <typename T>
void DatasetImpl<T>::SetHdfsConfig(const std::string& fs_name,
                                   const std::string& fs_ugi) {
X
xjqbest 已提交
87 88
  fs_name_ = fs_name;
  fs_ugi_ = fs_ugi;
89 90 91 92
  std::string cmd = std::string("hadoop fs");
  cmd += " -D fs.default.name=" + fs_name;
  cmd += " -D hadoop.job.ugi=" + fs_ugi;
  paddle::framework::hdfs_set_command(cmd);
X
xujiaqi01 已提交
93
}
94

95 96
template <typename T>
void DatasetImpl<T>::SetDataFeedDesc(const std::string& data_feed_desc_str) {
97 98
  google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
                                                &data_feed_desc_);
99 100
}

101
template <typename T>
J
jiaqi 已提交
102 103 104 105
void DatasetImpl<T>::SetChannelNum(int channel_num) {
  channel_num_ = channel_num;
}

106 107 108 109 110 111 112 113 114 115 116
template <typename T>
void DatasetImpl<T>::SetMergeByInsId(
    const std::vector<std::string>& merge_slot_list, bool erase_duplicate_feas,
    int min_merge_size, bool keep_unmerged_ins) {
  merge_by_insid_ = true;
  merge_slots_list_ = merge_slot_list;
  erase_duplicate_feas_ = erase_duplicate_feas;
  min_merge_size_ = min_merge_size;
  keep_unmerged_ins_ = keep_unmerged_ins;
}

117 118 119 120 121 122 123 124
template <typename T>
void DatasetImpl<T>::SetFeaEval(bool fea_eval, int record_candidate_size) {
  slots_shuffle_fea_eval_ = fea_eval;
  slots_shuffle_rclist_.ReSize(record_candidate_size);
  VLOG(3) << "SetFeaEval fea eval mode: " << fea_eval
          << " with record candidate size: " << record_candidate_size;
}

J
jiaqi 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
template <typename T>
std::vector<paddle::framework::DataFeed*> DatasetImpl<T>::GetReaders() {
  std::vector<paddle::framework::DataFeed*> ret;
  ret.reserve(readers_.size());
  for (auto i : readers_) {
    ret.push_back(i.get());
  }
  return ret;
}

template <typename T>
void DatasetImpl<T>::CreateChannel() {
  if (input_channel_ == nullptr) {
    input_channel_ = paddle::framework::MakeChannel<T>();
  }
  if (multi_output_channel_.size() == 0) {
    multi_output_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_output_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
  if (multi_consume_channel_.size() == 0) {
    multi_consume_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_consume_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
152 153
}

154 155 156 157 158 159 160 161 162 163 164 165
// if sent message between workers, should first call this function
template <typename T>
void DatasetImpl<T>::RegisterClientToClientMsgHandler() {
  auto fleet_ptr = FleetWrapper::GetInstance();
  VLOG(3) << "RegisterClientToClientMsgHandler";
  fleet_ptr->RegisterClientToClientMsgHandler(
      0, [this](int msg_type, int client_id, const std::string& msg) -> int {
        return this->ReceiveFromClient(msg_type, client_id, msg);
      });
  VLOG(3) << "RegisterClientToClientMsgHandler done";
}

X
xjqbest 已提交
166 167
// load data into memory, Dataset hold this memory,
// which will later be fed into readers' channel
168 169 170
template <typename T>
void DatasetImpl<T>::LoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() begin";
171 172
  platform::Timer timeline;
  timeline.Start();
173 174
  std::vector<std::thread> load_threads;
  for (int64_t i = 0; i < thread_num_; ++i) {
D
dongdaxiang 已提交
175 176
    load_threads.push_back(std::thread(
        &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
177 178 179 180
  }
  for (std::thread& t : load_threads) {
    t.join();
  }
J
jiaqi 已提交
181 182 183
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
184 185
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() end"
J
jiaqi 已提交
186
          << ", memory data size=" << input_channel_->Size()
187
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
188 189
}

J
jiaqi 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
template <typename T>
void DatasetImpl<T>::PreLoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() begin";
  preload_threads_.clear();
  for (int64_t i = 0; i < thread_num_; ++i) {
    preload_threads_.push_back(std::thread(
        &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
  }
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() end";
}

template <typename T>
void DatasetImpl<T>::WaitPreLoadDone() {
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() begin";
  for (std::thread& t : preload_threads_) {
    t.join();
  }
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() end";
}

213 214 215 216
// release memory data
template <typename T>
void DatasetImpl<T>::ReleaseMemory() {
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() begin";
J
jiaqi 已提交
217 218 219 220 221 222 223 224 225 226
  if (input_channel_) {
    input_channel_->Clear();
    input_channel_ = nullptr;
  }
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    if (!multi_output_channel_[i]) {
      continue;
    }
    multi_output_channel_[i]->Clear();
    multi_output_channel_[i] = nullptr;
227
  }
J
jiaqi 已提交
228 229 230 231 232 233 234 235 236 237
  std::vector<paddle::framework::Channel<T>>().swap(multi_output_channel_);
  for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
    if (!multi_consume_channel_[i]) {
      continue;
    }
    multi_consume_channel_[i]->Clear();
    multi_consume_channel_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<T>>().swap(multi_consume_channel_);
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
238 239 240
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() end";
}

X
xjqbest 已提交
241
// do local shuffle
242 243 244
template <typename T>
void DatasetImpl<T>::LocalShuffle() {
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() begin";
245 246
  platform::Timer timeline;
  timeline.Start();
247

J
jiaqi 已提交
248 249 250
  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, no data to shuffle";
    return;
251
  }
J
jiaqi 已提交
252 253 254 255 256 257 258 259 260 261 262
  auto fleet_ptr = FleetWrapper::GetInstance();
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();
  input_channel_->Close();

263 264 265
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
266 267
}

268 269 270
template <typename T>
void DatasetImpl<T>::GlobalShuffle() {
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() begin";
271 272
  platform::Timer timeline;
  timeline.Start();
273
  auto fleet_ptr = FleetWrapper::GetInstance();
J
jiaqi 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, no data to shuffle";
    return;
  }

  // local shuffle
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();

  input_channel_->Close();
  input_channel_->SetBlockSize(fleet_send_batch_size_);
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() input_channel_ size "
          << input_channel_->Size();

295 296 297 298 299 300 301 302 303 304
  auto get_client_id = [this, fleet_ptr](const T& data) -> size_t {
    if (!this->merge_by_insid_) {
      return fleet_ptr->LocalRandomEngine()() % this->trainer_num_;
    } else {
      return XXH64(data.ins_id_.data(), data.ins_id_.length(), 0) %
             this->trainer_num_;
    }
  };

  auto global_shuffle_func = [this, get_client_id]() {
J
jiaqi 已提交
305 306 307 308 309
    auto fleet_ptr = FleetWrapper::GetInstance();
    std::vector<T> data;
    while (this->input_channel_->Read(data)) {
      std::vector<paddle::framework::BinaryArchive> ars(this->trainer_num_);
      for (auto& t : data) {
310
        auto client_id = get_client_id(t);
J
jiaqi 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        ars[client_id] << t;
      }
      std::vector<std::future<int32_t>> total_status;
      std::vector<int> send_index(this->trainer_num_);
      for (int i = 0; i < this->trainer_num_; ++i) {
        send_index[i] = i;
      }
      std::shuffle(send_index.begin(), send_index.end(),
                   fleet_ptr->LocalRandomEngine());
      for (auto index = 0u; index < this->trainer_num_; ++index) {
        int i = send_index[index];
        if (ars[i].Length() == 0) {
          continue;
        }
        std::string msg(ars[i].Buffer(), ars[i].Length());
        auto ret = fleet_ptr->SendClientToClientMsg(0, i, msg);
        total_status.push_back(std::move(ret));
      }
      for (auto& t : total_status) {
        t.wait();
      }
      ars.clear();
      ars.shrink_to_fit();
      data.clear();
      data.shrink_to_fit();
      sleep(this->fleet_send_sleep_seconds_);
    }
  };

X
xujiaqi01 已提交
340
  VLOG(3) << "start global shuffle threads";
341
  std::vector<std::thread> global_shuffle_threads;
342
  for (int i = 0; i < thread_num_; ++i) {
J
jiaqi 已提交
343
    global_shuffle_threads.push_back(std::thread(global_shuffle_func));
344 345 346
  }
  for (std::thread& t : global_shuffle_threads) {
    t.join();
347
  }
J
jiaqi 已提交
348 349 350
  global_shuffle_threads.clear();
  global_shuffle_threads.shrink_to_fit();
  input_channel_->Clear();
351 352 353
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
354 355
}

356 357
template <typename T>
void DatasetImpl<T>::CreateReaders() {
358
  VLOG(3) << "Calling CreateReaders()";
J
jiaqi 已提交
359 360 361 362 363 364
  VLOG(3) << "thread num in Dataset: " << thread_num_;
  VLOG(3) << "Filelist size in Dataset: " << filelist_.size();
  VLOG(3) << "channel num in Dataset: " << channel_num_;
  CHECK(thread_num_ > 0) << "thread num should > 0";
  CHECK(channel_num_ > 0) << "channel num should > 0";
  CHECK(channel_num_ <= thread_num_) << "channel num should <= thread num";
365
  VLOG(3) << "readers size: " << readers_.size();
366
  if (readers_.size() != 0) {
J
jiaqi 已提交
367 368
    VLOG(3) << "readers_.size() = " << readers_.size()
            << ", will not create again";
369 370
    return;
  }
371
  VLOG(3) << "data feed class name: " << data_feed_desc_.name();
J
jiaqi 已提交
372
  int channel_idx = 0;
373
  for (int i = 0; i < thread_num_; ++i) {
374
    readers_.push_back(DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
J
jiaqi 已提交
375 376 377 378 379 380
    readers_[i]->Init(data_feed_desc_);
    readers_[i]->SetThreadId(i);
    readers_[i]->SetThreadNum(thread_num_);
    readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    readers_[i]->SetFileListIndex(&file_idx_);
    readers_[i]->SetFileList(filelist_);
381
    readers_[i]->SetParseInsId(merge_by_insid_);
J
jiaqi 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395
    if (input_channel_ != nullptr) {
      readers_[i]->SetInputChannel(input_channel_.get());
    }
    if (cur_channel_ == 0 && channel_idx < multi_output_channel_.size()) {
      readers_[i]->SetOutputChannel(multi_output_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_consume_channel_[channel_idx].get());
    } else if (channel_idx < multi_output_channel_.size()) {
      readers_[i]->SetOutputChannel(multi_consume_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_output_channel_[channel_idx].get());
    }
    ++channel_idx;
    if (channel_idx >= channel_num_) {
      channel_idx = 0;
    }
396
  }
J
jiaqi 已提交
397
  VLOG(3) << "readers size: " << readers_.size();
398 399
}

400 401 402
template <typename T>
void DatasetImpl<T>::DestroyReaders() {
  VLOG(3) << "Calling DestroyReaders()";
403
  VLOG(3) << "readers size1: " << readers_.size();
404
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
405
  VLOG(3) << "readers size: " << readers_.size();
J
jiaqi 已提交
406 407
  file_idx_ = 0;
  cur_channel_ = 1 - cur_channel_;
408 409
}

410 411
template <typename T>
int64_t DatasetImpl<T>::GetMemoryDataSize() {
J
jiaqi 已提交
412
  return input_channel_->Size();
413 414 415 416 417
}

template <typename T>
int64_t DatasetImpl<T>::GetShuffleDataSize() {
  int64_t sum = 0;
J
jiaqi 已提交
418 419
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    sum += multi_output_channel_[i]->Size() + multi_consume_channel_[i]->Size();
420 421 422 423
  }
  return sum;
}

424 425
template <typename T>
int DatasetImpl<T>::ReceiveFromClient(int msg_type, int client_id,
D
dongdaxiang 已提交
426
                                      const std::string& msg) {
D
dongdaxiang 已提交
427
#ifdef _LINUX
428
  VLOG(3) << "ReceiveFromClient msg_type=" << msg_type
429
          << ", client_id=" << client_id << ", msg length=" << msg.length();
J
jiaqi 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443
  if (msg.length() == 0) {
    return 0;
  }
  paddle::framework::BinaryArchive ar;
  ar.SetReadBuffer(const_cast<char*>(msg.c_str()), msg.length(), nullptr);
  if (ar.Cursor() == ar.Finish()) {
    return 0;
  }
  std::vector<T> data;
  while (ar.Cursor() < ar.Finish()) {
    data.push_back(ar.Get<T>());
  }
  CHECK(ar.Cursor() == ar.Finish());

444
  auto fleet_ptr = FleetWrapper::GetInstance();
J
jiaqi 已提交
445
  int64_t index = fleet_ptr->LocalRandomEngine()() % channel_num_;
446
  VLOG(3) << "ramdom index=" << index;
J
jiaqi 已提交
447 448 449 450
  multi_output_channel_[index]->Write(std::move(data));

  data.clear();
  data.shrink_to_fit();
D
dongdaxiang 已提交
451
#endif
452 453 454
  return 0;
}

455
// explicit instantiation
J
jiaqi 已提交
456
template class DatasetImpl<Record>;
457

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
void MultiSlotDataset::MergeByInsId() {
  VLOG(3) << "MultiSlotDataset::MergeByInsId begin";
  if (!merge_by_insid_) {
    VLOG(3) << "merge_by_insid=false, will not MergeByInsId";
    return;
  }
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  std::unordered_map<int, bool> merge_slots;
  std::vector<std::string> use_slots;
  std::vector<bool> use_slots_is_dense;
  for (size_t i = 0; i < multi_slot_desc.slots_size(); ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    if (slot.is_used()) {
      use_slots.push_back(slot.name());
      use_slots_is_dense.push_back(slot.is_dense());
    }
  }
  for (size_t i = 0; i < use_slots.size(); ++i) {
    // currently, we don't merge dense slots
    if (std::find(merge_slots_list_.begin(), merge_slots_list_.end(),
                  use_slots[i]) != merge_slots_list_.end() &&
        !use_slots_is_dense[i]) {
      merge_slots[i] = true;
    }
  }
  CHECK(multi_output_channel_.size() != 0);  // NOLINT
  auto channel_data = paddle::framework::MakeChannel<Record>();
  VLOG(3) << "multi_output_channel_.size() " << multi_output_channel_.size();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    multi_output_channel_[i]->Close();
    multi_output_channel_[i]->ReadAll(vec_data);
    channel_data->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
    multi_output_channel_[i]->Clear();
  }
  channel_data->Close();
  std::vector<Record> recs;
  recs.reserve(channel_data->Size());
  channel_data->ReadAll(recs);
  channel_data->Clear();
  std::sort(recs.begin(), recs.end(), [](const Record& a, const Record& b) {
    return a.ins_id_ < b.ins_id_;
  });

  auto sort_cmp_uint64 = [&merge_slots](const FeatureItem& a,
                                        const FeatureItem& b) {
    auto& a_sign = a.sign().uint64_feasign_;
    auto& b_sign = b.sign().uint64_feasign_;
    return a_sign < b_sign || (a_sign == b_sign && a.slot() < b.slot());
  };
  auto sort_cmp_float = [&merge_slots](const FeatureItem& a,
                                       const FeatureItem& b) {
    auto& a_sign = a.sign().float_feasign_;
    auto& b_sign = b.sign().float_feasign_;
    return a_sign < b_sign || (a_sign == b_sign && a.slot() < b.slot());
  };
  auto unique_eq_uint64 = [&merge_slots](const FeatureItem& a,
                                         const FeatureItem& b) {
    if (a.slot() == b.slot() &&
        merge_slots.find(a.slot()) == merge_slots.end()) {
      return true;
    }
    auto& a_sign = a.sign().uint64_feasign_;
    auto& b_sign = b.sign().uint64_feasign_;
    return a_sign == b_sign && a.slot() == b.slot();
  };
  auto unique_eq_float = [&merge_slots](const FeatureItem& a,
                                        const FeatureItem& b) {
    if (a.slot() == b.slot() &&
        merge_slots.find(a.slot()) == merge_slots.end()) {
      return true;
    }
    auto& a_sign = a.sign().float_feasign_;
    auto& b_sign = b.sign().float_feasign_;
    return a_sign == b_sign && a.slot() == b.slot();
  };

  std::vector<Record> results;
  VLOG(3) << "recs.size() " << recs.size();
  for (size_t i = 0; i < recs.size();) {
    size_t j = i + 1;
    while (j < recs.size() && recs[j].ins_id_ == recs[i].ins_id_) {
      j++;
    }
    if (j - i < min_merge_size_) {
      if (keep_unmerged_ins_) {
        for (size_t k = i; k < j; ++k) {
          results.push_back(std::move(recs[k]));
        }
      }
      i = j;
      continue;
    }

    std::vector<FeatureItem> merge_uint64_feasigns;
    std::vector<FeatureItem> merge_float_feasigns;
    Record rec = std::move(recs[i]);

    for (size_t k = i + 1; k < j; k++) {
      for (auto& feature : recs[k].uint64_feasigns_) {
        if (merge_slots.find(feature.slot()) != merge_slots.end()) {
          merge_uint64_feasigns.push_back(std::move(feature));
        }
      }
      for (auto& feature : recs[k].float_feasigns_) {
        if (merge_slots.find(feature.slot()) != merge_slots.end()) {
          merge_float_feasigns.push_back(std::move(feature));
        }
      }
      recs[k] = Record();
    }
    i = j;

    if (!erase_duplicate_feas_) {
      rec.uint64_feasigns_.insert(rec.uint64_feasigns_.end(),
                                  merge_uint64_feasigns.begin(),
                                  merge_uint64_feasigns.end());
      rec.float_feasigns_.insert(rec.float_feasigns_.end(),
                                 merge_float_feasigns.begin(),
                                 merge_float_feasigns.end());
    } else {
      std::vector<FeatureItem> not_merge_uint64_feasigns;
      std::vector<FeatureItem> not_merge_float_feasigns;

      for (auto& feature : rec.uint64_feasigns_) {
        if (merge_slots.find(feature.slot()) != merge_slots.end()) {
          merge_uint64_feasigns.push_back(std::move(feature));
        } else {
          not_merge_uint64_feasigns.push_back(std::move(feature));
        }
      }
      for (auto& feature : rec.float_feasigns_) {
        if (merge_slots.find(feature.slot()) != merge_slots.end()) {
          merge_float_feasigns.push_back(std::move(feature));
        } else {
          not_merge_float_feasigns.push_back(std::move(feature));
        }
      }
      rec.uint64_feasigns_.clear();
      rec.float_feasigns_.clear();

      // erase duplicate uint64 feasigns
      std::sort(merge_uint64_feasigns.begin(), merge_uint64_feasigns.end(),
                sort_cmp_uint64);
      merge_uint64_feasigns.erase(
          std::unique(merge_uint64_feasigns.begin(),
                      merge_uint64_feasigns.end(), unique_eq_uint64),
          merge_uint64_feasigns.end());
      rec.uint64_feasigns_.insert(rec.uint64_feasigns_.end(),
                                  merge_uint64_feasigns.begin(),
                                  merge_uint64_feasigns.end());
      rec.uint64_feasigns_.insert(rec.uint64_feasigns_.end(),
                                  not_merge_uint64_feasigns.begin(),
                                  not_merge_uint64_feasigns.end());

      // erase duplicate float feasigns
      std::sort(merge_float_feasigns.begin(), merge_float_feasigns.end(),
                sort_cmp_float);
      merge_float_feasigns.erase(
          std::unique(merge_float_feasigns.begin(), merge_float_feasigns.end(),
                      unique_eq_float),
          merge_float_feasigns.end());
      rec.float_feasigns_.insert(rec.float_feasigns_.end(),
                                 merge_float_feasigns.begin(),
                                 merge_float_feasigns.end());
      rec.float_feasigns_.insert(rec.float_feasigns_.end(),
                                 not_merge_float_feasigns.begin(),
                                 not_merge_float_feasigns.end());
    }
    results.push_back(rec);
  }
  VLOG(3) << "results size " << results.size();
  results.shrink_to_fit();

  auto fleet_ptr = FleetWrapper::GetInstance();
  std::shuffle(results.begin(), results.end(), fleet_ptr->LocalRandomEngine());
  channel_data->Open();
  channel_data->Write(std::move(results));
  channel_data->Close();
  results.clear();
  results.shrink_to_fit();
  VLOG(3) << "channel data size " << channel_data->Size();
  channel_data->SetBlockSize(channel_data->Size() / channel_num_ + 1);
  VLOG(3) << "channel data block size " << channel_data->BlockSize();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    channel_data->Read(vec_data);
    multi_output_channel_[i]->Open();
    multi_output_channel_[i]->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
  }
  CHECK(channel_data->Size() == 0);  // NOLINT
  channel_data->Clear();
  VLOG(3) << "MultiSlotDataset::MergeByInsId end";
}

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
void MultiSlotDataset::GetRandomData(const std::set<uint16_t>& slots_to_replace,
                                     std::vector<Record>* result) {
  int debug_erase_cnt = 0;
  int debug_push_cnt = 0;
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  slots_shuffle_rclist_.ReInit();
  for (const auto& rec : slots_shuffle_original_data_) {
    RecordCandidate rand_rec;
    Record new_rec = rec;
    slots_shuffle_rclist_.AddAndGet(rec, &rand_rec);
    for (auto it = new_rec.uint64_feasigns_.begin();
         it != new_rec.uint64_feasigns_.end();) {
      if (slots_to_replace.find(it->slot()) != slots_to_replace.end()) {
        it = new_rec.uint64_feasigns_.erase(it);
        debug_erase_cnt += 1;
      } else {
        ++it;
      }
    }
    for (auto slot : slots_to_replace) {
      auto range = rand_rec.feas.equal_range(slot);
      for (auto it = range.first; it != range.second; ++it) {
        new_rec.uint64_feasigns_.push_back({it->second, it->first});
        debug_push_cnt += 1;
      }
    }
    result->push_back(std::move(new_rec));
  }
  VLOG(2) << "erase feasign num: " << debug_erase_cnt
          << " repush feasign num: " << debug_push_cnt;
}

// slots shuffle to input_channel_ with needed-shuffle slots
void MultiSlotDataset::SlotsShuffle(
    const std::set<std::string>& slots_to_replace) {
  int out_channel_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      out_channel_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      out_channel_size += multi_consume_channel_[i]->Size();
    }
  }
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() begin with input channel size: "
          << input_channel_->Size()
          << " output channel size: " << out_channel_size;
  if (!slots_shuffle_fea_eval_) {
    VLOG(3) << "DatasetImpl<T>::SlotsShuffle() end,"
               "fea eval mode off, need to set on for slots shuffle";
    return;
  }
  if ((!input_channel_ || input_channel_->Size() == 0) &&
      slots_shuffle_original_data_.size() == 0 && out_channel_size == 0) {
    VLOG(3) << "DatasetImpl<T>::SlotsShuffle() end, no data to slots shuffle";
    return;
  }
  platform::Timer timeline;
  timeline.Start();
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  std::set<uint16_t> index_slots;
  for (size_t i = 0; i < multi_slot_desc.slots_size(); ++i) {
    std::string cur_slot = multi_slot_desc.slots(i).name();
    if (slots_to_replace.find(cur_slot) != slots_to_replace.end()) {
      index_slots.insert(i);
    }
  }
  if (slots_shuffle_original_data_.size() == 0) {
    // before first slots shuffle, instances could be in
    // input_channel, oupput_channel or consume_channel
    if (input_channel_ && input_channel_->Size() != 0) {
      slots_shuffle_original_data_.reserve(input_channel_->Size());
      input_channel_->Close();
      input_channel_->ReadAll(slots_shuffle_original_data_);
    } else {
      CHECK(out_channel_size > 0);  // NOLINT
      if (cur_channel_ == 0) {
        for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_output_channel_[i]->Close();
          multi_output_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_output_channel_[i]->Clear();
        }
      } else {
        for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_consume_channel_[i]->Close();
          multi_consume_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_consume_channel_[i]->Clear();
        }
      }
    }
  } else {
    // if already have original data for slots shuffle, clear channel
    input_channel_->Clear();
    if (cur_channel_ == 0) {
      for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
        if (!multi_output_channel_[i]) {
          continue;
        }
        multi_output_channel_[i]->Clear();
      }
    } else {
      for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
        if (!multi_consume_channel_[i]) {
          continue;
        }
        multi_consume_channel_[i]->Clear();
      }
    }
  }
  int end_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      if (!multi_output_channel_[i]) {
        continue;
      }
      end_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      if (!multi_consume_channel_[i]) {
        continue;
      }
      end_size += multi_consume_channel_[i]->Size();
    }
  }
  CHECK(input_channel_->Size() == 0)
      << "input channel should be empty before slots shuffle";
  std::vector<Record> random_data;
  random_data.clear();
  // get slots shuffled random_data
  GetRandomData(index_slots, &random_data);
  input_channel_->Open();
  input_channel_->Write(std::move(random_data));
  random_data.clear();
  random_data.shrink_to_fit();
  input_channel_->Close();

  timeline.Pause();
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() end"
          << ", memory data size for slots shuffle=" << input_channel_->Size()
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
}

D
dongdaxiang 已提交
819 820
}  // end namespace framework
}  // end namespace paddle