data_set.cc 63.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *     Unless required by applicable law or agreed to in writing, software
 *     distributed under the License is distributed on an "AS IS" BASIS,
 *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *     See the License for the specific language governing permissions and
 *     limitations under the License. */

15
#include "paddle/fluid/framework/data_set.h"
16
#include "google/protobuf/text_format.h"
W
wangzhen38 已提交
17 18 19
#if (defined PADDLE_WITH_DISTRIBUTE) && (defined PADDLE_WITH_PSCORE)
#include "paddle/fluid/distributed/index_dataset/index_sampler.h"
#endif
20
#include "paddle/fluid/framework/data_feed_factory.h"
W
wangzhen38 已提交
21
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
22
#include "paddle/fluid/framework/io/fs.h"
H
hutuxian 已提交
23
#include "paddle/fluid/platform/monitor.h"
24
#include "paddle/fluid/platform/timer.h"
25

Z
zhaocaibei123 已提交
26
#ifdef PADDLE_WITH_PSCORE
27
#include "paddle/fluid/distributed/ps/wrapper/fleet.h"
Z
zhaocaibei123 已提交
28 29
#endif

D
dongdaxiang 已提交
30 31 32 33 34
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

H
hutuxian 已提交
35
USE_INT_STAT(STAT_total_feasign_num_in_mem);
36 37 38
namespace paddle {
namespace framework {

X
xjqbest 已提交
39
// constructor
40
template <typename T>
D
dongdaxiang 已提交
41
DatasetImpl<T>::DatasetImpl() {
J
jiaqi 已提交
42
  VLOG(3) << "DatasetImpl<T>::DatasetImpl() constructor";
D
dongdaxiang 已提交
43
  thread_num_ = 1;
44
  trainer_num_ = 1;
J
jiaqi 已提交
45
  channel_num_ = 1;
46
  file_idx_ = 0;
H
hutuxian 已提交
47
  total_fea_num_ = 0;
J
jiaqi 已提交
48
  cur_channel_ = 0;
49 50
  fleet_send_batch_size_ = 1024;
  fleet_send_sleep_seconds_ = 0;
51
  merge_by_insid_ = false;
52 53
  merge_by_sid_ = true;
  enable_pv_merge_ = false;
54
  merge_size_ = 2;
55 56
  parse_ins_id_ = false;
  parse_content_ = false;
57
  parse_logkey_ = false;
58
  preload_thread_num_ = 0;
59
  global_index_ = 0;
60 61
  shuffle_by_uid_ = false;
  parse_uid_ = false;
D
dongdaxiang 已提交
62
}
63

X
xjqbest 已提交
64
// set filelist, file_idx_ will reset to zero.
65 66
template <typename T>
void DatasetImpl<T>::SetFileList(const std::vector<std::string>& filelist) {
67
  VLOG(3) << "filelist size: " << filelist.size();
68
  filelist_ = filelist;
69
  file_idx_ = 0;
70 71
}

X
xjqbest 已提交
72
// set expect thread num. actually it may change
73 74
template <typename T>
void DatasetImpl<T>::SetThreadNum(int thread_num) {
75
  VLOG(3) << "SetThreadNum thread_num=" << thread_num;
76 77 78
  thread_num_ = thread_num;
}

X
xjqbest 已提交
79 80 81
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetTrainerNum
82
template <typename T>
X
xujiaqi01 已提交
83 84
void DatasetImpl<T>::SetTrainerNum(int trainer_num) {
  trainer_num_ = trainer_num;
85 86
}

X
xjqbest 已提交
87 88 89 90 91 92 93 94
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetFleetSendBatchSize
template <typename T>
void DatasetImpl<T>::SetFleetSendBatchSize(int64_t size) {
  fleet_send_batch_size_ = size;
}

95 96 97
template <typename T>
void DatasetImpl<T>::SetHdfsConfig(const std::string& fs_name,
                                   const std::string& fs_ugi) {
X
xjqbest 已提交
98 99
  fs_name_ = fs_name;
  fs_ugi_ = fs_ugi;
100
  std::string cmd = std::string("$HADOOP_HOME/bin/hadoop fs");
101 102
  cmd += " -D fs.default.name=" + fs_name;
  cmd += " -D hadoop.job.ugi=" + fs_ugi;
103
  cmd += " -Ddfs.client.block.write.retries=15 -Ddfs.rpc.timeout=500000";
104
  paddle::framework::hdfs_set_command(cmd);
X
xujiaqi01 已提交
105
}
106

107 108 109 110 111 112 113 114 115 116
template <typename T>
void DatasetImpl<T>::SetDownloadCmd(const std::string& download_cmd) {
  paddle::framework::set_download_command(download_cmd);
}

template <typename T>
std::string DatasetImpl<T>::GetDownloadCmd() {
  return paddle::framework::download_cmd();
}

117 118
template <typename T>
void DatasetImpl<T>::SetDataFeedDesc(const std::string& data_feed_desc_str) {
119 120
  google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
                                                &data_feed_desc_);
121 122
}

123
template <typename T>
J
jiaqi 已提交
124 125 126 127
void DatasetImpl<T>::SetChannelNum(int channel_num) {
  channel_num_ = channel_num;
}

128 129 130 131 132 133 134 135 136 137
template <typename T>
void DatasetImpl<T>::SetParseInsId(bool parse_ins_id) {
  parse_ins_id_ = parse_ins_id;
}

template <typename T>
void DatasetImpl<T>::SetParseContent(bool parse_content) {
  parse_content_ = parse_content;
}

138 139 140 141 142
template <typename T>
void DatasetImpl<T>::SetParseLogKey(bool parse_logkey) {
  parse_logkey_ = parse_logkey;
}

143
template <typename T>
144
void DatasetImpl<T>::SetMergeByInsId(int merge_size) {
145
  merge_by_insid_ = true;
146
  parse_ins_id_ = true;
147
  merge_size_ = merge_size;
148 149
}

150 151 152 153 154
template <typename T>
void DatasetImpl<T>::SetMergeBySid(bool is_merge) {
  merge_by_sid_ = is_merge;
}

155 156 157 158 159 160
template <typename T>
void DatasetImpl<T>::SetShuffleByUid(bool enable_shuffle_uid) {
  shuffle_by_uid_ = enable_shuffle_uid;
  parse_uid_ = true;
}

161 162 163 164 165
template <typename T>
void DatasetImpl<T>::SetEnablePvMerge(bool enable_pv_merge) {
  enable_pv_merge_ = enable_pv_merge;
}

166 167 168 169 170 171
template <typename T>
void DatasetImpl<T>::SetGenerateUniqueFeasign(bool gen_uni_feasigns) {
  gen_uni_feasigns_ = gen_uni_feasigns;
  VLOG(3) << "Set generate unique feasigns: " << gen_uni_feasigns;
}

172 173 174 175 176 177 178 179
template <typename T>
void DatasetImpl<T>::SetFeaEval(bool fea_eval, int record_candidate_size) {
  slots_shuffle_fea_eval_ = fea_eval;
  slots_shuffle_rclist_.ReSize(record_candidate_size);
  VLOG(3) << "SetFeaEval fea eval mode: " << fea_eval
          << " with record candidate size: " << record_candidate_size;
}

J
jiaqi 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
template <typename T>
std::vector<paddle::framework::DataFeed*> DatasetImpl<T>::GetReaders() {
  std::vector<paddle::framework::DataFeed*> ret;
  ret.reserve(readers_.size());
  for (auto i : readers_) {
    ret.push_back(i.get());
  }
  return ret;
}

template <typename T>
void DatasetImpl<T>::CreateChannel() {
  if (input_channel_ == nullptr) {
    input_channel_ = paddle::framework::MakeChannel<T>();
  }
  if (multi_output_channel_.size() == 0) {
    multi_output_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_output_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
  if (multi_consume_channel_.size() == 0) {
    multi_consume_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_consume_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
  if (input_pv_channel_ == nullptr) {
    input_pv_channel_ = paddle::framework::MakeChannel<PvInstance>();
  }
  if (multi_pv_output_.size() == 0) {
    multi_pv_output_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_pv_output_.push_back(paddle::framework::MakeChannel<PvInstance>());
    }
  }
  if (multi_pv_consume_.size() == 0) {
    multi_pv_consume_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_pv_consume_.push_back(paddle::framework::MakeChannel<PvInstance>());
    }
  }
222 223
}

224 225 226
// if sent message between workers, should first call this function
template <typename T>
void DatasetImpl<T>::RegisterClientToClientMsgHandler() {
Z
zhaocaibei123 已提交
227 228 229 230 231 232
#ifdef PADDLE_WITH_PSCORE
  auto fleet_ptr = distributed::FleetWrapper::GetInstance();
#else
  auto fleet_ptr = framework::FleetWrapper::GetInstance();
#endif
  VLOG(1) << "RegisterClientToClientMsgHandler";
233 234 235 236
  fleet_ptr->RegisterClientToClientMsgHandler(
      0, [this](int msg_type, int client_id, const std::string& msg) -> int {
        return this->ReceiveFromClient(msg_type, client_id, msg);
      });
Z
zhaocaibei123 已提交
237
  VLOG(1) << "RegisterClientToClientMsgHandler done";
238
}
Y
yaoxuefeng 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
static void compute_left_batch_num(const int ins_num, const int thread_num,
                                   std::vector<std::pair<int, int>>* offset,
                                   const int start_pos) {
  int cur_pos = start_pos;
  int batch_size = ins_num / thread_num;
  int left_num = ins_num % thread_num;
  for (int i = 0; i < thread_num; ++i) {
    int batch_num_size = batch_size;
    if (i == 0) {
      batch_num_size = batch_num_size + left_num;
    }
    offset->push_back(std::make_pair(cur_pos, batch_num_size));
    cur_pos += batch_num_size;
  }
}

static void compute_batch_num(const int64_t ins_num, const int batch_size,
                              const int thread_num,
                              std::vector<std::pair<int, int>>* offset) {
  int thread_batch_num = batch_size * thread_num;
  // less data
  if (static_cast<int64_t>(thread_batch_num) > ins_num) {
    compute_left_batch_num(ins_num, thread_num, offset, 0);
    return;
  }

  int cur_pos = 0;
  int offset_num = static_cast<int>(ins_num / thread_batch_num) * thread_num;
  int left_ins_num = static_cast<int>(ins_num % thread_batch_num);
  if (left_ins_num > 0 && left_ins_num < thread_num) {
    offset_num = offset_num - thread_num;
    left_ins_num = left_ins_num + thread_batch_num;
    for (int i = 0; i < offset_num; ++i) {
      offset->push_back(std::make_pair(cur_pos, batch_size));
      cur_pos += batch_size;
    }
    // split data to thread avg two rounds
    compute_left_batch_num(left_ins_num, thread_num * 2, offset, cur_pos);
  } else {
    for (int i = 0; i < offset_num; ++i) {
      offset->push_back(std::make_pair(cur_pos, batch_size));
      cur_pos += batch_size;
    }
    if (left_ins_num > 0) {
      compute_left_batch_num(left_ins_num, thread_num, offset, cur_pos);
    }
  }
}

static int compute_thread_batch_nccl(
    const int thr_num, const int64_t total_instance_num,
    const int minibatch_size, std::vector<std::pair<int, int>>* nccl_offsets) {
  int thread_avg_batch_num = 0;
  if (total_instance_num < static_cast<int64_t>(thr_num)) {
    LOG(WARNING) << "compute_thread_batch_nccl total ins num:["
                 << total_instance_num << "], less thread num:[" << thr_num
                 << "]";
    return thread_avg_batch_num;
  }

  auto& offset = (*nccl_offsets);
  // split data avg by thread num
  compute_batch_num(total_instance_num, minibatch_size, thr_num, &offset);
  thread_avg_batch_num = static_cast<int>(offset.size() / thr_num);
#ifdef PADDLE_WITH_GLOO
  auto gloo_wrapper = paddle::framework::GlooWrapper::GetInstance();
  if (!gloo_wrapper->IsInitialized()) {
    VLOG(0) << "GLOO is not inited";
    gloo_wrapper->Init();
  }

  if (gloo_wrapper->Size() > 1) {
    // adjust batch num per thread for NCCL
    std::vector<int> thread_avg_batch_num_vec(1, thread_avg_batch_num);
    std::vector<int64_t> total_instance_num_vec(1, total_instance_num);
    auto thread_max_batch_num_vec =
        gloo_wrapper->AllReduce(thread_avg_batch_num_vec, "max");
    auto sum_total_ins_num_vec =
        gloo_wrapper->AllReduce(total_instance_num_vec, "sum");
    int thread_max_batch_num = thread_max_batch_num_vec[0];
    int64_t sum_total_ins_num = sum_total_ins_num_vec[0];
    int diff_batch_num = thread_max_batch_num - thread_avg_batch_num;
    VLOG(3) << "diff batch num: " << diff_batch_num
            << " thread max batch num: " << thread_max_batch_num
            << " thread avg batch num: " << thread_avg_batch_num;
    if (diff_batch_num == 0) {
      LOG(WARNING) << "total sum ins " << sum_total_ins_num << ", thread_num "
                   << thr_num << ", ins num " << total_instance_num
                   << ", batch num " << offset.size()
                   << ", thread avg batch num " << thread_avg_batch_num;
      return thread_avg_batch_num;
    }

    int need_ins_num = thread_max_batch_num * thr_num;
    // data is too less
    if ((int64_t)need_ins_num > total_instance_num) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "error instance num:[%d] less need ins num:[%d]", total_instance_num,
          need_ins_num));
      return thread_avg_batch_num;
    }

    int need_batch_num = (diff_batch_num + 1) * thr_num;
    int offset_split_index = static_cast<int>(offset.size() - thr_num);
    int split_left_num = total_instance_num - offset[offset_split_index].first;
    while (split_left_num < need_batch_num) {
      need_batch_num += thr_num;
      offset_split_index -= thr_num;
      split_left_num = total_instance_num - offset[offset_split_index].first;
    }
    int split_start = offset[offset_split_index].first;
    offset.resize(offset_split_index);
    compute_left_batch_num(split_left_num, need_batch_num, &offset,
                           split_start);
    LOG(WARNING) << "total sum ins " << sum_total_ins_num << ", thread_num "
                 << thr_num << ", ins num " << total_instance_num
                 << ", batch num " << offset.size() << ", thread avg batch num "
                 << thread_avg_batch_num << ", thread max batch num "
                 << thread_max_batch_num
                 << ", need batch num: " << (need_batch_num / thr_num)
                 << "split begin (" << split_start << ")" << split_start
                 << ", num " << split_left_num;
    thread_avg_batch_num = thread_max_batch_num;
  } else {
    LOG(WARNING) << "thread_num " << thr_num << ", ins num "
                 << total_instance_num << ", batch num " << offset.size()
                 << ", thread avg batch num " << thread_avg_batch_num;
  }
#else
  PADDLE_THROW(platform::errors::Unavailable(
      "dataset compute nccl batch number need compile with GLOO"));
#endif
  return thread_avg_batch_num;
}

Y
yaoxuefeng 已提交
374
void MultiSlotDataset::PrepareTrain() {
Y
yaoxuefeng 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
#ifdef PADDLE_WITH_GLOO
  if (enable_heterps_) {
    if (input_records_.size() == 0 && input_channel_ != nullptr &&
        input_channel_->Size() != 0) {
      input_channel_->ReadAll(input_records_);
      VLOG(3) << "read from channel to records with records size: "
              << input_records_.size();
    }
    VLOG(3) << "input records size: " << input_records_.size();
    int64_t total_ins_num = input_records_.size();
    std::vector<std::pair<int, int>> offset;
    int default_batch_size =
        reinterpret_cast<MultiSlotInMemoryDataFeed*>(readers_[0].get())
            ->GetDefaultBatchSize();
    VLOG(3) << "thread_num: " << thread_num_
            << " memory size: " << total_ins_num
            << " default batch_size: " << default_batch_size;
    compute_thread_batch_nccl(thread_num_, total_ins_num, default_batch_size,
                              &offset);
    VLOG(3) << "offset size: " << offset.size();
    for (int i = 0; i < thread_num_; i++) {
      reinterpret_cast<MultiSlotInMemoryDataFeed*>(readers_[i].get())
          ->SetRecord(&input_records_[0]);
    }
    for (size_t i = 0; i < offset.size(); i++) {
      reinterpret_cast<MultiSlotInMemoryDataFeed*>(
          readers_[i % thread_num_].get())
          ->AddBatchOffset(offset[i]);
    }
  }
#else
  PADDLE_THROW(platform::errors::Unavailable(
      "dataset set heterps need compile with GLOO"));
#endif
  return;
}
411

X
xjqbest 已提交
412 413
// load data into memory, Dataset hold this memory,
// which will later be fed into readers' channel
414 415 416
template <typename T>
void DatasetImpl<T>::LoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() begin";
417 418
  platform::Timer timeline;
  timeline.Start();
419 420
  std::vector<std::thread> load_threads;
  for (int64_t i = 0; i < thread_num_; ++i) {
D
dongdaxiang 已提交
421 422
    load_threads.push_back(std::thread(
        &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
423 424 425 426
  }
  for (std::thread& t : load_threads) {
    t.join();
  }
J
jiaqi 已提交
427 428 429
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
430

431 432
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() end"
J
jiaqi 已提交
433
          << ", memory data size=" << input_channel_->Size()
434
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
435 436
}

J
jiaqi 已提交
437 438 439
template <typename T>
void DatasetImpl<T>::PreLoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() begin";
440
  if (preload_thread_num_ != 0) {
441
    CHECK(static_cast<size_t>(preload_thread_num_) == preload_readers_.size());
442 443 444 445 446 447 448
    preload_threads_.clear();
    for (int64_t i = 0; i < preload_thread_num_; ++i) {
      preload_threads_.push_back(
          std::thread(&paddle::framework::DataFeed::LoadIntoMemory,
                      preload_readers_[i].get()));
    }
  } else {
449
    CHECK(static_cast<size_t>(thread_num_) == readers_.size());
450 451 452 453 454
    preload_threads_.clear();
    for (int64_t i = 0; i < thread_num_; ++i) {
      preload_threads_.push_back(std::thread(
          &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
    }
J
jiaqi 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
  }
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() end";
}

template <typename T>
void DatasetImpl<T>::WaitPreLoadDone() {
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() begin";
  for (std::thread& t : preload_threads_) {
    t.join();
  }
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() end";
}

471 472 473
// release memory data
template <typename T>
void DatasetImpl<T>::ReleaseMemory() {
T
Thunderbrook 已提交
474 475 476 477 478
  release_thread_ = new std::thread(&DatasetImpl<T>::ReleaseMemoryFun, this);
}

template <typename T>
void DatasetImpl<T>::ReleaseMemoryFun() {
479
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() begin";
J
jiaqi 已提交
480 481 482 483 484 485 486 487 488 489
  if (input_channel_) {
    input_channel_->Clear();
    input_channel_ = nullptr;
  }
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    if (!multi_output_channel_[i]) {
      continue;
    }
    multi_output_channel_[i]->Clear();
    multi_output_channel_[i] = nullptr;
490
  }
J
jiaqi 已提交
491 492 493 494 495 496 497 498 499
  std::vector<paddle::framework::Channel<T>>().swap(multi_output_channel_);
  for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
    if (!multi_consume_channel_[i]) {
      continue;
    }
    multi_consume_channel_[i]->Clear();
    multi_consume_channel_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<T>>().swap(multi_consume_channel_);
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
  if (input_pv_channel_) {
    input_pv_channel_->Clear();
    input_pv_channel_ = nullptr;
  }
  for (size_t i = 0; i < multi_pv_output_.size(); ++i) {
    if (!multi_pv_output_[i]) {
      continue;
    }
    multi_pv_output_[i]->Clear();
    multi_pv_output_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<PvInstance>>().swap(multi_pv_output_);
  for (size_t i = 0; i < multi_pv_consume_.size(); ++i) {
    if (!multi_pv_consume_[i]) {
      continue;
    }
    multi_pv_consume_[i]->Clear();
    multi_pv_consume_[i] = nullptr;
  }
Y
yaoxuefeng 已提交
519 520 521 522 523 524 525
  if (enable_heterps_) {
    input_records_.clear();
    input_records_.shrink_to_fit();
    std::vector<T>().swap(input_records_);
    VLOG(3) << "release heterps input records records size: "
            << input_records_.size();
  }
526 527
  std::vector<paddle::framework::Channel<PvInstance>>().swap(multi_pv_consume_);

J
jiaqi 已提交
528
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
529 530
  input_records_.clear();
  std::vector<T>().swap(input_records_);
H
hutuxian 已提交
531
  std::vector<T>().swap(slots_shuffle_original_data_);
532
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() end";
H
hutuxian 已提交
533 534 535 536 537
  VLOG(3) << "total_feasign_num_(" << STAT_GET(STAT_total_feasign_num_in_mem)
          << ") - current_fea_num_(" << total_fea_num_ << ") = ("
          << STAT_GET(STAT_total_feasign_num_in_mem) - total_fea_num_
          << ")";  // For Debug
  STAT_SUB(STAT_total_feasign_num_in_mem, total_fea_num_);
538 539
}

X
xjqbest 已提交
540
// do local shuffle
541 542 543
template <typename T>
void DatasetImpl<T>::LocalShuffle() {
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() begin";
544 545
  platform::Timer timeline;
  timeline.Start();
546

J
jiaqi 已提交
547 548 549
  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, no data to shuffle";
    return;
550
  }
Z
zhaocaibei123 已提交
551
  auto fleet_ptr = framework::FleetWrapper::GetInstance();
J
jiaqi 已提交
552 553 554 555 556 557 558 559 560 561
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();
  input_channel_->Close();

562 563 564
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
565 566
}

W
wangzhen38 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
// do tdm sample
void MultiSlotDataset::TDMSample(const std::string tree_name,
                                 const std::string tree_path,
                                 const std::vector<uint16_t> tdm_layer_counts,
                                 const uint16_t start_sample_layer,
                                 const bool with_hierachy, const uint16_t seed_,
                                 const uint16_t sample_slot) {
#if (defined PADDLE_WITH_DISTRIBUTE) && (defined PADDLE_WITH_PSCORE)
  // init tdm tree
  auto wrapper_ptr = paddle::distributed::IndexWrapper::GetInstance();
  wrapper_ptr->insert_tree_index(tree_name, tree_path);
  auto tree_ptr = wrapper_ptr->get_tree_index(tree_name);
  auto _layer_wise_sample = paddle::distributed::LayerWiseSampler(tree_name);
  _layer_wise_sample.init_layerwise_conf(tdm_layer_counts, start_sample_layer,
                                         seed_);

  VLOG(0) << "DatasetImpl<T>::Sample() begin";
  platform::Timer timeline;
  timeline.Start();

  std::vector<std::vector<Record>> data;
  std::vector<std::vector<Record>> sample_results;
  if (!input_channel_ || input_channel_->Size() == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      std::vector<Record> tmp_data;
      data.push_back(tmp_data);
      if (!multi_output_channel_[i] || multi_output_channel_[i]->Size() == 0) {
        continue;
      }
      multi_output_channel_[i]->Close();
      multi_output_channel_[i]->ReadAll(data[i]);
    }
  } else {
    input_channel_->Close();
    std::vector<Record> tmp_data;
    data.push_back(tmp_data);
    input_channel_->ReadAll(data[data.size() - 1]);
  }

  VLOG(1) << "finish read src data, data.size = " << data.size()
          << "; details: ";
  auto fleet_ptr = FleetWrapper::GetInstance();
  for (unsigned int i = 0; i < data.size(); i++) {
    VLOG(1) << "data[" << i << "]: size = " << data[i].size();
    std::vector<Record> tmp_results;
    _layer_wise_sample.sample_from_dataset(sample_slot, &data[i], &tmp_results);
    VLOG(1) << "sample_results(" << sample_slot << ") = " << tmp_results.size();
    VLOG(0) << "start to put sample in vector!";
    // sample_results.push_back(tmp_results);
    for (unsigned int j = 0; j < tmp_results.size(); j++) {
      std::vector<Record> tmp_vec;
      tmp_vec.emplace_back(tmp_results[j]);
      sample_results.emplace_back(tmp_vec);
    }
    VLOG(0) << "finish to put sample in vector!";
  }

  auto output_channel_num = multi_output_channel_.size();
  for (unsigned int i = 0; i < sample_results.size(); i++) {
    auto output_idx = fleet_ptr->LocalRandomEngine()() % output_channel_num;
    multi_output_channel_[output_idx]->Open();
    // vector?
    multi_output_channel_[output_idx]->Write(std::move(sample_results[i]));
  }

  data.clear();
  sample_results.clear();
  data.shrink_to_fit();
  sample_results.shrink_to_fit();

  timeline.Pause();
  VLOG(0) << "DatasetImpl<T>::Sample() end, cost time=" << timeline.ElapsedSec()
          << " seconds";
#endif
  return;
}

Y
yaoxuefeng 已提交
644 645
void MultiSlotDataset::GlobalShuffle(int thread_num) {
  VLOG(3) << "MultiSlotDataset::GlobalShuffle() begin";
646 647
  platform::Timer timeline;
  timeline.Start();
Z
zhaocaibei123 已提交
648 649 650 651 652
#ifdef PADDLE_WITH_PSCORE
  auto fleet_ptr = distributed::FleetWrapper::GetInstance();
#else
  auto fleet_ptr = framework::FleetWrapper::GetInstance();
#endif
J
jiaqi 已提交
653 654

  if (!input_channel_ || input_channel_->Size() == 0) {
Y
yaoxuefeng 已提交
655
    VLOG(3) << "MultiSlotDataset::GlobalShuffle() end, no data to shuffle";
J
jiaqi 已提交
656 657 658 659 660
    return;
  }

  // local shuffle
  input_channel_->Close();
Y
yaoxuefeng 已提交
661
  std::vector<Record> data;
J
jiaqi 已提交
662 663 664 665 666 667 668 669 670
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();

  input_channel_->Close();
  input_channel_->SetBlockSize(fleet_send_batch_size_);
Y
yaoxuefeng 已提交
671
  VLOG(3) << "MultiSlotDataset::GlobalShuffle() input_channel_ size "
J
jiaqi 已提交
672 673
          << input_channel_->Size();

Y
yaoxuefeng 已提交
674
  auto get_client_id = [this, fleet_ptr](const Record& data) -> size_t {
675
    if (this->merge_by_insid_) {
676 677
      return XXH64(data.ins_id_.data(), data.ins_id_.length(), 0) %
             this->trainer_num_;
678 679 680 681 682
    } else if (this->shuffle_by_uid_) {
      return XXH64(data.uid_.data(), data.uid_.length(), 0) %
             this->trainer_num_;
    } else {
      return fleet_ptr->LocalRandomEngine()() % this->trainer_num_;
683 684 685 686
    }
  };

  auto global_shuffle_func = [this, get_client_id]() {
Z
zhaocaibei123 已提交
687 688 689 690 691 692
#ifdef PADDLE_WITH_PSCORE
    auto fleet_ptr = distributed::FleetWrapper::GetInstance();
#else
    auto fleet_ptr = framework::FleetWrapper::GetInstance();
#endif
    // auto fleet_ptr = framework::FleetWrapper::GetInstance();
Y
yaoxuefeng 已提交
693
    std::vector<Record> data;
J
jiaqi 已提交
694 695 696
    while (this->input_channel_->Read(data)) {
      std::vector<paddle::framework::BinaryArchive> ars(this->trainer_num_);
      for (auto& t : data) {
697
        auto client_id = get_client_id(t);
J
jiaqi 已提交
698 699 700 701 702 703 704 705 706
        ars[client_id] << t;
      }
      std::vector<std::future<int32_t>> total_status;
      std::vector<int> send_index(this->trainer_num_);
      for (int i = 0; i < this->trainer_num_; ++i) {
        send_index[i] = i;
      }
      std::shuffle(send_index.begin(), send_index.end(),
                   fleet_ptr->LocalRandomEngine());
707
      for (int index = 0; index < this->trainer_num_; ++index) {
J
jiaqi 已提交
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
        int i = send_index[index];
        if (ars[i].Length() == 0) {
          continue;
        }
        std::string msg(ars[i].Buffer(), ars[i].Length());
        auto ret = fleet_ptr->SendClientToClientMsg(0, i, msg);
        total_status.push_back(std::move(ret));
      }
      for (auto& t : total_status) {
        t.wait();
      }
      ars.clear();
      ars.shrink_to_fit();
      data.clear();
      data.shrink_to_fit();
723 724 725 726 727 728
      // currently we find bottleneck is server not able to handle large data
      // in time, so we can remove this sleep and set fleet_send_batch_size to
      // 1024, and set server thread to 24.
      if (fleet_send_sleep_seconds_ != 0) {
        sleep(this->fleet_send_sleep_seconds_);
      }
J
jiaqi 已提交
729 730 731
    }
  };

732
  std::vector<std::thread> global_shuffle_threads;
733 734 735 736 737
  if (thread_num == -1) {
    thread_num = thread_num_;
  }
  VLOG(3) << "start global shuffle threads, num = " << thread_num;
  for (int i = 0; i < thread_num; ++i) {
J
jiaqi 已提交
738
    global_shuffle_threads.push_back(std::thread(global_shuffle_func));
739 740 741
  }
  for (std::thread& t : global_shuffle_threads) {
    t.join();
742
  }
J
jiaqi 已提交
743 744 745
  global_shuffle_threads.clear();
  global_shuffle_threads.shrink_to_fit();
  input_channel_->Clear();
746 747 748
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
749 750
}

751
template <typename T>
H
hutuxian 已提交
752 753
void DatasetImpl<T>::DynamicAdjustChannelNum(int channel_num,
                                             bool discard_remaining_ins) {
754 755 756 757 758 759 760 761 762 763
  if (channel_num_ == channel_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustChannelNum channel_num_="
            << channel_num_ << ", channel_num_=channel_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust channel num from " << channel_num_ << " to "
          << channel_num;
  channel_num_ = channel_num;
  std::vector<paddle::framework::Channel<T>>* origin_channels = nullptr;
  std::vector<paddle::framework::Channel<T>>* other_channels = nullptr;
764 765 766 767 768
  std::vector<paddle::framework::Channel<PvInstance>>* origin_pv_channels =
      nullptr;
  std::vector<paddle::framework::Channel<PvInstance>>* other_pv_channels =
      nullptr;

769 770 771 772 773
  // find out which channel (output or consume) has data
  int cur_channel = 0;
  uint64_t output_channels_data_size = 0;
  uint64_t consume_channels_data_size = 0;
  CHECK(multi_output_channel_.size() == multi_consume_channel_.size());
774
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
775 776 777 778 779 780 781 782 783 784 785 786 787
    output_channels_data_size += multi_output_channel_[i]->Size();
    consume_channels_data_size += multi_consume_channel_[i]->Size();
  }
  if (output_channels_data_size != 0) {
    CHECK(consume_channels_data_size == 0);  // NOLINT
    cur_channel = 0;
  } else {
    CHECK(output_channels_data_size == 0);  // NOLINT
    cur_channel = 1;
  }
  if (cur_channel == 0) {
    origin_channels = &multi_output_channel_;
    other_channels = &multi_consume_channel_;
788 789
    origin_pv_channels = &multi_pv_output_;
    other_pv_channels = &multi_pv_consume_;
790 791 792
  } else {
    origin_channels = &multi_consume_channel_;
    other_channels = &multi_output_channel_;
793 794
    origin_pv_channels = &multi_pv_consume_;
    other_pv_channels = &multi_pv_output_;
795
  }
796 797 798 799
  CHECK(origin_channels != nullptr);     // NOLINT
  CHECK(other_channels != nullptr);      // NOLINT
  CHECK(origin_pv_channels != nullptr);  // NOLINT
  CHECK(other_pv_channels != nullptr);   // NOLINT
800 801 802 803 804

  paddle::framework::Channel<T> total_data_channel =
      paddle::framework::MakeChannel<T>();
  std::vector<paddle::framework::Channel<T>> new_channels;
  std::vector<paddle::framework::Channel<T>> new_other_channels;
805 806 807
  std::vector<paddle::framework::Channel<PvInstance>> new_pv_channels;
  std::vector<paddle::framework::Channel<PvInstance>> new_other_pv_channels;

808
  std::vector<T> local_vec;
809
  for (size_t i = 0; i < origin_channels->size(); ++i) {
810 811 812 813 814 815
    local_vec.clear();
    (*origin_channels)[i]->Close();
    (*origin_channels)[i]->ReadAll(local_vec);
    total_data_channel->Write(std::move(local_vec));
  }
  total_data_channel->Close();
H
hutuxian 已提交
816 817 818 819
  if (static_cast<int>(total_data_channel->Size()) >= channel_num) {
    total_data_channel->SetBlockSize(total_data_channel->Size() / channel_num +
                                     (discard_remaining_ins ? 0 : 1));
  }
H
hutuxian 已提交
820
  if (static_cast<int>(input_channel_->Size()) >= channel_num) {
H
hutuxian 已提交
821 822
    input_channel_->SetBlockSize(input_channel_->Size() / channel_num +
                                 (discard_remaining_ins ? 0 : 1));
H
hutuxian 已提交
823
  }
824 825 826 827 828 829
  if (static_cast<int>(input_pv_channel_->Size()) >= channel_num) {
    input_pv_channel_->SetBlockSize(input_pv_channel_->Size() / channel_num +
                                    (discard_remaining_ins ? 0 : 1));
    VLOG(3) << "now input_pv_channle block size is "
            << input_pv_channel_->BlockSize();
  }
830 831 832 833 834 835 836

  for (int i = 0; i < channel_num; ++i) {
    local_vec.clear();
    total_data_channel->Read(local_vec);
    new_other_channels.push_back(paddle::framework::MakeChannel<T>());
    new_channels.push_back(paddle::framework::MakeChannel<T>());
    new_channels[i]->Write(std::move(local_vec));
837 838 839
    new_other_pv_channels.push_back(
        paddle::framework::MakeChannel<PvInstance>());
    new_pv_channels.push_back(paddle::framework::MakeChannel<PvInstance>());
840 841 842 843 844 845 846 847
  }

  total_data_channel->Clear();
  origin_channels->clear();
  other_channels->clear();
  *origin_channels = new_channels;
  *other_channels = new_other_channels;

848 849 850 851 852
  origin_pv_channels->clear();
  other_pv_channels->clear();
  *origin_pv_channels = new_pv_channels;
  *other_pv_channels = new_other_pv_channels;

853 854 855 856
  new_channels.clear();
  new_other_channels.clear();
  std::vector<paddle::framework::Channel<T>>().swap(new_channels);
  std::vector<paddle::framework::Channel<T>>().swap(new_other_channels);
857 858 859 860 861 862 863

  new_pv_channels.clear();
  new_other_pv_channels.clear();
  std::vector<paddle::framework::Channel<PvInstance>>().swap(new_pv_channels);
  std::vector<paddle::framework::Channel<PvInstance>>().swap(
      new_other_pv_channels);

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
  local_vec.clear();
  std::vector<T>().swap(local_vec);
  VLOG(3) << "adjust channel num done";
}

template <typename T>
void DatasetImpl<T>::DynamicAdjustReadersNum(int thread_num) {
  if (thread_num_ == thread_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustReadersNum thread_num_="
            << thread_num_ << ", thread_num_=thread_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust readers num from " << thread_num_ << " to " << thread_num;
  thread_num_ = thread_num;
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
  CreateReaders();
  VLOG(3) << "adjust readers num done";
}

template <typename T>
void DatasetImpl<T>::SetFleetSendSleepSeconds(int seconds) {
  fleet_send_sleep_seconds_ = seconds;
}

888 889
template <typename T>
void DatasetImpl<T>::CreateReaders() {
890
  VLOG(3) << "Calling CreateReaders()";
J
jiaqi 已提交
891 892 893 894 895 896
  VLOG(3) << "thread num in Dataset: " << thread_num_;
  VLOG(3) << "Filelist size in Dataset: " << filelist_.size();
  VLOG(3) << "channel num in Dataset: " << channel_num_;
  CHECK(thread_num_ > 0) << "thread num should > 0";
  CHECK(channel_num_ > 0) << "channel num should > 0";
  CHECK(channel_num_ <= thread_num_) << "channel num should <= thread num";
897
  VLOG(3) << "readers size: " << readers_.size();
898
  if (readers_.size() != 0) {
J
jiaqi 已提交
899 900
    VLOG(3) << "readers_.size() = " << readers_.size()
            << ", will not create again";
901 902
    return;
  }
903
  VLOG(3) << "data feed class name: " << data_feed_desc_.name();
J
jiaqi 已提交
904
  int channel_idx = 0;
905
  for (int i = 0; i < thread_num_; ++i) {
906
    readers_.push_back(DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
J
jiaqi 已提交
907 908 909 910 911
    readers_[i]->Init(data_feed_desc_);
    readers_[i]->SetThreadId(i);
    readers_[i]->SetThreadNum(thread_num_);
    readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    readers_[i]->SetFileListIndex(&file_idx_);
H
hutuxian 已提交
912 913
    readers_[i]->SetFeaNumMutex(&mutex_for_fea_num_);
    readers_[i]->SetFeaNum(&total_fea_num_);
J
jiaqi 已提交
914
    readers_[i]->SetFileList(filelist_);
915
    readers_[i]->SetParseInsId(parse_ins_id_);
916
    readers_[i]->SetParseUid(parse_uid_);
917
    readers_[i]->SetParseContent(parse_content_);
918 919 920 921 922 923
    readers_[i]->SetParseLogKey(parse_logkey_);
    readers_[i]->SetEnablePvMerge(enable_pv_merge_);
    // Notice: it is only valid for untest of test_paddlebox_datafeed.
    // In fact, it does not affect the train process when paddle is
    // complied with Box_Ps.
    readers_[i]->SetCurrentPhase(current_phase_);
J
jiaqi 已提交
924 925 926
    if (input_channel_ != nullptr) {
      readers_[i]->SetInputChannel(input_channel_.get());
    }
927 928 929
    if (input_pv_channel_ != nullptr) {
      readers_[i]->SetInputPvChannel(input_pv_channel_.get());
    }
930 931
    if (cur_channel_ == 0 &&
        static_cast<size_t>(channel_idx) < multi_output_channel_.size()) {
J
jiaqi 已提交
932 933
      readers_[i]->SetOutputChannel(multi_output_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_consume_channel_[channel_idx].get());
934 935
      readers_[i]->SetOutputPvChannel(multi_pv_output_[channel_idx].get());
      readers_[i]->SetConsumePvChannel(multi_pv_consume_[channel_idx].get());
936 937
    } else if (static_cast<size_t>(channel_idx) <
               multi_output_channel_.size()) {
J
jiaqi 已提交
938 939
      readers_[i]->SetOutputChannel(multi_consume_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_output_channel_[channel_idx].get());
940 941
      readers_[i]->SetOutputPvChannel(multi_pv_consume_[channel_idx].get());
      readers_[i]->SetConsumePvChannel(multi_pv_output_[channel_idx].get());
J
jiaqi 已提交
942 943 944 945 946
    }
    ++channel_idx;
    if (channel_idx >= channel_num_) {
      channel_idx = 0;
    }
947
  }
J
jiaqi 已提交
948
  VLOG(3) << "readers size: " << readers_.size();
949 950
}

951 952 953
template <typename T>
void DatasetImpl<T>::DestroyReaders() {
  VLOG(3) << "Calling DestroyReaders()";
954
  VLOG(3) << "readers size1: " << readers_.size();
955
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
956
  VLOG(3) << "readers size: " << readers_.size();
J
jiaqi 已提交
957 958
  file_idx_ = 0;
  cur_channel_ = 1 - cur_channel_;
959 960
}

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
template <typename T>
void DatasetImpl<T>::SetPreLoadThreadNum(int thread_num) {
  preload_thread_num_ = thread_num;
}

template <typename T>
void DatasetImpl<T>::CreatePreLoadReaders() {
  VLOG(3) << "Begin CreatePreLoadReaders";
  if (preload_thread_num_ == 0) {
    preload_thread_num_ = thread_num_;
  }
  CHECK(preload_thread_num_ > 0) << "thread num should > 0";
  CHECK(input_channel_ != nullptr);
  preload_readers_.clear();
  for (int i = 0; i < preload_thread_num_; ++i) {
    preload_readers_.push_back(
        DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
    preload_readers_[i]->Init(data_feed_desc_);
    preload_readers_[i]->SetThreadId(i);
    preload_readers_[i]->SetThreadNum(preload_thread_num_);
    preload_readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    preload_readers_[i]->SetFileListIndex(&file_idx_);
    preload_readers_[i]->SetFileList(filelist_);
H
hutuxian 已提交
984 985
    preload_readers_[i]->SetFeaNumMutex(&mutex_for_fea_num_);
    preload_readers_[i]->SetFeaNum(&total_fea_num_);
986
    preload_readers_[i]->SetParseInsId(parse_ins_id_);
987
    preload_readers_[i]->SetParseUid(parse_uid_);
988
    preload_readers_[i]->SetParseContent(parse_content_);
989 990
    preload_readers_[i]->SetParseLogKey(parse_logkey_);
    preload_readers_[i]->SetEnablePvMerge(enable_pv_merge_);
991 992 993
    preload_readers_[i]->SetInputChannel(input_channel_.get());
    preload_readers_[i]->SetOutputChannel(nullptr);
    preload_readers_[i]->SetConsumeChannel(nullptr);
994 995
    preload_readers_[i]->SetOutputPvChannel(nullptr);
    preload_readers_[i]->SetConsumePvChannel(nullptr);
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
  }
  VLOG(3) << "End CreatePreLoadReaders";
}

template <typename T>
void DatasetImpl<T>::DestroyPreLoadReaders() {
  VLOG(3) << "Begin DestroyPreLoadReaders";
  preload_readers_.clear();
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(
      preload_readers_);
  file_idx_ = 0;
  VLOG(3) << "End DestroyPreLoadReaders";
}

1010 1011
template <typename T>
int64_t DatasetImpl<T>::GetMemoryDataSize() {
J
jiaqi 已提交
1012
  return input_channel_->Size();
1013 1014
}

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
template <typename T>
int64_t DatasetImpl<T>::GetPvDataSize() {
  if (enable_pv_merge_) {
    return input_pv_channel_->Size();
  } else {
    VLOG(0) << "It does not merge pv..";
    return 0;
  }
}

1025 1026 1027
template <typename T>
int64_t DatasetImpl<T>::GetShuffleDataSize() {
  int64_t sum = 0;
J
jiaqi 已提交
1028 1029
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    sum += multi_output_channel_[i]->Size() + multi_consume_channel_[i]->Size();
1030 1031 1032 1033
  }
  return sum;
}

Y
yaoxuefeng 已提交
1034 1035
int MultiSlotDataset::ReceiveFromClient(int msg_type, int client_id,
                                        const std::string& msg) {
D
dongdaxiang 已提交
1036
#ifdef _LINUX
1037
  VLOG(3) << "ReceiveFromClient msg_type=" << msg_type
1038
          << ", client_id=" << client_id << ", msg length=" << msg.length();
J
jiaqi 已提交
1039 1040 1041 1042 1043 1044 1045 1046
  if (msg.length() == 0) {
    return 0;
  }
  paddle::framework::BinaryArchive ar;
  ar.SetReadBuffer(const_cast<char*>(msg.c_str()), msg.length(), nullptr);
  if (ar.Cursor() == ar.Finish()) {
    return 0;
  }
Y
yaoxuefeng 已提交
1047
  std::vector<Record> data;
J
jiaqi 已提交
1048
  while (ar.Cursor() < ar.Finish()) {
Y
yaoxuefeng 已提交
1049
    data.push_back(ar.Get<Record>());
J
jiaqi 已提交
1050 1051 1052
  }
  CHECK(ar.Cursor() == ar.Finish());

Z
zhaocaibei123 已提交
1053
  auto fleet_ptr = framework::FleetWrapper::GetInstance();
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
  // not use random because it doesn't perform well here.
  // to make sure each channel get data equally, we just put data to
  // channel one by one.
  // int64_t index = fleet_ptr->LocalRandomEngine()() % channel_num_;
  int64_t index = 0;
  {
    std::unique_lock<std::mutex> lk(global_index_mutex_);
    index = global_index_++;
  }
  index = index % channel_num_;
1064
  VLOG(3) << "ramdom index=" << index;
J
jiaqi 已提交
1065 1066 1067 1068
  multi_output_channel_[index]->Write(std::move(data));

  data.clear();
  data.shrink_to_fit();
D
dongdaxiang 已提交
1069
#endif
1070 1071 1072
  return 0;
}

1073
// explicit instantiation
J
jiaqi 已提交
1074
template class DatasetImpl<Record>;
1075

Y
yaoxuefeng 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
void MultiSlotDataset::DynamicAdjustReadersNum(int thread_num) {
  if (thread_num_ == thread_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustReadersNum thread_num_="
            << thread_num_ << ", thread_num_=thread_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust readers num from " << thread_num_ << " to " << thread_num;
  thread_num_ = thread_num;
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
  CreateReaders();
  VLOG(3) << "adjust readers num done";
  PrepareTrain();
}

1090 1091 1092
void MultiSlotDataset::PostprocessInstance() {
  // divide pv instance, and merge to input_channel_
  if (enable_pv_merge_) {
Z
zhaocaibei123 已提交
1093
    auto fleet_ptr = framework::FleetWrapper::GetInstance();
1094 1095
    std::shuffle(input_records_.begin(), input_records_.end(),
                 fleet_ptr->LocalRandomEngine());
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
    input_channel_->Open();
    input_channel_->Write(std::move(input_records_));
    for (size_t i = 0; i < multi_pv_consume_.size(); ++i) {
      multi_pv_consume_[i]->Clear();
    }
    input_channel_->Close();
    input_records_.clear();
    input_records_.shrink_to_fit();
  } else {
    input_channel_->Open();
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      std::vector<Record> ins_data;
      multi_consume_channel_[i]->Close();
      multi_consume_channel_[i]->ReadAll(ins_data);
      input_channel_->Write(std::move(ins_data));
      ins_data.clear();
      ins_data.shrink_to_fit();
      multi_consume_channel_[i]->Clear();
    }
    input_channel_->Close();
1116
    this->LocalShuffle();
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
  }
}

void MultiSlotDataset::SetCurrentPhase(int current_phase) {
  current_phase_ = current_phase;
}

void MultiSlotDataset::PreprocessInstance() {
  if (!input_channel_ || input_channel_->Size() == 0) {
    return;
  }
  if (!enable_pv_merge_) {  // means to use Record
    this->LocalShuffle();
  } else {  // means to use Pv
Z
zhaocaibei123 已提交
1131
    auto fleet_ptr = framework::FleetWrapper::GetInstance();
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
    input_channel_->Close();
    std::vector<PvInstance> pv_data;
    input_channel_->ReadAll(input_records_);
    int all_records_num = input_records_.size();
    std::vector<Record*> all_records;
    all_records.reserve(all_records_num);
    for (int index = 0; index < all_records_num; ++index) {
      all_records.push_back(&input_records_[index]);
    }

    std::sort(all_records.data(), all_records.data() + all_records_num,
              [](const Record* lhs, const Record* rhs) {
                return lhs->search_id < rhs->search_id;
              });
    if (merge_by_sid_) {
      uint64_t last_search_id = 0;
      for (int i = 0; i < all_records_num; ++i) {
        Record* ins = all_records[i];
        if (i == 0 || last_search_id != ins->search_id) {
          PvInstance pv_instance = make_pv_instance();
          pv_instance->merge_instance(ins);
          pv_data.push_back(pv_instance);
          last_search_id = ins->search_id;
          continue;
        }
        pv_data.back()->merge_instance(ins);
      }
    } else {
      for (int i = 0; i < all_records_num; ++i) {
        Record* ins = all_records[i];
        PvInstance pv_instance = make_pv_instance();
        pv_instance->merge_instance(ins);
        pv_data.push_back(pv_instance);
      }
    }

    std::shuffle(pv_data.begin(), pv_data.end(),
                 fleet_ptr->LocalRandomEngine());
    input_pv_channel_->Open();
    input_pv_channel_->Write(std::move(pv_data));

    pv_data.clear();
    pv_data.shrink_to_fit();
    input_pv_channel_->Close();
  }
}

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
void MultiSlotDataset::GenerateLocalTablesUnlock(int table_id, int feadim,
                                                 int read_thread_num,
                                                 int consume_thread_num,
                                                 int shard_num) {
  VLOG(3) << "MultiSlotDataset::GenerateUniqueFeasign begin";
  if (!gen_uni_feasigns_) {
    VLOG(3) << "generate_unique_feasign_=false, will not GenerateUniqueFeasign";
    return;
  }

  CHECK(multi_output_channel_.size() != 0);  // NOLINT
Z
zhaocaibei123 已提交
1190
  auto fleet_ptr_ = framework::FleetWrapper::GetInstance();
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
  std::vector<std::unordered_map<uint64_t, std::vector<float>>>&
      local_map_tables = fleet_ptr_->GetLocalTable();
  local_map_tables.resize(shard_num);
  // read thread
  int channel_num = multi_output_channel_.size();
  if (read_thread_num < channel_num) {
    read_thread_num = channel_num;
  }
  std::vector<std::thread> threads(read_thread_num);
  consume_task_pool_.resize(consume_thread_num);
  for (size_t i = 0; i < consume_task_pool_.size(); i++) {
    consume_task_pool_[i].reset(new ::ThreadPool(1));
  }
  auto consume_func = [&local_map_tables](int shard_id, int feadim,
                                          std::vector<uint64_t>& keys) {
    for (auto k : keys) {
      if (local_map_tables[shard_id].find(k) ==
          local_map_tables[shard_id].end()) {
        local_map_tables[shard_id][k] = std::vector<float>(feadim, 0);
      }
    }
  };
  auto gen_func = [this, &shard_num, &feadim, &local_map_tables,
                   &consume_func](int i) {
    std::vector<Record> vec_data;
    std::vector<std::vector<uint64_t>> task_keys(shard_num);
    std::vector<std::future<void>> task_futures;
    this->multi_output_channel_[i]->Close();
    this->multi_output_channel_[i]->ReadAll(vec_data);
    for (size_t j = 0; j < vec_data.size(); j++) {
      for (auto& feature : vec_data[j].uint64_feasigns_) {
        int shard = feature.sign().uint64_feasign_ % shard_num;
        task_keys[shard].push_back(feature.sign().uint64_feasign_);
      }
    }

    for (int shard_id = 0; shard_id < shard_num; shard_id++) {
      task_futures.emplace_back(consume_task_pool_[shard_id]->enqueue(
          consume_func, shard_id, feadim, task_keys[shard_id]));
    }

    multi_output_channel_[i]->Open();
    multi_output_channel_[i]->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
    for (auto& tk : task_keys) {
      tk.clear();
      std::vector<uint64_t>().swap(tk);
    }
    task_keys.clear();
    std::vector<std::vector<uint64_t>>().swap(task_keys);
    for (auto& tf : task_futures) {
      tf.wait();
    }
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(gen_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  for (size_t i = 0; i < consume_task_pool_.size(); i++) {
    consume_task_pool_[i].reset();
  }
  consume_task_pool_.clear();
  fleet_ptr_->PullSparseToLocal(table_id, feadim);
}
1258

1259 1260 1261 1262 1263 1264 1265 1266
void MultiSlotDataset::MergeByInsId() {
  VLOG(3) << "MultiSlotDataset::MergeByInsId begin";
  if (!merge_by_insid_) {
    VLOG(3) << "merge_by_insid=false, will not MergeByInsId";
    return;
  }
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  std::vector<std::string> use_slots;
1267
  std::vector<bool> use_slots_is_dense;
1268
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
1269 1270 1271
    const auto& slot = multi_slot_desc.slots(i);
    if (slot.is_used()) {
      use_slots.push_back(slot.name());
1272
      use_slots_is_dense.push_back(slot.is_dense());
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
    }
  }
  CHECK(multi_output_channel_.size() != 0);  // NOLINT
  auto channel_data = paddle::framework::MakeChannel<Record>();
  VLOG(3) << "multi_output_channel_.size() " << multi_output_channel_.size();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    multi_output_channel_[i]->Close();
    multi_output_channel_[i]->ReadAll(vec_data);
    channel_data->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
    multi_output_channel_[i]->Clear();
  }
  channel_data->Close();
  std::vector<Record> recs;
  recs.reserve(channel_data->Size());
  channel_data->ReadAll(recs);
  channel_data->Clear();
  std::sort(recs.begin(), recs.end(), [](const Record& a, const Record& b) {
    return a.ins_id_ < b.ins_id_;
  });

  std::vector<Record> results;
1297 1298 1299 1300 1301
  uint64_t drop_ins_num = 0;
  std::unordered_set<uint16_t> all_int64;
  std::unordered_set<uint16_t> all_float;
  std::unordered_set<uint16_t> local_uint64;
  std::unordered_set<uint16_t> local_float;
1302 1303 1304 1305 1306
  std::unordered_map<uint16_t, std::vector<FeatureItem>> all_dense_uint64;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> all_dense_float;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> local_dense_uint64;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> local_dense_float;
  std::unordered_map<uint16_t, bool> dense_empty;
1307

1308 1309 1310 1311 1312 1313
  VLOG(3) << "recs.size() " << recs.size();
  for (size_t i = 0; i < recs.size();) {
    size_t j = i + 1;
    while (j < recs.size() && recs[j].ins_id_ == recs[i].ins_id_) {
      j++;
    }
1314 1315 1316 1317
    if (merge_size_ > 0 && j - i != merge_size_) {
      drop_ins_num += j - i;
      LOG(WARNING) << "drop ins " << recs[i].ins_id_ << " size=" << j - i
                   << ", because merge_size=" << merge_size_;
1318 1319 1320 1321
      i = j;
      continue;
    }

1322 1323
    all_int64.clear();
    all_float.clear();
1324 1325
    all_dense_uint64.clear();
    all_dense_float.clear();
1326 1327 1328 1329 1330 1331
    bool has_conflict_slot = false;
    uint16_t conflict_slot = 0;

    Record rec;
    rec.ins_id_ = recs[i].ins_id_;
    rec.content_ = recs[i].content_;
1332

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
    for (size_t k = i; k < j; k++) {
      dense_empty.clear();
      local_dense_uint64.clear();
      local_dense_float.clear();
      for (auto& feature : recs[k].uint64_feasigns_) {
        uint16_t slot = feature.slot();
        if (!use_slots_is_dense[slot]) {
          continue;
        }
        local_dense_uint64[slot].push_back(feature);
        if (feature.sign().uint64_feasign_ != 0) {
          dense_empty[slot] = false;
        } else if (dense_empty.find(slot) == dense_empty.end() &&
                   all_dense_uint64.find(slot) == all_dense_uint64.end()) {
          dense_empty[slot] = true;
        }
      }
      for (auto& feature : recs[k].float_feasigns_) {
        uint16_t slot = feature.slot();
        if (!use_slots_is_dense[slot]) {
          continue;
        }
        local_dense_float[slot].push_back(feature);
        if (fabs(feature.sign().float_feasign_) >= 1e-6) {
          dense_empty[slot] = false;
        } else if (dense_empty.find(slot) == dense_empty.end() &&
                   all_dense_float.find(slot) == all_dense_float.end()) {
          dense_empty[slot] = true;
        }
      }
      for (auto& p : dense_empty) {
        if (local_dense_uint64.find(p.first) != local_dense_uint64.end()) {
          all_dense_uint64[p.first] = std::move(local_dense_uint64[p.first]);
        } else if (local_dense_float.find(p.first) != local_dense_float.end()) {
          all_dense_float[p.first] = std::move(local_dense_float[p.first]);
        }
      }
    }
    for (auto& f : all_dense_uint64) {
      rec.uint64_feasigns_.insert(rec.uint64_feasigns_.end(), f.second.begin(),
                                  f.second.end());
    }
    for (auto& f : all_dense_float) {
      rec.float_feasigns_.insert(rec.float_feasigns_.end(), f.second.begin(),
                                 f.second.end());
    }

1380 1381 1382
    for (size_t k = i; k < j; k++) {
      local_uint64.clear();
      local_float.clear();
1383
      for (auto& feature : recs[k].uint64_feasigns_) {
1384
        uint16_t slot = feature.slot();
1385 1386 1387
        if (use_slots_is_dense[slot]) {
          continue;
        } else if (all_int64.find(slot) != all_int64.end()) {
1388 1389 1390
          has_conflict_slot = true;
          conflict_slot = slot;
          break;
1391
        }
1392 1393 1394 1395 1396
        local_uint64.insert(slot);
        rec.uint64_feasigns_.push_back(std::move(feature));
      }
      if (has_conflict_slot) {
        break;
1397
      }
1398 1399
      all_int64.insert(local_uint64.begin(), local_uint64.end());

1400
      for (auto& feature : recs[k].float_feasigns_) {
1401
        uint16_t slot = feature.slot();
1402 1403 1404
        if (use_slots_is_dense[slot]) {
          continue;
        } else if (all_float.find(slot) != all_float.end()) {
1405 1406 1407
          has_conflict_slot = true;
          conflict_slot = slot;
          break;
1408
        }
1409 1410 1411 1412 1413
        local_float.insert(slot);
        rec.float_feasigns_.push_back(std::move(feature));
      }
      if (has_conflict_slot) {
        break;
1414
      }
1415
      all_float.insert(local_float.begin(), local_float.end());
1416 1417
    }

1418 1419 1420 1421
    if (has_conflict_slot) {
      LOG(WARNING) << "drop ins " << recs[i].ins_id_ << " size=" << j - i
                   << ", because conflict_slot=" << use_slots[conflict_slot];
      drop_ins_num += j - i;
1422
    } else {
1423
      results.push_back(std::move(rec));
1424
    }
1425
    i = j;
1426
  }
1427
  std::vector<Record>().swap(recs);
1428
  VLOG(3) << "results size " << results.size();
1429
  LOG(WARNING) << "total drop ins num: " << drop_ins_num;
1430 1431
  results.shrink_to_fit();

Z
zhaocaibei123 已提交
1432
  auto fleet_ptr = framework::FleetWrapper::GetInstance();
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
  std::shuffle(results.begin(), results.end(), fleet_ptr->LocalRandomEngine());
  channel_data->Open();
  channel_data->Write(std::move(results));
  channel_data->Close();
  results.clear();
  results.shrink_to_fit();
  VLOG(3) << "channel data size " << channel_data->Size();
  channel_data->SetBlockSize(channel_data->Size() / channel_num_ + 1);
  VLOG(3) << "channel data block size " << channel_data->BlockSize();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    channel_data->Read(vec_data);
    multi_output_channel_[i]->Open();
    multi_output_channel_[i]->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
  }
  CHECK(channel_data->Size() == 0);  // NOLINT
  channel_data->Clear();
  VLOG(3) << "MultiSlotDataset::MergeByInsId end";
}

1455 1456 1457
void MultiSlotDataset::GetRandomData(
    const std::unordered_set<uint16_t>& slots_to_replace,
    std::vector<Record>* result) {
1458 1459 1460 1461
  int debug_erase_cnt = 0;
  int debug_push_cnt = 0;
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  slots_shuffle_rclist_.ReInit();
1462 1463
  const auto& slots_shuffle_original_data = GetSlotsOriginalData();
  for (const auto& rec : slots_shuffle_original_data) {
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
    RecordCandidate rand_rec;
    Record new_rec = rec;
    slots_shuffle_rclist_.AddAndGet(rec, &rand_rec);
    for (auto it = new_rec.uint64_feasigns_.begin();
         it != new_rec.uint64_feasigns_.end();) {
      if (slots_to_replace.find(it->slot()) != slots_to_replace.end()) {
        it = new_rec.uint64_feasigns_.erase(it);
        debug_erase_cnt += 1;
      } else {
        ++it;
      }
    }
    for (auto slot : slots_to_replace) {
1477
      auto range = rand_rec.feas_.equal_range(slot);
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
      for (auto it = range.first; it != range.second; ++it) {
        new_rec.uint64_feasigns_.push_back({it->second, it->first});
        debug_push_cnt += 1;
      }
    }
    result->push_back(std::move(new_rec));
  }
  VLOG(2) << "erase feasign num: " << debug_erase_cnt
          << " repush feasign num: " << debug_push_cnt;
}

1489 1490 1491
void MultiSlotDataset::PreprocessChannel(
    const std::set<std::string>& slots_to_replace,
    std::unordered_set<uint16_t>& index_slots) {  // NOLINT
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
  int out_channel_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      out_channel_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      out_channel_size += multi_consume_channel_[i]->Size();
    }
  }
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() begin with input channel size: "
          << input_channel_->Size()
          << " output channel size: " << out_channel_size;
1505

1506 1507 1508 1509 1510
  if ((!input_channel_ || input_channel_->Size() == 0) &&
      slots_shuffle_original_data_.size() == 0 && out_channel_size == 0) {
    VLOG(3) << "DatasetImpl<T>::SlotsShuffle() end, no data to slots shuffle";
    return;
  }
1511

1512
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
1513
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
    std::string cur_slot = multi_slot_desc.slots(i).name();
    if (slots_to_replace.find(cur_slot) != slots_to_replace.end()) {
      index_slots.insert(i);
    }
  }
  if (slots_shuffle_original_data_.size() == 0) {
    // before first slots shuffle, instances could be in
    // input_channel, oupput_channel or consume_channel
    if (input_channel_ && input_channel_->Size() != 0) {
      slots_shuffle_original_data_.reserve(input_channel_->Size());
      input_channel_->Close();
      input_channel_->ReadAll(slots_shuffle_original_data_);
    } else {
      CHECK(out_channel_size > 0);  // NOLINT
      if (cur_channel_ == 0) {
        for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_output_channel_[i]->Close();
          multi_output_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_output_channel_[i]->Clear();
        }
      } else {
        for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_consume_channel_[i]->Close();
          multi_consume_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_consume_channel_[i]->Clear();
        }
      }
    }
  } else {
    // if already have original data for slots shuffle, clear channel
    input_channel_->Clear();
    if (cur_channel_ == 0) {
      for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
        if (!multi_output_channel_[i]) {
          continue;
        }
        multi_output_channel_[i]->Clear();
      }
    } else {
      for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
        if (!multi_consume_channel_[i]) {
          continue;
        }
        multi_consume_channel_[i]->Clear();
      }
    }
  }
  int end_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      if (!multi_output_channel_[i]) {
        continue;
      }
      end_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      if (!multi_consume_channel_[i]) {
        continue;
      }
      end_size += multi_consume_channel_[i]->Size();
    }
  }
  CHECK(input_channel_->Size() == 0)
      << "input channel should be empty before slots shuffle";
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
}

// slots shuffle to input_channel_ with needed-shuffle slots
void MultiSlotDataset::SlotsShuffle(
    const std::set<std::string>& slots_to_replace) {
  PADDLE_ENFORCE_EQ(slots_shuffle_fea_eval_, true,
                    platform::errors::PreconditionNotMet(
                        "fea eval mode off, need to set on for slots shuffle"));
  platform::Timer timeline;
  timeline.Start();
  std::unordered_set<uint16_t> index_slots;
  PreprocessChannel(slots_to_replace, index_slots);

1610 1611 1612 1613 1614 1615 1616 1617 1618
  std::vector<Record> random_data;
  random_data.clear();
  // get slots shuffled random_data
  GetRandomData(index_slots, &random_data);
  input_channel_->Open();
  input_channel_->Write(std::move(random_data));
  random_data.clear();
  random_data.shrink_to_fit();
  input_channel_->Close();
Y
yaoxuefeng 已提交
1619
  cur_channel_ = 0;
1620 1621 1622 1623 1624 1625 1626

  timeline.Pause();
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() end"
          << ", memory data size for slots shuffle=" << input_channel_->Size()
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
}

Y
yaoxuefeng 已提交
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
template class DatasetImpl<SlotRecord>;
void SlotRecordDataset::CreateChannel() {
  if (input_channel_ == nullptr) {
    input_channel_ = paddle::framework::MakeChannel<SlotRecord>();
  }
}
void SlotRecordDataset::CreateReaders() {
  VLOG(3) << "Calling CreateReaders()";
  VLOG(3) << "thread num in Dataset: " << thread_num_;
  VLOG(3) << "Filelist size in Dataset: " << filelist_.size();
  VLOG(3) << "channel num in Dataset: " << channel_num_;
  CHECK(thread_num_ > 0) << "thread num should > 0";
  CHECK(channel_num_ > 0) << "channel num should > 0";
  CHECK(channel_num_ <= thread_num_) << "channel num should <= thread num";
  VLOG(3) << "readers size: " << readers_.size();
  if (readers_.size() != 0) {
    VLOG(3) << "readers_.size() = " << readers_.size()
            << ", will not create again";
    return;
  }
  VLOG(3) << "data feed class name: " << data_feed_desc_.name();
  for (int i = 0; i < thread_num_; ++i) {
    readers_.push_back(DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
    readers_[i]->Init(data_feed_desc_);
    readers_[i]->SetThreadId(i);
    readers_[i]->SetThreadNum(thread_num_);
    readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    readers_[i]->SetFileListIndex(&file_idx_);
    readers_[i]->SetFeaNumMutex(&mutex_for_fea_num_);
    readers_[i]->SetFeaNum(&total_fea_num_);
    readers_[i]->SetFileList(filelist_);
    readers_[i]->SetParseInsId(parse_ins_id_);
    readers_[i]->SetParseContent(parse_content_);
    readers_[i]->SetParseLogKey(parse_logkey_);
    readers_[i]->SetEnablePvMerge(enable_pv_merge_);
    readers_[i]->SetCurrentPhase(current_phase_);
    if (input_channel_ != nullptr) {
      readers_[i]->SetInputChannel(input_channel_.get());
    }
  }
  VLOG(3) << "readers size: " << readers_.size();
}

void SlotRecordDataset::ReleaseMemory() {
  VLOG(3) << "SlotRecordDataset::ReleaseMemory() begin";
  platform::Timer timeline;
  timeline.Start();

  if (input_channel_) {
    input_channel_->Clear();
    input_channel_ = nullptr;
  }
  if (enable_heterps_) {
    VLOG(3) << "put pool records size: " << input_records_.size();
    SlotRecordPool().put(&input_records_);
    input_records_.clear();
    input_records_.shrink_to_fit();
    VLOG(3) << "release heterps input records records size: "
            << input_records_.size();
  }

  readers_.clear();
  readers_.shrink_to_fit();

  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);

  VLOG(3) << "SlotRecordDataset::ReleaseMemory() end";
  VLOG(3) << "total_feasign_num_(" << STAT_GET(STAT_total_feasign_num_in_mem)
          << ") - current_fea_num_(" << total_fea_num_ << ") = ("
          << STAT_GET(STAT_total_feasign_num_in_mem) - total_fea_num_ << ")"
          << " object pool size=" << SlotRecordPool().capacity();  // For Debug
  STAT_SUB(STAT_total_feasign_num_in_mem, total_fea_num_);
}
void SlotRecordDataset::GlobalShuffle(int thread_num) {
  // TODO(yaoxuefeng)
  return;
}

void SlotRecordDataset::DynamicAdjustChannelNum(int channel_num,
                                                bool discard_remaining_ins) {
  if (channel_num_ == channel_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustChannelNum channel_num_="
            << channel_num_ << ", channel_num_=channel_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust channel num from " << channel_num_ << " to "
          << channel_num;
  channel_num_ = channel_num;

  if (static_cast<int>(input_channel_->Size()) >= channel_num) {
    input_channel_->SetBlockSize(input_channel_->Size() / channel_num +
                                 (discard_remaining_ins ? 0 : 1));
  }

  VLOG(3) << "adjust channel num done";
}

void SlotRecordDataset::PrepareTrain() {
#ifdef PADDLE_WITH_GLOO
Y
yaoxuefeng 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
  if (enable_heterps_) {
    if (input_records_.size() == 0 && input_channel_ != nullptr &&
        input_channel_->Size() != 0) {
      input_channel_->ReadAll(input_records_);
      VLOG(3) << "read from channel to records with records size: "
              << input_records_.size();
    }
    VLOG(3) << "input records size: " << input_records_.size();
    int64_t total_ins_num = input_records_.size();
    std::vector<std::pair<int, int>> offset;
    int default_batch_size =
        reinterpret_cast<SlotRecordInMemoryDataFeed*>(readers_[0].get())
            ->GetDefaultBatchSize();
    VLOG(3) << "thread_num: " << thread_num_
            << " memory size: " << total_ins_num
            << " default batch_size: " << default_batch_size;
    compute_thread_batch_nccl(thread_num_, total_ins_num, default_batch_size,
                              &offset);
    VLOG(3) << "offset size: " << offset.size();
    for (int i = 0; i < thread_num_; i++) {
      reinterpret_cast<SlotRecordInMemoryDataFeed*>(readers_[i].get())
          ->SetRecord(&input_records_[0]);
    }
    for (size_t i = 0; i < offset.size(); i++) {
      reinterpret_cast<SlotRecordInMemoryDataFeed*>(
          readers_[i % thread_num_].get())
          ->AddBatchOffset(offset[i]);
    }
  }
Y
yaoxuefeng 已提交
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
#else
  PADDLE_THROW(platform::errors::Unavailable(
      "dataset set heterps need compile with GLOO"));
#endif
  return;
}

void SlotRecordDataset::DynamicAdjustReadersNum(int thread_num) {
  if (thread_num_ == thread_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustReadersNum thread_num_="
            << thread_num_ << ", thread_num_=thread_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust readers num from " << thread_num_ << " to " << thread_num;
  thread_num_ = thread_num;
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
  CreateReaders();
  VLOG(3) << "adjust readers num done";
  PrepareTrain();
}

D
dongdaxiang 已提交
1776 1777
}  // end namespace framework
}  // end namespace paddle