data_set.cc 63.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *     Unless required by applicable law or agreed to in writing, software
 *     distributed under the License is distributed on an "AS IS" BASIS,
 *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *     See the License for the specific language governing permissions and
 *     limitations under the License. */

15
#include "paddle/fluid/framework/data_set.h"
16

17
#include "google/protobuf/text_format.h"
W
wangzhen38 已提交
18 19 20
#if (defined PADDLE_WITH_DISTRIBUTE) && (defined PADDLE_WITH_PSCORE)
#include "paddle/fluid/distributed/index_dataset/index_sampler.h"
#endif
21
#include "paddle/fluid/framework/data_feed_factory.h"
W
wangzhen38 已提交
22
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
23
#include "paddle/fluid/framework/io/fs.h"
H
hutuxian 已提交
24
#include "paddle/fluid/platform/monitor.h"
25
#include "paddle/fluid/platform/timer.h"
26

Z
zhaocaibei123 已提交
27
#ifdef PADDLE_WITH_PSCORE
28
#include "paddle/fluid/distributed/ps/wrapper/fleet.h"
Z
zhaocaibei123 已提交
29 30
#endif

D
dongdaxiang 已提交
31 32 33 34 35
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

H
hutuxian 已提交
36
USE_INT_STAT(STAT_total_feasign_num_in_mem);
37 38 39
namespace paddle {
namespace framework {

X
xjqbest 已提交
40
// constructor
41
template <typename T>
D
dongdaxiang 已提交
42
DatasetImpl<T>::DatasetImpl() {
J
jiaqi 已提交
43
  VLOG(3) << "DatasetImpl<T>::DatasetImpl() constructor";
D
dongdaxiang 已提交
44
  thread_num_ = 1;
45
  trainer_num_ = 1;
J
jiaqi 已提交
46
  channel_num_ = 1;
47
  file_idx_ = 0;
H
hutuxian 已提交
48
  total_fea_num_ = 0;
J
jiaqi 已提交
49
  cur_channel_ = 0;
50 51
  fleet_send_batch_size_ = 1024;
  fleet_send_sleep_seconds_ = 0;
52
  merge_by_insid_ = false;
53 54
  merge_by_sid_ = true;
  enable_pv_merge_ = false;
55
  merge_size_ = 2;
56 57
  parse_ins_id_ = false;
  parse_content_ = false;
58
  parse_logkey_ = false;
59
  preload_thread_num_ = 0;
60
  global_index_ = 0;
61 62
  shuffle_by_uid_ = false;
  parse_uid_ = false;
D
dongdaxiang 已提交
63
}
64

X
xjqbest 已提交
65
// set filelist, file_idx_ will reset to zero.
66 67
template <typename T>
void DatasetImpl<T>::SetFileList(const std::vector<std::string>& filelist) {
68
  VLOG(3) << "filelist size: " << filelist.size();
69
  filelist_ = filelist;
70
  file_idx_ = 0;
71 72
}

X
xjqbest 已提交
73
// set expect thread num. actually it may change
74 75
template <typename T>
void DatasetImpl<T>::SetThreadNum(int thread_num) {
76
  VLOG(3) << "SetThreadNum thread_num=" << thread_num;
77 78 79
  thread_num_ = thread_num;
}

X
xjqbest 已提交
80 81 82
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetTrainerNum
83
template <typename T>
X
xujiaqi01 已提交
84 85
void DatasetImpl<T>::SetTrainerNum(int trainer_num) {
  trainer_num_ = trainer_num;
86 87
}

X
xjqbest 已提交
88 89 90 91 92 93 94 95
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetFleetSendBatchSize
template <typename T>
void DatasetImpl<T>::SetFleetSendBatchSize(int64_t size) {
  fleet_send_batch_size_ = size;
}

96 97 98
template <typename T>
void DatasetImpl<T>::SetHdfsConfig(const std::string& fs_name,
                                   const std::string& fs_ugi) {
X
xjqbest 已提交
99 100
  fs_name_ = fs_name;
  fs_ugi_ = fs_ugi;
101
  std::string cmd = std::string("$HADOOP_HOME/bin/hadoop fs");
102 103
  cmd += " -D fs.default.name=" + fs_name;
  cmd += " -D hadoop.job.ugi=" + fs_ugi;
104
  cmd += " -Ddfs.client.block.write.retries=15 -Ddfs.rpc.timeout=500000";
105
  paddle::framework::hdfs_set_command(cmd);
X
xujiaqi01 已提交
106
}
107

108 109 110 111 112 113 114 115 116 117
template <typename T>
void DatasetImpl<T>::SetDownloadCmd(const std::string& download_cmd) {
  paddle::framework::set_download_command(download_cmd);
}

template <typename T>
std::string DatasetImpl<T>::GetDownloadCmd() {
  return paddle::framework::download_cmd();
}

118 119
template <typename T>
void DatasetImpl<T>::SetDataFeedDesc(const std::string& data_feed_desc_str) {
120 121
  google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
                                                &data_feed_desc_);
122 123
}

Y
yaoxuefeng 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
template <typename T>
std::vector<std::string> DatasetImpl<T>::GetSlots() {
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  use_slots_.clear();
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
    const auto& slot = multi_slot_desc.slots(i);
    if (slot.type() == "uint64" || slot.type() == "uint32") {
      use_slots_.push_back(slot.name());
    }
  }
  std::cout << "dataset use slots: ";
  for (auto s : use_slots_) {
    std::cout << s << " | ";
  }
  std::cout << " end " << std::endl;
  return use_slots_;
}

142
template <typename T>
J
jiaqi 已提交
143 144 145 146
void DatasetImpl<T>::SetChannelNum(int channel_num) {
  channel_num_ = channel_num;
}

147 148 149 150 151 152 153 154 155 156
template <typename T>
void DatasetImpl<T>::SetParseInsId(bool parse_ins_id) {
  parse_ins_id_ = parse_ins_id;
}

template <typename T>
void DatasetImpl<T>::SetParseContent(bool parse_content) {
  parse_content_ = parse_content;
}

157 158 159 160 161
template <typename T>
void DatasetImpl<T>::SetParseLogKey(bool parse_logkey) {
  parse_logkey_ = parse_logkey;
}

162
template <typename T>
163
void DatasetImpl<T>::SetMergeByInsId(int merge_size) {
164
  merge_by_insid_ = true;
165
  parse_ins_id_ = true;
166
  merge_size_ = merge_size;
167 168
}

169 170 171 172 173
template <typename T>
void DatasetImpl<T>::SetMergeBySid(bool is_merge) {
  merge_by_sid_ = is_merge;
}

174 175 176 177 178 179
template <typename T>
void DatasetImpl<T>::SetShuffleByUid(bool enable_shuffle_uid) {
  shuffle_by_uid_ = enable_shuffle_uid;
  parse_uid_ = true;
}

180 181 182 183 184
template <typename T>
void DatasetImpl<T>::SetEnablePvMerge(bool enable_pv_merge) {
  enable_pv_merge_ = enable_pv_merge;
}

185 186 187 188 189 190
template <typename T>
void DatasetImpl<T>::SetGenerateUniqueFeasign(bool gen_uni_feasigns) {
  gen_uni_feasigns_ = gen_uni_feasigns;
  VLOG(3) << "Set generate unique feasigns: " << gen_uni_feasigns;
}

191 192 193 194 195 196 197 198
template <typename T>
void DatasetImpl<T>::SetFeaEval(bool fea_eval, int record_candidate_size) {
  slots_shuffle_fea_eval_ = fea_eval;
  slots_shuffle_rclist_.ReSize(record_candidate_size);
  VLOG(3) << "SetFeaEval fea eval mode: " << fea_eval
          << " with record candidate size: " << record_candidate_size;
}

J
jiaqi 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
template <typename T>
std::vector<paddle::framework::DataFeed*> DatasetImpl<T>::GetReaders() {
  std::vector<paddle::framework::DataFeed*> ret;
  ret.reserve(readers_.size());
  for (auto i : readers_) {
    ret.push_back(i.get());
  }
  return ret;
}

template <typename T>
void DatasetImpl<T>::CreateChannel() {
  if (input_channel_ == nullptr) {
    input_channel_ = paddle::framework::MakeChannel<T>();
  }
  if (multi_output_channel_.size() == 0) {
    multi_output_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_output_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
  if (multi_consume_channel_.size() == 0) {
    multi_consume_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_consume_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
  if (input_pv_channel_ == nullptr) {
    input_pv_channel_ = paddle::framework::MakeChannel<PvInstance>();
  }
  if (multi_pv_output_.size() == 0) {
    multi_pv_output_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_pv_output_.push_back(paddle::framework::MakeChannel<PvInstance>());
    }
  }
  if (multi_pv_consume_.size() == 0) {
    multi_pv_consume_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_pv_consume_.push_back(paddle::framework::MakeChannel<PvInstance>());
    }
  }
241 242
}

243 244 245
// if sent message between workers, should first call this function
template <typename T>
void DatasetImpl<T>::RegisterClientToClientMsgHandler() {
Z
zhaocaibei123 已提交
246 247 248 249 250 251
#ifdef PADDLE_WITH_PSCORE
  auto fleet_ptr = distributed::FleetWrapper::GetInstance();
#else
  auto fleet_ptr = framework::FleetWrapper::GetInstance();
#endif
  VLOG(1) << "RegisterClientToClientMsgHandler";
252 253 254 255
  fleet_ptr->RegisterClientToClientMsgHandler(
      0, [this](int msg_type, int client_id, const std::string& msg) -> int {
        return this->ReceiveFromClient(msg_type, client_id, msg);
      });
Z
zhaocaibei123 已提交
256
  VLOG(1) << "RegisterClientToClientMsgHandler done";
257
}
258 259
static void compute_left_batch_num(const int ins_num,
                                   const int thread_num,
Y
yaoxuefeng 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
                                   std::vector<std::pair<int, int>>* offset,
                                   const int start_pos) {
  int cur_pos = start_pos;
  int batch_size = ins_num / thread_num;
  int left_num = ins_num % thread_num;
  for (int i = 0; i < thread_num; ++i) {
    int batch_num_size = batch_size;
    if (i == 0) {
      batch_num_size = batch_num_size + left_num;
    }
    offset->push_back(std::make_pair(cur_pos, batch_num_size));
    cur_pos += batch_num_size;
  }
}

275 276
static void compute_batch_num(const int64_t ins_num,
                              const int batch_size,
Y
yaoxuefeng 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
                              const int thread_num,
                              std::vector<std::pair<int, int>>* offset) {
  int thread_batch_num = batch_size * thread_num;
  // less data
  if (static_cast<int64_t>(thread_batch_num) > ins_num) {
    compute_left_batch_num(ins_num, thread_num, offset, 0);
    return;
  }

  int cur_pos = 0;
  int offset_num = static_cast<int>(ins_num / thread_batch_num) * thread_num;
  int left_ins_num = static_cast<int>(ins_num % thread_batch_num);
  if (left_ins_num > 0 && left_ins_num < thread_num) {
    offset_num = offset_num - thread_num;
    left_ins_num = left_ins_num + thread_batch_num;
    for (int i = 0; i < offset_num; ++i) {
      offset->push_back(std::make_pair(cur_pos, batch_size));
      cur_pos += batch_size;
    }
    // split data to thread avg two rounds
    compute_left_batch_num(left_ins_num, thread_num * 2, offset, cur_pos);
  } else {
    for (int i = 0; i < offset_num; ++i) {
      offset->push_back(std::make_pair(cur_pos, batch_size));
      cur_pos += batch_size;
    }
    if (left_ins_num > 0) {
      compute_left_batch_num(left_ins_num, thread_num, offset, cur_pos);
    }
  }
}

static int compute_thread_batch_nccl(
310 311 312 313
    const int thr_num,
    const int64_t total_instance_num,
    const int minibatch_size,
    std::vector<std::pair<int, int>>* nccl_offsets) {
Y
yaoxuefeng 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
  int thread_avg_batch_num = 0;
  if (total_instance_num < static_cast<int64_t>(thr_num)) {
    LOG(WARNING) << "compute_thread_batch_nccl total ins num:["
                 << total_instance_num << "], less thread num:[" << thr_num
                 << "]";
    return thread_avg_batch_num;
  }

  auto& offset = (*nccl_offsets);
  // split data avg by thread num
  compute_batch_num(total_instance_num, minibatch_size, thr_num, &offset);
  thread_avg_batch_num = static_cast<int>(offset.size() / thr_num);
#ifdef PADDLE_WITH_GLOO
  auto gloo_wrapper = paddle::framework::GlooWrapper::GetInstance();
  if (gloo_wrapper->Size() > 1) {
329 330 331 332
    if (!gloo_wrapper->IsInitialized()) {
      VLOG(0) << "GLOO is not inited";
      gloo_wrapper->Init();
    }
Y
yaoxuefeng 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    // adjust batch num per thread for NCCL
    std::vector<int> thread_avg_batch_num_vec(1, thread_avg_batch_num);
    std::vector<int64_t> total_instance_num_vec(1, total_instance_num);
    auto thread_max_batch_num_vec =
        gloo_wrapper->AllReduce(thread_avg_batch_num_vec, "max");
    auto sum_total_ins_num_vec =
        gloo_wrapper->AllReduce(total_instance_num_vec, "sum");
    int thread_max_batch_num = thread_max_batch_num_vec[0];
    int64_t sum_total_ins_num = sum_total_ins_num_vec[0];
    int diff_batch_num = thread_max_batch_num - thread_avg_batch_num;
    VLOG(3) << "diff batch num: " << diff_batch_num
            << " thread max batch num: " << thread_max_batch_num
            << " thread avg batch num: " << thread_avg_batch_num;
    if (diff_batch_num == 0) {
      LOG(WARNING) << "total sum ins " << sum_total_ins_num << ", thread_num "
                   << thr_num << ", ins num " << total_instance_num
                   << ", batch num " << offset.size()
                   << ", thread avg batch num " << thread_avg_batch_num;
      return thread_avg_batch_num;
    }

    int need_ins_num = thread_max_batch_num * thr_num;
    // data is too less
    if ((int64_t)need_ins_num > total_instance_num) {
      PADDLE_THROW(platform::errors::InvalidArgument(
358 359
          "error instance num:[%d] less need ins num:[%d]",
          total_instance_num,
Y
yaoxuefeng 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373
          need_ins_num));
      return thread_avg_batch_num;
    }

    int need_batch_num = (diff_batch_num + 1) * thr_num;
    int offset_split_index = static_cast<int>(offset.size() - thr_num);
    int split_left_num = total_instance_num - offset[offset_split_index].first;
    while (split_left_num < need_batch_num) {
      need_batch_num += thr_num;
      offset_split_index -= thr_num;
      split_left_num = total_instance_num - offset[offset_split_index].first;
    }
    int split_start = offset[offset_split_index].first;
    offset.resize(offset_split_index);
374 375
    compute_left_batch_num(
        split_left_num, need_batch_num, &offset, split_start);
Y
yaoxuefeng 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    LOG(WARNING) << "total sum ins " << sum_total_ins_num << ", thread_num "
                 << thr_num << ", ins num " << total_instance_num
                 << ", batch num " << offset.size() << ", thread avg batch num "
                 << thread_avg_batch_num << ", thread max batch num "
                 << thread_max_batch_num
                 << ", need batch num: " << (need_batch_num / thr_num)
                 << "split begin (" << split_start << ")" << split_start
                 << ", num " << split_left_num;
    thread_avg_batch_num = thread_max_batch_num;
  } else {
    LOG(WARNING) << "thread_num " << thr_num << ", ins num "
                 << total_instance_num << ", batch num " << offset.size()
                 << ", thread avg batch num " << thread_avg_batch_num;
  }
#else
  PADDLE_THROW(platform::errors::Unavailable(
      "dataset compute nccl batch number need compile with GLOO"));
#endif
  return thread_avg_batch_num;
}

Y
yaoxuefeng 已提交
397
void MultiSlotDataset::PrepareTrain() {
Y
yaoxuefeng 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
#ifdef PADDLE_WITH_GLOO
  if (enable_heterps_) {
    if (input_records_.size() == 0 && input_channel_ != nullptr &&
        input_channel_->Size() != 0) {
      input_channel_->ReadAll(input_records_);
      VLOG(3) << "read from channel to records with records size: "
              << input_records_.size();
    }
    VLOG(3) << "input records size: " << input_records_.size();
    int64_t total_ins_num = input_records_.size();
    std::vector<std::pair<int, int>> offset;
    int default_batch_size =
        reinterpret_cast<MultiSlotInMemoryDataFeed*>(readers_[0].get())
            ->GetDefaultBatchSize();
    VLOG(3) << "thread_num: " << thread_num_
            << " memory size: " << total_ins_num
            << " default batch_size: " << default_batch_size;
415 416
    compute_thread_batch_nccl(
        thread_num_, total_ins_num, default_batch_size, &offset);
Y
yaoxuefeng 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
    VLOG(3) << "offset size: " << offset.size();
    for (int i = 0; i < thread_num_; i++) {
      reinterpret_cast<MultiSlotInMemoryDataFeed*>(readers_[i].get())
          ->SetRecord(&input_records_[0]);
    }
    for (size_t i = 0; i < offset.size(); i++) {
      reinterpret_cast<MultiSlotInMemoryDataFeed*>(
          readers_[i % thread_num_].get())
          ->AddBatchOffset(offset[i]);
    }
  }
#else
  PADDLE_THROW(platform::errors::Unavailable(
      "dataset set heterps need compile with GLOO"));
#endif
  return;
}
434

X
xjqbest 已提交
435 436
// load data into memory, Dataset hold this memory,
// which will later be fed into readers' channel
437 438 439
template <typename T>
void DatasetImpl<T>::LoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() begin";
440 441
  platform::Timer timeline;
  timeline.Start();
442 443
  std::vector<std::thread> load_threads;
  for (int64_t i = 0; i < thread_num_; ++i) {
D
dongdaxiang 已提交
444 445
    load_threads.push_back(std::thread(
        &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
446 447 448 449
  }
  for (std::thread& t : load_threads) {
    t.join();
  }
J
jiaqi 已提交
450 451 452
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
453

454 455
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() end"
J
jiaqi 已提交
456
          << ", memory data size=" << input_channel_->Size()
457
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
458 459
}

J
jiaqi 已提交
460 461 462
template <typename T>
void DatasetImpl<T>::PreLoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() begin";
463
  if (preload_thread_num_ != 0) {
464
    CHECK(static_cast<size_t>(preload_thread_num_) == preload_readers_.size());
465 466 467 468 469 470 471
    preload_threads_.clear();
    for (int64_t i = 0; i < preload_thread_num_; ++i) {
      preload_threads_.push_back(
          std::thread(&paddle::framework::DataFeed::LoadIntoMemory,
                      preload_readers_[i].get()));
    }
  } else {
472
    CHECK(static_cast<size_t>(thread_num_) == readers_.size());
473 474 475 476 477
    preload_threads_.clear();
    for (int64_t i = 0; i < thread_num_; ++i) {
      preload_threads_.push_back(std::thread(
          &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
    }
J
jiaqi 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
  }
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() end";
}

template <typename T>
void DatasetImpl<T>::WaitPreLoadDone() {
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() begin";
  for (std::thread& t : preload_threads_) {
    t.join();
  }
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() end";
}

494 495 496
// release memory data
template <typename T>
void DatasetImpl<T>::ReleaseMemory() {
T
Thunderbrook 已提交
497 498 499 500 501
  release_thread_ = new std::thread(&DatasetImpl<T>::ReleaseMemoryFun, this);
}

template <typename T>
void DatasetImpl<T>::ReleaseMemoryFun() {
502
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() begin";
J
jiaqi 已提交
503 504 505 506 507 508 509 510 511 512
  if (input_channel_) {
    input_channel_->Clear();
    input_channel_ = nullptr;
  }
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    if (!multi_output_channel_[i]) {
      continue;
    }
    multi_output_channel_[i]->Clear();
    multi_output_channel_[i] = nullptr;
513
  }
J
jiaqi 已提交
514 515 516 517 518 519 520 521 522
  std::vector<paddle::framework::Channel<T>>().swap(multi_output_channel_);
  for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
    if (!multi_consume_channel_[i]) {
      continue;
    }
    multi_consume_channel_[i]->Clear();
    multi_consume_channel_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<T>>().swap(multi_consume_channel_);
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
  if (input_pv_channel_) {
    input_pv_channel_->Clear();
    input_pv_channel_ = nullptr;
  }
  for (size_t i = 0; i < multi_pv_output_.size(); ++i) {
    if (!multi_pv_output_[i]) {
      continue;
    }
    multi_pv_output_[i]->Clear();
    multi_pv_output_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<PvInstance>>().swap(multi_pv_output_);
  for (size_t i = 0; i < multi_pv_consume_.size(); ++i) {
    if (!multi_pv_consume_[i]) {
      continue;
    }
    multi_pv_consume_[i]->Clear();
    multi_pv_consume_[i] = nullptr;
  }
Y
yaoxuefeng 已提交
542 543 544 545 546 547 548
  if (enable_heterps_) {
    input_records_.clear();
    input_records_.shrink_to_fit();
    std::vector<T>().swap(input_records_);
    VLOG(3) << "release heterps input records records size: "
            << input_records_.size();
  }
549 550
  std::vector<paddle::framework::Channel<PvInstance>>().swap(multi_pv_consume_);

J
jiaqi 已提交
551
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
552 553
  input_records_.clear();
  std::vector<T>().swap(input_records_);
H
hutuxian 已提交
554
  std::vector<T>().swap(slots_shuffle_original_data_);
555
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() end";
H
hutuxian 已提交
556 557 558 559 560
  VLOG(3) << "total_feasign_num_(" << STAT_GET(STAT_total_feasign_num_in_mem)
          << ") - current_fea_num_(" << total_fea_num_ << ") = ("
          << STAT_GET(STAT_total_feasign_num_in_mem) - total_fea_num_
          << ")";  // For Debug
  STAT_SUB(STAT_total_feasign_num_in_mem, total_fea_num_);
561 562
}

X
xjqbest 已提交
563
// do local shuffle
564 565 566
template <typename T>
void DatasetImpl<T>::LocalShuffle() {
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() begin";
567 568
  platform::Timer timeline;
  timeline.Start();
569

J
jiaqi 已提交
570 571 572
  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, no data to shuffle";
    return;
573
  }
Z
zhaocaibei123 已提交
574
  auto fleet_ptr = framework::FleetWrapper::GetInstance();
J
jiaqi 已提交
575 576 577 578 579 580 581 582 583 584
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();
  input_channel_->Close();

585 586 587
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
588 589
}

W
wangzhen38 已提交
590 591 592 593 594
// do tdm sample
void MultiSlotDataset::TDMSample(const std::string tree_name,
                                 const std::string tree_path,
                                 const std::vector<uint16_t> tdm_layer_counts,
                                 const uint16_t start_sample_layer,
595 596
                                 const bool with_hierachy,
                                 const uint16_t seed_,
W
wangzhen38 已提交
597 598 599 600 601 602 603
                                 const uint16_t sample_slot) {
#if (defined PADDLE_WITH_DISTRIBUTE) && (defined PADDLE_WITH_PSCORE)
  // init tdm tree
  auto wrapper_ptr = paddle::distributed::IndexWrapper::GetInstance();
  wrapper_ptr->insert_tree_index(tree_name, tree_path);
  auto tree_ptr = wrapper_ptr->get_tree_index(tree_name);
  auto _layer_wise_sample = paddle::distributed::LayerWiseSampler(tree_name);
604 605
  _layer_wise_sample.init_layerwise_conf(
      tdm_layer_counts, start_sample_layer, seed_);
W
wangzhen38 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667

  VLOG(0) << "DatasetImpl<T>::Sample() begin";
  platform::Timer timeline;
  timeline.Start();

  std::vector<std::vector<Record>> data;
  std::vector<std::vector<Record>> sample_results;
  if (!input_channel_ || input_channel_->Size() == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      std::vector<Record> tmp_data;
      data.push_back(tmp_data);
      if (!multi_output_channel_[i] || multi_output_channel_[i]->Size() == 0) {
        continue;
      }
      multi_output_channel_[i]->Close();
      multi_output_channel_[i]->ReadAll(data[i]);
    }
  } else {
    input_channel_->Close();
    std::vector<Record> tmp_data;
    data.push_back(tmp_data);
    input_channel_->ReadAll(data[data.size() - 1]);
  }

  VLOG(1) << "finish read src data, data.size = " << data.size()
          << "; details: ";
  auto fleet_ptr = FleetWrapper::GetInstance();
  for (unsigned int i = 0; i < data.size(); i++) {
    VLOG(1) << "data[" << i << "]: size = " << data[i].size();
    std::vector<Record> tmp_results;
    _layer_wise_sample.sample_from_dataset(sample_slot, &data[i], &tmp_results);
    VLOG(1) << "sample_results(" << sample_slot << ") = " << tmp_results.size();
    VLOG(0) << "start to put sample in vector!";
    // sample_results.push_back(tmp_results);
    for (unsigned int j = 0; j < tmp_results.size(); j++) {
      std::vector<Record> tmp_vec;
      tmp_vec.emplace_back(tmp_results[j]);
      sample_results.emplace_back(tmp_vec);
    }
    VLOG(0) << "finish to put sample in vector!";
  }

  auto output_channel_num = multi_output_channel_.size();
  for (unsigned int i = 0; i < sample_results.size(); i++) {
    auto output_idx = fleet_ptr->LocalRandomEngine()() % output_channel_num;
    multi_output_channel_[output_idx]->Open();
    // vector?
    multi_output_channel_[output_idx]->Write(std::move(sample_results[i]));
  }

  data.clear();
  sample_results.clear();
  data.shrink_to_fit();
  sample_results.shrink_to_fit();

  timeline.Pause();
  VLOG(0) << "DatasetImpl<T>::Sample() end, cost time=" << timeline.ElapsedSec()
          << " seconds";
#endif
  return;
}

Y
yaoxuefeng 已提交
668 669
void MultiSlotDataset::GlobalShuffle(int thread_num) {
  VLOG(3) << "MultiSlotDataset::GlobalShuffle() begin";
670 671
  platform::Timer timeline;
  timeline.Start();
Z
zhaocaibei123 已提交
672 673 674 675 676
#ifdef PADDLE_WITH_PSCORE
  auto fleet_ptr = distributed::FleetWrapper::GetInstance();
#else
  auto fleet_ptr = framework::FleetWrapper::GetInstance();
#endif
J
jiaqi 已提交
677 678

  if (!input_channel_ || input_channel_->Size() == 0) {
Y
yaoxuefeng 已提交
679
    VLOG(3) << "MultiSlotDataset::GlobalShuffle() end, no data to shuffle";
J
jiaqi 已提交
680 681 682 683 684
    return;
  }

  // local shuffle
  input_channel_->Close();
Y
yaoxuefeng 已提交
685
  std::vector<Record> data;
J
jiaqi 已提交
686 687 688 689 690 691 692 693 694
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();

  input_channel_->Close();
  input_channel_->SetBlockSize(fleet_send_batch_size_);
Y
yaoxuefeng 已提交
695
  VLOG(3) << "MultiSlotDataset::GlobalShuffle() input_channel_ size "
J
jiaqi 已提交
696 697
          << input_channel_->Size();

Y
yaoxuefeng 已提交
698
  auto get_client_id = [this, fleet_ptr](const Record& data) -> size_t {
699
    if (this->merge_by_insid_) {
700 701
      return XXH64(data.ins_id_.data(), data.ins_id_.length(), 0) %
             this->trainer_num_;
702 703 704 705 706
    } else if (this->shuffle_by_uid_) {
      return XXH64(data.uid_.data(), data.uid_.length(), 0) %
             this->trainer_num_;
    } else {
      return fleet_ptr->LocalRandomEngine()() % this->trainer_num_;
707 708 709 710
    }
  };

  auto global_shuffle_func = [this, get_client_id]() {
Z
zhaocaibei123 已提交
711 712 713 714 715 716
#ifdef PADDLE_WITH_PSCORE
    auto fleet_ptr = distributed::FleetWrapper::GetInstance();
#else
    auto fleet_ptr = framework::FleetWrapper::GetInstance();
#endif
    // auto fleet_ptr = framework::FleetWrapper::GetInstance();
Y
yaoxuefeng 已提交
717
    std::vector<Record> data;
J
jiaqi 已提交
718 719 720
    while (this->input_channel_->Read(data)) {
      std::vector<paddle::framework::BinaryArchive> ars(this->trainer_num_);
      for (auto& t : data) {
721
        auto client_id = get_client_id(t);
J
jiaqi 已提交
722 723 724 725 726 727 728
        ars[client_id] << t;
      }
      std::vector<std::future<int32_t>> total_status;
      std::vector<int> send_index(this->trainer_num_);
      for (int i = 0; i < this->trainer_num_; ++i) {
        send_index[i] = i;
      }
729 730
      std::shuffle(
          send_index.begin(), send_index.end(), fleet_ptr->LocalRandomEngine());
731
      for (int index = 0; index < this->trainer_num_; ++index) {
J
jiaqi 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
        int i = send_index[index];
        if (ars[i].Length() == 0) {
          continue;
        }
        std::string msg(ars[i].Buffer(), ars[i].Length());
        auto ret = fleet_ptr->SendClientToClientMsg(0, i, msg);
        total_status.push_back(std::move(ret));
      }
      for (auto& t : total_status) {
        t.wait();
      }
      ars.clear();
      ars.shrink_to_fit();
      data.clear();
      data.shrink_to_fit();
747 748 749 750 751 752
      // currently we find bottleneck is server not able to handle large data
      // in time, so we can remove this sleep and set fleet_send_batch_size to
      // 1024, and set server thread to 24.
      if (fleet_send_sleep_seconds_ != 0) {
        sleep(this->fleet_send_sleep_seconds_);
      }
J
jiaqi 已提交
753 754 755
    }
  };

756
  std::vector<std::thread> global_shuffle_threads;
757 758 759 760 761
  if (thread_num == -1) {
    thread_num = thread_num_;
  }
  VLOG(3) << "start global shuffle threads, num = " << thread_num;
  for (int i = 0; i < thread_num; ++i) {
J
jiaqi 已提交
762
    global_shuffle_threads.push_back(std::thread(global_shuffle_func));
763 764 765
  }
  for (std::thread& t : global_shuffle_threads) {
    t.join();
766
  }
J
jiaqi 已提交
767 768 769
  global_shuffle_threads.clear();
  global_shuffle_threads.shrink_to_fit();
  input_channel_->Clear();
770 771 772
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
773 774
}

775
template <typename T>
H
hutuxian 已提交
776 777
void DatasetImpl<T>::DynamicAdjustChannelNum(int channel_num,
                                             bool discard_remaining_ins) {
778 779 780 781 782 783 784 785 786 787
  if (channel_num_ == channel_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustChannelNum channel_num_="
            << channel_num_ << ", channel_num_=channel_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust channel num from " << channel_num_ << " to "
          << channel_num;
  channel_num_ = channel_num;
  std::vector<paddle::framework::Channel<T>>* origin_channels = nullptr;
  std::vector<paddle::framework::Channel<T>>* other_channels = nullptr;
788 789 790 791 792
  std::vector<paddle::framework::Channel<PvInstance>>* origin_pv_channels =
      nullptr;
  std::vector<paddle::framework::Channel<PvInstance>>* other_pv_channels =
      nullptr;

793 794 795 796 797
  // find out which channel (output or consume) has data
  int cur_channel = 0;
  uint64_t output_channels_data_size = 0;
  uint64_t consume_channels_data_size = 0;
  CHECK(multi_output_channel_.size() == multi_consume_channel_.size());
798
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
799 800 801 802 803 804 805 806 807 808 809 810 811
    output_channels_data_size += multi_output_channel_[i]->Size();
    consume_channels_data_size += multi_consume_channel_[i]->Size();
  }
  if (output_channels_data_size != 0) {
    CHECK(consume_channels_data_size == 0);  // NOLINT
    cur_channel = 0;
  } else {
    CHECK(output_channels_data_size == 0);  // NOLINT
    cur_channel = 1;
  }
  if (cur_channel == 0) {
    origin_channels = &multi_output_channel_;
    other_channels = &multi_consume_channel_;
812 813
    origin_pv_channels = &multi_pv_output_;
    other_pv_channels = &multi_pv_consume_;
814 815 816
  } else {
    origin_channels = &multi_consume_channel_;
    other_channels = &multi_output_channel_;
817 818
    origin_pv_channels = &multi_pv_consume_;
    other_pv_channels = &multi_pv_output_;
819
  }
820 821 822 823
  CHECK(origin_channels != nullptr);     // NOLINT
  CHECK(other_channels != nullptr);      // NOLINT
  CHECK(origin_pv_channels != nullptr);  // NOLINT
  CHECK(other_pv_channels != nullptr);   // NOLINT
824 825 826 827 828

  paddle::framework::Channel<T> total_data_channel =
      paddle::framework::MakeChannel<T>();
  std::vector<paddle::framework::Channel<T>> new_channels;
  std::vector<paddle::framework::Channel<T>> new_other_channels;
829 830 831
  std::vector<paddle::framework::Channel<PvInstance>> new_pv_channels;
  std::vector<paddle::framework::Channel<PvInstance>> new_other_pv_channels;

832
  std::vector<T> local_vec;
833
  for (size_t i = 0; i < origin_channels->size(); ++i) {
834 835 836 837 838 839
    local_vec.clear();
    (*origin_channels)[i]->Close();
    (*origin_channels)[i]->ReadAll(local_vec);
    total_data_channel->Write(std::move(local_vec));
  }
  total_data_channel->Close();
H
hutuxian 已提交
840 841 842 843
  if (static_cast<int>(total_data_channel->Size()) >= channel_num) {
    total_data_channel->SetBlockSize(total_data_channel->Size() / channel_num +
                                     (discard_remaining_ins ? 0 : 1));
  }
H
hutuxian 已提交
844
  if (static_cast<int>(input_channel_->Size()) >= channel_num) {
H
hutuxian 已提交
845 846
    input_channel_->SetBlockSize(input_channel_->Size() / channel_num +
                                 (discard_remaining_ins ? 0 : 1));
H
hutuxian 已提交
847
  }
848 849 850 851 852 853
  if (static_cast<int>(input_pv_channel_->Size()) >= channel_num) {
    input_pv_channel_->SetBlockSize(input_pv_channel_->Size() / channel_num +
                                    (discard_remaining_ins ? 0 : 1));
    VLOG(3) << "now input_pv_channle block size is "
            << input_pv_channel_->BlockSize();
  }
854 855 856 857 858 859 860

  for (int i = 0; i < channel_num; ++i) {
    local_vec.clear();
    total_data_channel->Read(local_vec);
    new_other_channels.push_back(paddle::framework::MakeChannel<T>());
    new_channels.push_back(paddle::framework::MakeChannel<T>());
    new_channels[i]->Write(std::move(local_vec));
861 862 863
    new_other_pv_channels.push_back(
        paddle::framework::MakeChannel<PvInstance>());
    new_pv_channels.push_back(paddle::framework::MakeChannel<PvInstance>());
864 865 866 867 868 869 870 871
  }

  total_data_channel->Clear();
  origin_channels->clear();
  other_channels->clear();
  *origin_channels = new_channels;
  *other_channels = new_other_channels;

872 873 874 875 876
  origin_pv_channels->clear();
  other_pv_channels->clear();
  *origin_pv_channels = new_pv_channels;
  *other_pv_channels = new_other_pv_channels;

877 878 879 880
  new_channels.clear();
  new_other_channels.clear();
  std::vector<paddle::framework::Channel<T>>().swap(new_channels);
  std::vector<paddle::framework::Channel<T>>().swap(new_other_channels);
881 882 883 884 885 886 887

  new_pv_channels.clear();
  new_other_pv_channels.clear();
  std::vector<paddle::framework::Channel<PvInstance>>().swap(new_pv_channels);
  std::vector<paddle::framework::Channel<PvInstance>>().swap(
      new_other_pv_channels);

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
  local_vec.clear();
  std::vector<T>().swap(local_vec);
  VLOG(3) << "adjust channel num done";
}

template <typename T>
void DatasetImpl<T>::DynamicAdjustReadersNum(int thread_num) {
  if (thread_num_ == thread_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustReadersNum thread_num_="
            << thread_num_ << ", thread_num_=thread_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust readers num from " << thread_num_ << " to " << thread_num;
  thread_num_ = thread_num;
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
  CreateReaders();
  VLOG(3) << "adjust readers num done";
}

template <typename T>
void DatasetImpl<T>::SetFleetSendSleepSeconds(int seconds) {
  fleet_send_sleep_seconds_ = seconds;
}

912 913
template <typename T>
void DatasetImpl<T>::CreateReaders() {
914
  VLOG(3) << "Calling CreateReaders()";
J
jiaqi 已提交
915 916 917 918 919 920
  VLOG(3) << "thread num in Dataset: " << thread_num_;
  VLOG(3) << "Filelist size in Dataset: " << filelist_.size();
  VLOG(3) << "channel num in Dataset: " << channel_num_;
  CHECK(thread_num_ > 0) << "thread num should > 0";
  CHECK(channel_num_ > 0) << "channel num should > 0";
  CHECK(channel_num_ <= thread_num_) << "channel num should <= thread num";
921
  VLOG(3) << "readers size: " << readers_.size();
922
  if (readers_.size() != 0) {
J
jiaqi 已提交
923 924
    VLOG(3) << "readers_.size() = " << readers_.size()
            << ", will not create again";
925 926
    return;
  }
927
  VLOG(3) << "data feed class name: " << data_feed_desc_.name();
J
jiaqi 已提交
928
  int channel_idx = 0;
929
  for (int i = 0; i < thread_num_; ++i) {
930
    readers_.push_back(DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
J
jiaqi 已提交
931 932 933 934 935
    readers_[i]->Init(data_feed_desc_);
    readers_[i]->SetThreadId(i);
    readers_[i]->SetThreadNum(thread_num_);
    readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    readers_[i]->SetFileListIndex(&file_idx_);
H
hutuxian 已提交
936 937
    readers_[i]->SetFeaNumMutex(&mutex_for_fea_num_);
    readers_[i]->SetFeaNum(&total_fea_num_);
J
jiaqi 已提交
938
    readers_[i]->SetFileList(filelist_);
939
    readers_[i]->SetParseInsId(parse_ins_id_);
940
    readers_[i]->SetParseUid(parse_uid_);
941
    readers_[i]->SetParseContent(parse_content_);
942 943 944 945 946 947
    readers_[i]->SetParseLogKey(parse_logkey_);
    readers_[i]->SetEnablePvMerge(enable_pv_merge_);
    // Notice: it is only valid for untest of test_paddlebox_datafeed.
    // In fact, it does not affect the train process when paddle is
    // complied with Box_Ps.
    readers_[i]->SetCurrentPhase(current_phase_);
J
jiaqi 已提交
948 949 950
    if (input_channel_ != nullptr) {
      readers_[i]->SetInputChannel(input_channel_.get());
    }
951 952 953
    if (input_pv_channel_ != nullptr) {
      readers_[i]->SetInputPvChannel(input_pv_channel_.get());
    }
954 955
    if (cur_channel_ == 0 &&
        static_cast<size_t>(channel_idx) < multi_output_channel_.size()) {
J
jiaqi 已提交
956 957
      readers_[i]->SetOutputChannel(multi_output_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_consume_channel_[channel_idx].get());
958 959
      readers_[i]->SetOutputPvChannel(multi_pv_output_[channel_idx].get());
      readers_[i]->SetConsumePvChannel(multi_pv_consume_[channel_idx].get());
960 961
    } else if (static_cast<size_t>(channel_idx) <
               multi_output_channel_.size()) {
J
jiaqi 已提交
962 963
      readers_[i]->SetOutputChannel(multi_consume_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_output_channel_[channel_idx].get());
964 965
      readers_[i]->SetOutputPvChannel(multi_pv_consume_[channel_idx].get());
      readers_[i]->SetConsumePvChannel(multi_pv_output_[channel_idx].get());
J
jiaqi 已提交
966 967 968 969 970
    }
    ++channel_idx;
    if (channel_idx >= channel_num_) {
      channel_idx = 0;
    }
971
  }
J
jiaqi 已提交
972
  VLOG(3) << "readers size: " << readers_.size();
973 974
}

975 976 977
template <typename T>
void DatasetImpl<T>::DestroyReaders() {
  VLOG(3) << "Calling DestroyReaders()";
978
  VLOG(3) << "readers size1: " << readers_.size();
979
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
980
  VLOG(3) << "readers size: " << readers_.size();
J
jiaqi 已提交
981 982
  file_idx_ = 0;
  cur_channel_ = 1 - cur_channel_;
983 984
}

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
template <typename T>
void DatasetImpl<T>::SetPreLoadThreadNum(int thread_num) {
  preload_thread_num_ = thread_num;
}

template <typename T>
void DatasetImpl<T>::CreatePreLoadReaders() {
  VLOG(3) << "Begin CreatePreLoadReaders";
  if (preload_thread_num_ == 0) {
    preload_thread_num_ = thread_num_;
  }
  CHECK(preload_thread_num_ > 0) << "thread num should > 0";
  CHECK(input_channel_ != nullptr);
  preload_readers_.clear();
  for (int i = 0; i < preload_thread_num_; ++i) {
    preload_readers_.push_back(
        DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
    preload_readers_[i]->Init(data_feed_desc_);
    preload_readers_[i]->SetThreadId(i);
    preload_readers_[i]->SetThreadNum(preload_thread_num_);
    preload_readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    preload_readers_[i]->SetFileListIndex(&file_idx_);
    preload_readers_[i]->SetFileList(filelist_);
H
hutuxian 已提交
1008 1009
    preload_readers_[i]->SetFeaNumMutex(&mutex_for_fea_num_);
    preload_readers_[i]->SetFeaNum(&total_fea_num_);
1010
    preload_readers_[i]->SetParseInsId(parse_ins_id_);
1011
    preload_readers_[i]->SetParseUid(parse_uid_);
1012
    preload_readers_[i]->SetParseContent(parse_content_);
1013 1014
    preload_readers_[i]->SetParseLogKey(parse_logkey_);
    preload_readers_[i]->SetEnablePvMerge(enable_pv_merge_);
1015 1016 1017
    preload_readers_[i]->SetInputChannel(input_channel_.get());
    preload_readers_[i]->SetOutputChannel(nullptr);
    preload_readers_[i]->SetConsumeChannel(nullptr);
1018 1019
    preload_readers_[i]->SetOutputPvChannel(nullptr);
    preload_readers_[i]->SetConsumePvChannel(nullptr);
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
  }
  VLOG(3) << "End CreatePreLoadReaders";
}

template <typename T>
void DatasetImpl<T>::DestroyPreLoadReaders() {
  VLOG(3) << "Begin DestroyPreLoadReaders";
  preload_readers_.clear();
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(
      preload_readers_);
  file_idx_ = 0;
  VLOG(3) << "End DestroyPreLoadReaders";
}

1034 1035
template <typename T>
int64_t DatasetImpl<T>::GetMemoryDataSize() {
J
jiaqi 已提交
1036
  return input_channel_->Size();
1037 1038
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
template <typename T>
int64_t DatasetImpl<T>::GetPvDataSize() {
  if (enable_pv_merge_) {
    return input_pv_channel_->Size();
  } else {
    VLOG(0) << "It does not merge pv..";
    return 0;
  }
}

1049 1050 1051
template <typename T>
int64_t DatasetImpl<T>::GetShuffleDataSize() {
  int64_t sum = 0;
J
jiaqi 已提交
1052 1053
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    sum += multi_output_channel_[i]->Size() + multi_consume_channel_[i]->Size();
1054 1055 1056 1057
  }
  return sum;
}

1058 1059
int MultiSlotDataset::ReceiveFromClient(int msg_type,
                                        int client_id,
Y
yaoxuefeng 已提交
1060
                                        const std::string& msg) {
D
dongdaxiang 已提交
1061
#ifdef _LINUX
1062
  VLOG(3) << "ReceiveFromClient msg_type=" << msg_type
1063
          << ", client_id=" << client_id << ", msg length=" << msg.length();
J
jiaqi 已提交
1064 1065 1066 1067 1068 1069 1070 1071
  if (msg.length() == 0) {
    return 0;
  }
  paddle::framework::BinaryArchive ar;
  ar.SetReadBuffer(const_cast<char*>(msg.c_str()), msg.length(), nullptr);
  if (ar.Cursor() == ar.Finish()) {
    return 0;
  }
Y
yaoxuefeng 已提交
1072
  std::vector<Record> data;
J
jiaqi 已提交
1073
  while (ar.Cursor() < ar.Finish()) {
Y
yaoxuefeng 已提交
1074
    data.push_back(ar.Get<Record>());
J
jiaqi 已提交
1075 1076 1077
  }
  CHECK(ar.Cursor() == ar.Finish());

Z
zhaocaibei123 已提交
1078
  auto fleet_ptr = framework::FleetWrapper::GetInstance();
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
  // not use random because it doesn't perform well here.
  // to make sure each channel get data equally, we just put data to
  // channel one by one.
  // int64_t index = fleet_ptr->LocalRandomEngine()() % channel_num_;
  int64_t index = 0;
  {
    std::unique_lock<std::mutex> lk(global_index_mutex_);
    index = global_index_++;
  }
  index = index % channel_num_;
1089
  VLOG(3) << "ramdom index=" << index;
J
jiaqi 已提交
1090 1091 1092 1093
  multi_output_channel_[index]->Write(std::move(data));

  data.clear();
  data.shrink_to_fit();
D
dongdaxiang 已提交
1094
#endif
1095 1096 1097
  return 0;
}

1098
// explicit instantiation
J
jiaqi 已提交
1099
template class DatasetImpl<Record>;
1100

Y
yaoxuefeng 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
void MultiSlotDataset::DynamicAdjustReadersNum(int thread_num) {
  if (thread_num_ == thread_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustReadersNum thread_num_="
            << thread_num_ << ", thread_num_=thread_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust readers num from " << thread_num_ << " to " << thread_num;
  thread_num_ = thread_num;
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
  CreateReaders();
  VLOG(3) << "adjust readers num done";
  PrepareTrain();
}

1115 1116 1117
void MultiSlotDataset::PostprocessInstance() {
  // divide pv instance, and merge to input_channel_
  if (enable_pv_merge_) {
Z
zhaocaibei123 已提交
1118
    auto fleet_ptr = framework::FleetWrapper::GetInstance();
1119 1120
    std::shuffle(input_records_.begin(),
                 input_records_.end(),
1121
                 fleet_ptr->LocalRandomEngine());
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
    input_channel_->Open();
    input_channel_->Write(std::move(input_records_));
    for (size_t i = 0; i < multi_pv_consume_.size(); ++i) {
      multi_pv_consume_[i]->Clear();
    }
    input_channel_->Close();
    input_records_.clear();
    input_records_.shrink_to_fit();
  } else {
    input_channel_->Open();
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      std::vector<Record> ins_data;
      multi_consume_channel_[i]->Close();
      multi_consume_channel_[i]->ReadAll(ins_data);
      input_channel_->Write(std::move(ins_data));
      ins_data.clear();
      ins_data.shrink_to_fit();
      multi_consume_channel_[i]->Clear();
    }
    input_channel_->Close();
1142
    this->LocalShuffle();
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
  }
}

void MultiSlotDataset::SetCurrentPhase(int current_phase) {
  current_phase_ = current_phase;
}

void MultiSlotDataset::PreprocessInstance() {
  if (!input_channel_ || input_channel_->Size() == 0) {
    return;
  }
  if (!enable_pv_merge_) {  // means to use Record
    this->LocalShuffle();
  } else {  // means to use Pv
Z
zhaocaibei123 已提交
1157
    auto fleet_ptr = framework::FleetWrapper::GetInstance();
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
    input_channel_->Close();
    std::vector<PvInstance> pv_data;
    input_channel_->ReadAll(input_records_);
    int all_records_num = input_records_.size();
    std::vector<Record*> all_records;
    all_records.reserve(all_records_num);
    for (int index = 0; index < all_records_num; ++index) {
      all_records.push_back(&input_records_[index]);
    }

1168 1169
    std::sort(all_records.data(),
              all_records.data() + all_records_num,
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
              [](const Record* lhs, const Record* rhs) {
                return lhs->search_id < rhs->search_id;
              });
    if (merge_by_sid_) {
      uint64_t last_search_id = 0;
      for (int i = 0; i < all_records_num; ++i) {
        Record* ins = all_records[i];
        if (i == 0 || last_search_id != ins->search_id) {
          PvInstance pv_instance = make_pv_instance();
          pv_instance->merge_instance(ins);
          pv_data.push_back(pv_instance);
          last_search_id = ins->search_id;
          continue;
        }
        pv_data.back()->merge_instance(ins);
      }
    } else {
      for (int i = 0; i < all_records_num; ++i) {
        Record* ins = all_records[i];
        PvInstance pv_instance = make_pv_instance();
        pv_instance->merge_instance(ins);
        pv_data.push_back(pv_instance);
      }
    }

1195 1196
    std::shuffle(
        pv_data.begin(), pv_data.end(), fleet_ptr->LocalRandomEngine());
1197 1198 1199 1200 1201 1202 1203 1204 1205
    input_pv_channel_->Open();
    input_pv_channel_->Write(std::move(pv_data));

    pv_data.clear();
    pv_data.shrink_to_fit();
    input_pv_channel_->Close();
  }
}

1206 1207
void MultiSlotDataset::GenerateLocalTablesUnlock(int table_id,
                                                 int feadim,
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
                                                 int read_thread_num,
                                                 int consume_thread_num,
                                                 int shard_num) {
  VLOG(3) << "MultiSlotDataset::GenerateUniqueFeasign begin";
  if (!gen_uni_feasigns_) {
    VLOG(3) << "generate_unique_feasign_=false, will not GenerateUniqueFeasign";
    return;
  }

  CHECK(multi_output_channel_.size() != 0);  // NOLINT
Z
zhaocaibei123 已提交
1218
  auto fleet_ptr_ = framework::FleetWrapper::GetInstance();
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
  std::vector<std::unordered_map<uint64_t, std::vector<float>>>&
      local_map_tables = fleet_ptr_->GetLocalTable();
  local_map_tables.resize(shard_num);
  // read thread
  int channel_num = multi_output_channel_.size();
  if (read_thread_num < channel_num) {
    read_thread_num = channel_num;
  }
  std::vector<std::thread> threads(read_thread_num);
  consume_task_pool_.resize(consume_thread_num);
  for (size_t i = 0; i < consume_task_pool_.size(); i++) {
    consume_task_pool_[i].reset(new ::ThreadPool(1));
  }
1232 1233
  auto consume_func = [&local_map_tables](int shard_id,
                                          int feadim,
1234 1235 1236 1237 1238 1239 1240 1241
                                          std::vector<uint64_t>& keys) {
    for (auto k : keys) {
      if (local_map_tables[shard_id].find(k) ==
          local_map_tables[shard_id].end()) {
        local_map_tables[shard_id][k] = std::vector<float>(feadim, 0);
      }
    }
  };
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
  auto gen_func =
      [this, &shard_num, &feadim, &local_map_tables, &consume_func](int i) {
        std::vector<Record> vec_data;
        std::vector<std::vector<uint64_t>> task_keys(shard_num);
        std::vector<std::future<void>> task_futures;
        this->multi_output_channel_[i]->Close();
        this->multi_output_channel_[i]->ReadAll(vec_data);
        for (size_t j = 0; j < vec_data.size(); j++) {
          for (auto& feature : vec_data[j].uint64_feasigns_) {
            int shard = feature.sign().uint64_feasign_ % shard_num;
            task_keys[shard].push_back(feature.sign().uint64_feasign_);
          }
        }
1255

1256 1257 1258 1259
        for (int shard_id = 0; shard_id < shard_num; shard_id++) {
          task_futures.emplace_back(consume_task_pool_[shard_id]->enqueue(
              consume_func, shard_id, feadim, task_keys[shard_id]));
        }
1260

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
        multi_output_channel_[i]->Open();
        multi_output_channel_[i]->Write(std::move(vec_data));
        vec_data.clear();
        vec_data.shrink_to_fit();
        for (auto& tk : task_keys) {
          tk.clear();
          std::vector<uint64_t>().swap(tk);
        }
        task_keys.clear();
        std::vector<std::vector<uint64_t>>().swap(task_keys);
        for (auto& tf : task_futures) {
          tf.wait();
        }
      };
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(gen_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  for (size_t i = 0; i < consume_task_pool_.size(); i++) {
    consume_task_pool_[i].reset();
  }
  consume_task_pool_.clear();
  fleet_ptr_->PullSparseToLocal(table_id, feadim);
}
1287

1288 1289 1290 1291 1292 1293 1294 1295
void MultiSlotDataset::MergeByInsId() {
  VLOG(3) << "MultiSlotDataset::MergeByInsId begin";
  if (!merge_by_insid_) {
    VLOG(3) << "merge_by_insid=false, will not MergeByInsId";
    return;
  }
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  std::vector<std::string> use_slots;
1296
  std::vector<bool> use_slots_is_dense;
1297
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
1298 1299 1300
    const auto& slot = multi_slot_desc.slots(i);
    if (slot.is_used()) {
      use_slots.push_back(slot.name());
1301
      use_slots_is_dense.push_back(slot.is_dense());
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
    }
  }
  CHECK(multi_output_channel_.size() != 0);  // NOLINT
  auto channel_data = paddle::framework::MakeChannel<Record>();
  VLOG(3) << "multi_output_channel_.size() " << multi_output_channel_.size();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    multi_output_channel_[i]->Close();
    multi_output_channel_[i]->ReadAll(vec_data);
    channel_data->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
    multi_output_channel_[i]->Clear();
  }
  channel_data->Close();
  std::vector<Record> recs;
  recs.reserve(channel_data->Size());
  channel_data->ReadAll(recs);
  channel_data->Clear();
  std::sort(recs.begin(), recs.end(), [](const Record& a, const Record& b) {
    return a.ins_id_ < b.ins_id_;
  });

  std::vector<Record> results;
1326 1327 1328 1329 1330
  uint64_t drop_ins_num = 0;
  std::unordered_set<uint16_t> all_int64;
  std::unordered_set<uint16_t> all_float;
  std::unordered_set<uint16_t> local_uint64;
  std::unordered_set<uint16_t> local_float;
1331 1332 1333 1334 1335
  std::unordered_map<uint16_t, std::vector<FeatureItem>> all_dense_uint64;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> all_dense_float;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> local_dense_uint64;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> local_dense_float;
  std::unordered_map<uint16_t, bool> dense_empty;
1336

1337 1338 1339 1340 1341 1342
  VLOG(3) << "recs.size() " << recs.size();
  for (size_t i = 0; i < recs.size();) {
    size_t j = i + 1;
    while (j < recs.size() && recs[j].ins_id_ == recs[i].ins_id_) {
      j++;
    }
1343 1344 1345 1346
    if (merge_size_ > 0 && j - i != merge_size_) {
      drop_ins_num += j - i;
      LOG(WARNING) << "drop ins " << recs[i].ins_id_ << " size=" << j - i
                   << ", because merge_size=" << merge_size_;
1347 1348 1349 1350
      i = j;
      continue;
    }

1351 1352
    all_int64.clear();
    all_float.clear();
1353 1354
    all_dense_uint64.clear();
    all_dense_float.clear();
1355 1356 1357 1358 1359 1360
    bool has_conflict_slot = false;
    uint16_t conflict_slot = 0;

    Record rec;
    rec.ins_id_ = recs[i].ins_id_;
    rec.content_ = recs[i].content_;
1361

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
    for (size_t k = i; k < j; k++) {
      dense_empty.clear();
      local_dense_uint64.clear();
      local_dense_float.clear();
      for (auto& feature : recs[k].uint64_feasigns_) {
        uint16_t slot = feature.slot();
        if (!use_slots_is_dense[slot]) {
          continue;
        }
        local_dense_uint64[slot].push_back(feature);
        if (feature.sign().uint64_feasign_ != 0) {
          dense_empty[slot] = false;
        } else if (dense_empty.find(slot) == dense_empty.end() &&
                   all_dense_uint64.find(slot) == all_dense_uint64.end()) {
          dense_empty[slot] = true;
        }
      }
      for (auto& feature : recs[k].float_feasigns_) {
        uint16_t slot = feature.slot();
        if (!use_slots_is_dense[slot]) {
          continue;
        }
        local_dense_float[slot].push_back(feature);
        if (fabs(feature.sign().float_feasign_) >= 1e-6) {
          dense_empty[slot] = false;
        } else if (dense_empty.find(slot) == dense_empty.end() &&
                   all_dense_float.find(slot) == all_dense_float.end()) {
          dense_empty[slot] = true;
        }
      }
      for (auto& p : dense_empty) {
        if (local_dense_uint64.find(p.first) != local_dense_uint64.end()) {
          all_dense_uint64[p.first] = std::move(local_dense_uint64[p.first]);
        } else if (local_dense_float.find(p.first) != local_dense_float.end()) {
          all_dense_float[p.first] = std::move(local_dense_float[p.first]);
        }
      }
    }
    for (auto& f : all_dense_uint64) {
1401 1402
      rec.uint64_feasigns_.insert(
          rec.uint64_feasigns_.end(), f.second.begin(), f.second.end());
1403 1404
    }
    for (auto& f : all_dense_float) {
1405 1406
      rec.float_feasigns_.insert(
          rec.float_feasigns_.end(), f.second.begin(), f.second.end());
1407 1408
    }

1409 1410 1411
    for (size_t k = i; k < j; k++) {
      local_uint64.clear();
      local_float.clear();
1412
      for (auto& feature : recs[k].uint64_feasigns_) {
1413
        uint16_t slot = feature.slot();
1414 1415 1416
        if (use_slots_is_dense[slot]) {
          continue;
        } else if (all_int64.find(slot) != all_int64.end()) {
1417 1418 1419
          has_conflict_slot = true;
          conflict_slot = slot;
          break;
1420
        }
1421 1422 1423 1424 1425
        local_uint64.insert(slot);
        rec.uint64_feasigns_.push_back(std::move(feature));
      }
      if (has_conflict_slot) {
        break;
1426
      }
1427 1428
      all_int64.insert(local_uint64.begin(), local_uint64.end());

1429
      for (auto& feature : recs[k].float_feasigns_) {
1430
        uint16_t slot = feature.slot();
1431 1432 1433
        if (use_slots_is_dense[slot]) {
          continue;
        } else if (all_float.find(slot) != all_float.end()) {
1434 1435 1436
          has_conflict_slot = true;
          conflict_slot = slot;
          break;
1437
        }
1438 1439 1440 1441 1442
        local_float.insert(slot);
        rec.float_feasigns_.push_back(std::move(feature));
      }
      if (has_conflict_slot) {
        break;
1443
      }
1444
      all_float.insert(local_float.begin(), local_float.end());
1445 1446
    }

1447 1448 1449 1450
    if (has_conflict_slot) {
      LOG(WARNING) << "drop ins " << recs[i].ins_id_ << " size=" << j - i
                   << ", because conflict_slot=" << use_slots[conflict_slot];
      drop_ins_num += j - i;
1451
    } else {
1452
      results.push_back(std::move(rec));
1453
    }
1454
    i = j;
1455
  }
1456
  std::vector<Record>().swap(recs);
1457
  VLOG(3) << "results size " << results.size();
1458
  LOG(WARNING) << "total drop ins num: " << drop_ins_num;
1459 1460
  results.shrink_to_fit();

Z
zhaocaibei123 已提交
1461
  auto fleet_ptr = framework::FleetWrapper::GetInstance();
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
  std::shuffle(results.begin(), results.end(), fleet_ptr->LocalRandomEngine());
  channel_data->Open();
  channel_data->Write(std::move(results));
  channel_data->Close();
  results.clear();
  results.shrink_to_fit();
  VLOG(3) << "channel data size " << channel_data->Size();
  channel_data->SetBlockSize(channel_data->Size() / channel_num_ + 1);
  VLOG(3) << "channel data block size " << channel_data->BlockSize();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    channel_data->Read(vec_data);
    multi_output_channel_[i]->Open();
    multi_output_channel_[i]->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
  }
  CHECK(channel_data->Size() == 0);  // NOLINT
  channel_data->Clear();
  VLOG(3) << "MultiSlotDataset::MergeByInsId end";
}

1484 1485 1486
void MultiSlotDataset::GetRandomData(
    const std::unordered_set<uint16_t>& slots_to_replace,
    std::vector<Record>* result) {
1487 1488 1489 1490
  int debug_erase_cnt = 0;
  int debug_push_cnt = 0;
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  slots_shuffle_rclist_.ReInit();
1491 1492
  const auto& slots_shuffle_original_data = GetSlotsOriginalData();
  for (const auto& rec : slots_shuffle_original_data) {
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
    RecordCandidate rand_rec;
    Record new_rec = rec;
    slots_shuffle_rclist_.AddAndGet(rec, &rand_rec);
    for (auto it = new_rec.uint64_feasigns_.begin();
         it != new_rec.uint64_feasigns_.end();) {
      if (slots_to_replace.find(it->slot()) != slots_to_replace.end()) {
        it = new_rec.uint64_feasigns_.erase(it);
        debug_erase_cnt += 1;
      } else {
        ++it;
      }
    }
    for (auto slot : slots_to_replace) {
1506
      auto range = rand_rec.feas_.equal_range(slot);
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
      for (auto it = range.first; it != range.second; ++it) {
        new_rec.uint64_feasigns_.push_back({it->second, it->first});
        debug_push_cnt += 1;
      }
    }
    result->push_back(std::move(new_rec));
  }
  VLOG(2) << "erase feasign num: " << debug_erase_cnt
          << " repush feasign num: " << debug_push_cnt;
}

1518 1519 1520
void MultiSlotDataset::PreprocessChannel(
    const std::set<std::string>& slots_to_replace,
    std::unordered_set<uint16_t>& index_slots) {  // NOLINT
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
  int out_channel_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      out_channel_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      out_channel_size += multi_consume_channel_[i]->Size();
    }
  }
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() begin with input channel size: "
          << input_channel_->Size()
          << " output channel size: " << out_channel_size;
1534

1535 1536 1537 1538 1539
  if ((!input_channel_ || input_channel_->Size() == 0) &&
      slots_shuffle_original_data_.size() == 0 && out_channel_size == 0) {
    VLOG(3) << "DatasetImpl<T>::SlotsShuffle() end, no data to slots shuffle";
    return;
  }
1540

1541
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
1542
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
    std::string cur_slot = multi_slot_desc.slots(i).name();
    if (slots_to_replace.find(cur_slot) != slots_to_replace.end()) {
      index_slots.insert(i);
    }
  }
  if (slots_shuffle_original_data_.size() == 0) {
    // before first slots shuffle, instances could be in
    // input_channel, oupput_channel or consume_channel
    if (input_channel_ && input_channel_->Size() != 0) {
      slots_shuffle_original_data_.reserve(input_channel_->Size());
      input_channel_->Close();
      input_channel_->ReadAll(slots_shuffle_original_data_);
    } else {
      CHECK(out_channel_size > 0);  // NOLINT
      if (cur_channel_ == 0) {
        for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_output_channel_[i]->Close();
          multi_output_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_output_channel_[i]->Clear();
        }
      } else {
        for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_consume_channel_[i]->Close();
          multi_consume_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_consume_channel_[i]->Clear();
        }
      }
    }
  } else {
    // if already have original data for slots shuffle, clear channel
    input_channel_->Clear();
    if (cur_channel_ == 0) {
      for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
        if (!multi_output_channel_[i]) {
          continue;
        }
        multi_output_channel_[i]->Clear();
      }
    } else {
      for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
        if (!multi_consume_channel_[i]) {
          continue;
        }
        multi_consume_channel_[i]->Clear();
      }
    }
  }
  int end_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      if (!multi_output_channel_[i]) {
        continue;
      }
      end_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      if (!multi_consume_channel_[i]) {
        continue;
      }
      end_size += multi_consume_channel_[i]->Size();
    }
  }
  CHECK(input_channel_->Size() == 0)
      << "input channel should be empty before slots shuffle";
1626 1627 1628 1629 1630
}

// slots shuffle to input_channel_ with needed-shuffle slots
void MultiSlotDataset::SlotsShuffle(
    const std::set<std::string>& slots_to_replace) {
1631 1632
  PADDLE_ENFORCE_EQ(slots_shuffle_fea_eval_,
                    true,
1633 1634 1635 1636 1637 1638 1639
                    platform::errors::PreconditionNotMet(
                        "fea eval mode off, need to set on for slots shuffle"));
  platform::Timer timeline;
  timeline.Start();
  std::unordered_set<uint16_t> index_slots;
  PreprocessChannel(slots_to_replace, index_slots);

1640 1641 1642 1643 1644 1645 1646 1647 1648
  std::vector<Record> random_data;
  random_data.clear();
  // get slots shuffled random_data
  GetRandomData(index_slots, &random_data);
  input_channel_->Open();
  input_channel_->Write(std::move(random_data));
  random_data.clear();
  random_data.shrink_to_fit();
  input_channel_->Close();
Y
yaoxuefeng 已提交
1649
  cur_channel_ = 0;
1650 1651 1652 1653 1654 1655 1656

  timeline.Pause();
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() end"
          << ", memory data size for slots shuffle=" << input_channel_->Size()
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
}

Y
yaoxuefeng 已提交
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
template class DatasetImpl<SlotRecord>;
void SlotRecordDataset::CreateChannel() {
  if (input_channel_ == nullptr) {
    input_channel_ = paddle::framework::MakeChannel<SlotRecord>();
  }
}
void SlotRecordDataset::CreateReaders() {
  VLOG(3) << "Calling CreateReaders()";
  VLOG(3) << "thread num in Dataset: " << thread_num_;
  VLOG(3) << "Filelist size in Dataset: " << filelist_.size();
  VLOG(3) << "channel num in Dataset: " << channel_num_;
  CHECK(thread_num_ > 0) << "thread num should > 0";
  CHECK(channel_num_ > 0) << "channel num should > 0";
  CHECK(channel_num_ <= thread_num_) << "channel num should <= thread num";
  VLOG(3) << "readers size: " << readers_.size();
  if (readers_.size() != 0) {
    VLOG(3) << "readers_.size() = " << readers_.size()
            << ", will not create again";
    return;
  }
  VLOG(3) << "data feed class name: " << data_feed_desc_.name();
  for (int i = 0; i < thread_num_; ++i) {
    readers_.push_back(DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
    readers_[i]->Init(data_feed_desc_);
    readers_[i]->SetThreadId(i);
    readers_[i]->SetThreadNum(thread_num_);
    readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    readers_[i]->SetFileListIndex(&file_idx_);
    readers_[i]->SetFeaNumMutex(&mutex_for_fea_num_);
    readers_[i]->SetFeaNum(&total_fea_num_);
    readers_[i]->SetFileList(filelist_);
    readers_[i]->SetParseInsId(parse_ins_id_);
    readers_[i]->SetParseContent(parse_content_);
    readers_[i]->SetParseLogKey(parse_logkey_);
    readers_[i]->SetEnablePvMerge(enable_pv_merge_);
    readers_[i]->SetCurrentPhase(current_phase_);
    if (input_channel_ != nullptr) {
      readers_[i]->SetInputChannel(input_channel_.get());
    }
  }
  VLOG(3) << "readers size: " << readers_.size();
}

void SlotRecordDataset::ReleaseMemory() {
  VLOG(3) << "SlotRecordDataset::ReleaseMemory() begin";
  platform::Timer timeline;
  timeline.Start();

  if (input_channel_) {
    input_channel_->Clear();
    input_channel_ = nullptr;
  }
  if (enable_heterps_) {
    VLOG(3) << "put pool records size: " << input_records_.size();
    SlotRecordPool().put(&input_records_);
    input_records_.clear();
    input_records_.shrink_to_fit();
    VLOG(3) << "release heterps input records records size: "
            << input_records_.size();
  }

  readers_.clear();
  readers_.shrink_to_fit();

  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);

  VLOG(3) << "SlotRecordDataset::ReleaseMemory() end";
  VLOG(3) << "total_feasign_num_(" << STAT_GET(STAT_total_feasign_num_in_mem)
          << ") - current_fea_num_(" << total_fea_num_ << ") = ("
          << STAT_GET(STAT_total_feasign_num_in_mem) - total_fea_num_ << ")"
          << " object pool size=" << SlotRecordPool().capacity();  // For Debug
  STAT_SUB(STAT_total_feasign_num_in_mem, total_fea_num_);
}
void SlotRecordDataset::GlobalShuffle(int thread_num) {
  // TODO(yaoxuefeng)
  return;
}

void SlotRecordDataset::DynamicAdjustChannelNum(int channel_num,
                                                bool discard_remaining_ins) {
  if (channel_num_ == channel_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustChannelNum channel_num_="
            << channel_num_ << ", channel_num_=channel_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust channel num from " << channel_num_ << " to "
          << channel_num;
  channel_num_ = channel_num;

  if (static_cast<int>(input_channel_->Size()) >= channel_num) {
    input_channel_->SetBlockSize(input_channel_->Size() / channel_num +
                                 (discard_remaining_ins ? 0 : 1));
  }

  VLOG(3) << "adjust channel num done";
}

void SlotRecordDataset::PrepareTrain() {
#ifdef PADDLE_WITH_GLOO
Y
yaoxuefeng 已提交
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
  if (enable_heterps_) {
    if (input_records_.size() == 0 && input_channel_ != nullptr &&
        input_channel_->Size() != 0) {
      input_channel_->ReadAll(input_records_);
      VLOG(3) << "read from channel to records with records size: "
              << input_records_.size();
    }
    VLOG(3) << "input records size: " << input_records_.size();
    int64_t total_ins_num = input_records_.size();
    std::vector<std::pair<int, int>> offset;
    int default_batch_size =
        reinterpret_cast<SlotRecordInMemoryDataFeed*>(readers_[0].get())
            ->GetDefaultBatchSize();
    VLOG(3) << "thread_num: " << thread_num_
            << " memory size: " << total_ins_num
            << " default batch_size: " << default_batch_size;
1772 1773
    compute_thread_batch_nccl(
        thread_num_, total_ins_num, default_batch_size, &offset);
Y
yaoxuefeng 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
    VLOG(3) << "offset size: " << offset.size();
    for (int i = 0; i < thread_num_; i++) {
      reinterpret_cast<SlotRecordInMemoryDataFeed*>(readers_[i].get())
          ->SetRecord(&input_records_[0]);
    }
    for (size_t i = 0; i < offset.size(); i++) {
      reinterpret_cast<SlotRecordInMemoryDataFeed*>(
          readers_[i % thread_num_].get())
          ->AddBatchOffset(offset[i]);
    }
  }
Y
yaoxuefeng 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
#else
  PADDLE_THROW(platform::errors::Unavailable(
      "dataset set heterps need compile with GLOO"));
#endif
  return;
}

void SlotRecordDataset::DynamicAdjustReadersNum(int thread_num) {
  if (thread_num_ == thread_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustReadersNum thread_num_="
            << thread_num_ << ", thread_num_=thread_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust readers num from " << thread_num_ << " to " << thread_num;
  thread_num_ = thread_num;
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
  CreateReaders();
  VLOG(3) << "adjust readers num done";
  PrepareTrain();
}

D
dongdaxiang 已提交
1806 1807
}  // end namespace framework
}  // end namespace paddle