data_set.cc 37.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 *     Unless required by applicable law or agreed to in writing, software
 *     distributed under the License is distributed on an "AS IS" BASIS,
 *     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *     See the License for the specific language governing permissions and
 *     limitations under the License. */

15
#include "paddle/fluid/framework/data_set.h"
16
#include <algorithm>
D
dongdaxiang 已提交
17
#include <random>
18
#include <unordered_map>
19
#include <unordered_set>
20 21 22
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
23
#include "paddle/fluid/framework/data_feed_factory.h"
24
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
25
#include "paddle/fluid/framework/io/fs.h"
26
#include "paddle/fluid/platform/timer.h"
27
#include "xxhash.h"  // NOLINT
28

D
dongdaxiang 已提交
29 30 31 32 33
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

34 35 36
namespace paddle {
namespace framework {

X
xjqbest 已提交
37
// constructor
38
template <typename T>
D
dongdaxiang 已提交
39
DatasetImpl<T>::DatasetImpl() {
J
jiaqi 已提交
40
  VLOG(3) << "DatasetImpl<T>::DatasetImpl() constructor";
D
dongdaxiang 已提交
41
  thread_num_ = 1;
42
  trainer_num_ = 1;
J
jiaqi 已提交
43
  channel_num_ = 1;
44
  file_idx_ = 0;
J
jiaqi 已提交
45
  cur_channel_ = 0;
46 47
  fleet_send_batch_size_ = 1024;
  fleet_send_sleep_seconds_ = 0;
48
  merge_by_insid_ = false;
49
  merge_size_ = 2;
50 51
  parse_ins_id_ = false;
  parse_content_ = false;
52
  preload_thread_num_ = 0;
53
  global_index_ = 0;
D
dongdaxiang 已提交
54
}
55

X
xjqbest 已提交
56
// set filelist, file_idx_ will reset to zero.
57 58
template <typename T>
void DatasetImpl<T>::SetFileList(const std::vector<std::string>& filelist) {
59
  VLOG(3) << "filelist size: " << filelist.size();
60
  filelist_ = filelist;
61
  file_idx_ = 0;
62 63
}

X
xjqbest 已提交
64
// set expect thread num. actually it may change
65 66
template <typename T>
void DatasetImpl<T>::SetThreadNum(int thread_num) {
67
  VLOG(3) << "SetThreadNum thread_num=" << thread_num;
68 69 70
  thread_num_ = thread_num;
}

X
xjqbest 已提交
71 72 73
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetTrainerNum
74
template <typename T>
X
xujiaqi01 已提交
75 76
void DatasetImpl<T>::SetTrainerNum(int trainer_num) {
  trainer_num_ = trainer_num;
77 78
}

X
xjqbest 已提交
79 80 81 82 83 84 85 86
// if you run distributed, and want to do global shuffle,
// set this before global shuffle.
// be sure you call CreateReaders before SetFleetSendBatchSize
template <typename T>
void DatasetImpl<T>::SetFleetSendBatchSize(int64_t size) {
  fleet_send_batch_size_ = size;
}

87 88 89
template <typename T>
void DatasetImpl<T>::SetHdfsConfig(const std::string& fs_name,
                                   const std::string& fs_ugi) {
X
xjqbest 已提交
90 91
  fs_name_ = fs_name;
  fs_ugi_ = fs_ugi;
92 93 94 95
  std::string cmd = std::string("hadoop fs");
  cmd += " -D fs.default.name=" + fs_name;
  cmd += " -D hadoop.job.ugi=" + fs_ugi;
  paddle::framework::hdfs_set_command(cmd);
X
xujiaqi01 已提交
96
}
97

98 99 100 101 102 103 104 105 106 107
template <typename T>
void DatasetImpl<T>::SetDownloadCmd(const std::string& download_cmd) {
  paddle::framework::set_download_command(download_cmd);
}

template <typename T>
std::string DatasetImpl<T>::GetDownloadCmd() {
  return paddle::framework::download_cmd();
}

108 109
template <typename T>
void DatasetImpl<T>::SetDataFeedDesc(const std::string& data_feed_desc_str) {
110 111
  google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
                                                &data_feed_desc_);
112 113
}

114
template <typename T>
J
jiaqi 已提交
115 116 117 118
void DatasetImpl<T>::SetChannelNum(int channel_num) {
  channel_num_ = channel_num;
}

119 120 121 122 123 124 125 126 127 128
template <typename T>
void DatasetImpl<T>::SetParseInsId(bool parse_ins_id) {
  parse_ins_id_ = parse_ins_id;
}

template <typename T>
void DatasetImpl<T>::SetParseContent(bool parse_content) {
  parse_content_ = parse_content;
}

129
template <typename T>
130
void DatasetImpl<T>::SetMergeByInsId(int merge_size) {
131
  merge_by_insid_ = true;
132
  parse_ins_id_ = true;
133
  merge_size_ = merge_size;
134 135
}

136 137 138 139 140 141
template <typename T>
void DatasetImpl<T>::SetGenerateUniqueFeasign(bool gen_uni_feasigns) {
  gen_uni_feasigns_ = gen_uni_feasigns;
  VLOG(3) << "Set generate unique feasigns: " << gen_uni_feasigns;
}

142 143 144 145 146 147 148 149
template <typename T>
void DatasetImpl<T>::SetFeaEval(bool fea_eval, int record_candidate_size) {
  slots_shuffle_fea_eval_ = fea_eval;
  slots_shuffle_rclist_.ReSize(record_candidate_size);
  VLOG(3) << "SetFeaEval fea eval mode: " << fea_eval
          << " with record candidate size: " << record_candidate_size;
}

J
jiaqi 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
template <typename T>
std::vector<paddle::framework::DataFeed*> DatasetImpl<T>::GetReaders() {
  std::vector<paddle::framework::DataFeed*> ret;
  ret.reserve(readers_.size());
  for (auto i : readers_) {
    ret.push_back(i.get());
  }
  return ret;
}

template <typename T>
void DatasetImpl<T>::CreateChannel() {
  if (input_channel_ == nullptr) {
    input_channel_ = paddle::framework::MakeChannel<T>();
  }
  if (multi_output_channel_.size() == 0) {
    multi_output_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_output_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
  if (multi_consume_channel_.size() == 0) {
    multi_consume_channel_.reserve(channel_num_);
    for (int i = 0; i < channel_num_; ++i) {
      multi_consume_channel_.push_back(paddle::framework::MakeChannel<T>());
    }
  }
177 178
}

179 180 181 182 183 184 185 186 187 188 189 190
// if sent message between workers, should first call this function
template <typename T>
void DatasetImpl<T>::RegisterClientToClientMsgHandler() {
  auto fleet_ptr = FleetWrapper::GetInstance();
  VLOG(3) << "RegisterClientToClientMsgHandler";
  fleet_ptr->RegisterClientToClientMsgHandler(
      0, [this](int msg_type, int client_id, const std::string& msg) -> int {
        return this->ReceiveFromClient(msg_type, client_id, msg);
      });
  VLOG(3) << "RegisterClientToClientMsgHandler done";
}

X
xjqbest 已提交
191 192
// load data into memory, Dataset hold this memory,
// which will later be fed into readers' channel
193 194 195
template <typename T>
void DatasetImpl<T>::LoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() begin";
196 197
  platform::Timer timeline;
  timeline.Start();
198 199
  std::vector<std::thread> load_threads;
  for (int64_t i = 0; i < thread_num_; ++i) {
D
dongdaxiang 已提交
200 201
    load_threads.push_back(std::thread(
        &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
202 203 204 205
  }
  for (std::thread& t : load_threads) {
    t.join();
  }
J
jiaqi 已提交
206 207 208
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
209 210
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LoadIntoMemory() end"
J
jiaqi 已提交
211
          << ", memory data size=" << input_channel_->Size()
212
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
213 214
}

J
jiaqi 已提交
215 216 217
template <typename T>
void DatasetImpl<T>::PreLoadIntoMemory() {
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() begin";
218
  if (preload_thread_num_ != 0) {
219
    CHECK(static_cast<size_t>(preload_thread_num_) == preload_readers_.size());
220 221 222 223 224 225 226
    preload_threads_.clear();
    for (int64_t i = 0; i < preload_thread_num_; ++i) {
      preload_threads_.push_back(
          std::thread(&paddle::framework::DataFeed::LoadIntoMemory,
                      preload_readers_[i].get()));
    }
  } else {
227
    CHECK(static_cast<size_t>(thread_num_) == readers_.size());
228 229 230 231 232
    preload_threads_.clear();
    for (int64_t i = 0; i < thread_num_; ++i) {
      preload_threads_.push_back(std::thread(
          &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get()));
    }
J
jiaqi 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
  }
  VLOG(3) << "DatasetImpl<T>::PreLoadIntoMemory() end";
}

template <typename T>
void DatasetImpl<T>::WaitPreLoadDone() {
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() begin";
  for (std::thread& t : preload_threads_) {
    t.join();
  }
  input_channel_->Close();
  int64_t in_chan_size = input_channel_->Size();
  input_channel_->SetBlockSize(in_chan_size / thread_num_ + 1);
  VLOG(3) << "DatasetImpl<T>::WaitPreLoadDone() end";
}

249 250 251 252
// release memory data
template <typename T>
void DatasetImpl<T>::ReleaseMemory() {
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() begin";
J
jiaqi 已提交
253 254 255 256 257 258 259 260 261 262
  if (input_channel_) {
    input_channel_->Clear();
    input_channel_ = nullptr;
  }
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    if (!multi_output_channel_[i]) {
      continue;
    }
    multi_output_channel_[i]->Clear();
    multi_output_channel_[i] = nullptr;
263
  }
J
jiaqi 已提交
264 265 266 267 268 269 270 271 272 273
  std::vector<paddle::framework::Channel<T>>().swap(multi_output_channel_);
  for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
    if (!multi_consume_channel_[i]) {
      continue;
    }
    multi_consume_channel_[i]->Clear();
    multi_consume_channel_[i] = nullptr;
  }
  std::vector<paddle::framework::Channel<T>>().swap(multi_consume_channel_);
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
274 275 276
  VLOG(3) << "DatasetImpl<T>::ReleaseMemory() end";
}

X
xjqbest 已提交
277
// do local shuffle
278 279 280
template <typename T>
void DatasetImpl<T>::LocalShuffle() {
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() begin";
281 282
  platform::Timer timeline;
  timeline.Start();
283

J
jiaqi 已提交
284 285 286
  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, no data to shuffle";
    return;
287
  }
J
jiaqi 已提交
288 289 290 291 292 293 294 295 296 297 298
  auto fleet_ptr = FleetWrapper::GetInstance();
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();
  input_channel_->Close();

299 300 301
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::LocalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
302 303
}

304
template <typename T>
305
void DatasetImpl<T>::GlobalShuffle(int thread_num) {
X
xujiaqi01 已提交
306
#ifdef PADDLE_WITH_PSLIB
307
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() begin";
308 309
  platform::Timer timeline;
  timeline.Start();
310
  auto fleet_ptr = FleetWrapper::GetInstance();
J
jiaqi 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

  if (!input_channel_ || input_channel_->Size() == 0) {
    VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, no data to shuffle";
    return;
  }

  // local shuffle
  input_channel_->Close();
  std::vector<T> data;
  input_channel_->ReadAll(data);
  std::shuffle(data.begin(), data.end(), fleet_ptr->LocalRandomEngine());
  input_channel_->Open();
  input_channel_->Write(std::move(data));
  data.clear();
  data.shrink_to_fit();

  input_channel_->Close();
  input_channel_->SetBlockSize(fleet_send_batch_size_);
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() input_channel_ size "
          << input_channel_->Size();

332 333 334 335 336 337 338 339 340 341
  auto get_client_id = [this, fleet_ptr](const T& data) -> size_t {
    if (!this->merge_by_insid_) {
      return fleet_ptr->LocalRandomEngine()() % this->trainer_num_;
    } else {
      return XXH64(data.ins_id_.data(), data.ins_id_.length(), 0) %
             this->trainer_num_;
    }
  };

  auto global_shuffle_func = [this, get_client_id]() {
J
jiaqi 已提交
342 343 344 345 346
    auto fleet_ptr = FleetWrapper::GetInstance();
    std::vector<T> data;
    while (this->input_channel_->Read(data)) {
      std::vector<paddle::framework::BinaryArchive> ars(this->trainer_num_);
      for (auto& t : data) {
347
        auto client_id = get_client_id(t);
J
jiaqi 已提交
348 349 350 351 352 353 354 355 356
        ars[client_id] << t;
      }
      std::vector<std::future<int32_t>> total_status;
      std::vector<int> send_index(this->trainer_num_);
      for (int i = 0; i < this->trainer_num_; ++i) {
        send_index[i] = i;
      }
      std::shuffle(send_index.begin(), send_index.end(),
                   fleet_ptr->LocalRandomEngine());
357
      for (int index = 0; index < this->trainer_num_; ++index) {
J
jiaqi 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
        int i = send_index[index];
        if (ars[i].Length() == 0) {
          continue;
        }
        std::string msg(ars[i].Buffer(), ars[i].Length());
        auto ret = fleet_ptr->SendClientToClientMsg(0, i, msg);
        total_status.push_back(std::move(ret));
      }
      for (auto& t : total_status) {
        t.wait();
      }
      ars.clear();
      ars.shrink_to_fit();
      data.clear();
      data.shrink_to_fit();
373 374 375 376 377 378
      // currently we find bottleneck is server not able to handle large data
      // in time, so we can remove this sleep and set fleet_send_batch_size to
      // 1024, and set server thread to 24.
      if (fleet_send_sleep_seconds_ != 0) {
        sleep(this->fleet_send_sleep_seconds_);
      }
J
jiaqi 已提交
379 380 381
    }
  };

382
  std::vector<std::thread> global_shuffle_threads;
383 384 385 386 387
  if (thread_num == -1) {
    thread_num = thread_num_;
  }
  VLOG(3) << "start global shuffle threads, num = " << thread_num;
  for (int i = 0; i < thread_num; ++i) {
J
jiaqi 已提交
388
    global_shuffle_threads.push_back(std::thread(global_shuffle_func));
389 390 391
  }
  for (std::thread& t : global_shuffle_threads) {
    t.join();
392
  }
J
jiaqi 已提交
393 394 395
  global_shuffle_threads.clear();
  global_shuffle_threads.shrink_to_fit();
  input_channel_->Clear();
396 397 398
  timeline.Pause();
  VLOG(3) << "DatasetImpl<T>::GlobalShuffle() end, cost time="
          << timeline.ElapsedSec() << " seconds";
X
xujiaqi01 已提交
399
#endif
400 401
}

402
template <typename T>
H
hutuxian 已提交
403 404
void DatasetImpl<T>::DynamicAdjustChannelNum(int channel_num,
                                             bool discard_remaining_ins) {
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
  if (channel_num_ == channel_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustChannelNum channel_num_="
            << channel_num_ << ", channel_num_=channel_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust channel num from " << channel_num_ << " to "
          << channel_num;
  channel_num_ = channel_num;
  std::vector<paddle::framework::Channel<T>>* origin_channels = nullptr;
  std::vector<paddle::framework::Channel<T>>* other_channels = nullptr;
  // find out which channel (output or consume) has data
  int cur_channel = 0;
  uint64_t output_channels_data_size = 0;
  uint64_t consume_channels_data_size = 0;
  CHECK(multi_output_channel_.size() == multi_consume_channel_.size());
420
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
    output_channels_data_size += multi_output_channel_[i]->Size();
    consume_channels_data_size += multi_consume_channel_[i]->Size();
  }
  if (output_channels_data_size != 0) {
    CHECK(consume_channels_data_size == 0);  // NOLINT
    cur_channel = 0;
  } else {
    CHECK(output_channels_data_size == 0);  // NOLINT
    cur_channel = 1;
  }
  if (cur_channel == 0) {
    origin_channels = &multi_output_channel_;
    other_channels = &multi_consume_channel_;
  } else {
    origin_channels = &multi_consume_channel_;
    other_channels = &multi_output_channel_;
  }
  CHECK(origin_channels != nullptr);  // NOLINT
  CHECK(other_channels != nullptr);   // NOLINT

  paddle::framework::Channel<T> total_data_channel =
      paddle::framework::MakeChannel<T>();
  std::vector<paddle::framework::Channel<T>> new_channels;
  std::vector<paddle::framework::Channel<T>> new_other_channels;
  std::vector<T> local_vec;
446
  for (size_t i = 0; i < origin_channels->size(); ++i) {
447 448 449 450 451 452
    local_vec.clear();
    (*origin_channels)[i]->Close();
    (*origin_channels)[i]->ReadAll(local_vec);
    total_data_channel->Write(std::move(local_vec));
  }
  total_data_channel->Close();
H
hutuxian 已提交
453 454 455 456
  if (static_cast<int>(total_data_channel->Size()) >= channel_num) {
    total_data_channel->SetBlockSize(total_data_channel->Size() / channel_num +
                                     (discard_remaining_ins ? 0 : 1));
  }
H
hutuxian 已提交
457
  if (static_cast<int>(input_channel_->Size()) >= channel_num) {
H
hutuxian 已提交
458 459
    input_channel_->SetBlockSize(input_channel_->Size() / channel_num +
                                 (discard_remaining_ins ? 0 : 1));
H
hutuxian 已提交
460
  }
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

  for (int i = 0; i < channel_num; ++i) {
    local_vec.clear();
    total_data_channel->Read(local_vec);
    new_other_channels.push_back(paddle::framework::MakeChannel<T>());
    new_channels.push_back(paddle::framework::MakeChannel<T>());
    new_channels[i]->Write(std::move(local_vec));
  }

  total_data_channel->Clear();
  origin_channels->clear();
  other_channels->clear();
  *origin_channels = new_channels;
  *other_channels = new_other_channels;

  new_channels.clear();
  new_other_channels.clear();
  std::vector<paddle::framework::Channel<T>>().swap(new_channels);
  std::vector<paddle::framework::Channel<T>>().swap(new_other_channels);
  local_vec.clear();
  std::vector<T>().swap(local_vec);
  VLOG(3) << "adjust channel num done";
}

template <typename T>
void DatasetImpl<T>::DynamicAdjustReadersNum(int thread_num) {
  if (thread_num_ == thread_num) {
    VLOG(3) << "DatasetImpl<T>::DynamicAdjustReadersNum thread_num_="
            << thread_num_ << ", thread_num_=thread_num, no need to adjust";
    return;
  }
  VLOG(3) << "adjust readers num from " << thread_num_ << " to " << thread_num;
  thread_num_ = thread_num;
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
  CreateReaders();
  VLOG(3) << "adjust readers num done";
}

template <typename T>
void DatasetImpl<T>::SetFleetSendSleepSeconds(int seconds) {
  fleet_send_sleep_seconds_ = seconds;
}

504 505
template <typename T>
void DatasetImpl<T>::CreateReaders() {
506
  VLOG(3) << "Calling CreateReaders()";
J
jiaqi 已提交
507 508 509 510 511 512
  VLOG(3) << "thread num in Dataset: " << thread_num_;
  VLOG(3) << "Filelist size in Dataset: " << filelist_.size();
  VLOG(3) << "channel num in Dataset: " << channel_num_;
  CHECK(thread_num_ > 0) << "thread num should > 0";
  CHECK(channel_num_ > 0) << "channel num should > 0";
  CHECK(channel_num_ <= thread_num_) << "channel num should <= thread num";
513
  VLOG(3) << "readers size: " << readers_.size();
514
  if (readers_.size() != 0) {
J
jiaqi 已提交
515 516
    VLOG(3) << "readers_.size() = " << readers_.size()
            << ", will not create again";
517 518
    return;
  }
519
  VLOG(3) << "data feed class name: " << data_feed_desc_.name();
J
jiaqi 已提交
520
  int channel_idx = 0;
521
  for (int i = 0; i < thread_num_; ++i) {
522
    readers_.push_back(DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
J
jiaqi 已提交
523 524 525 526 527 528
    readers_[i]->Init(data_feed_desc_);
    readers_[i]->SetThreadId(i);
    readers_[i]->SetThreadNum(thread_num_);
    readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    readers_[i]->SetFileListIndex(&file_idx_);
    readers_[i]->SetFileList(filelist_);
529 530
    readers_[i]->SetParseInsId(parse_ins_id_);
    readers_[i]->SetParseContent(parse_content_);
J
jiaqi 已提交
531 532 533
    if (input_channel_ != nullptr) {
      readers_[i]->SetInputChannel(input_channel_.get());
    }
534 535
    if (cur_channel_ == 0 &&
        static_cast<size_t>(channel_idx) < multi_output_channel_.size()) {
J
jiaqi 已提交
536 537
      readers_[i]->SetOutputChannel(multi_output_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_consume_channel_[channel_idx].get());
538 539
    } else if (static_cast<size_t>(channel_idx) <
               multi_output_channel_.size()) {
J
jiaqi 已提交
540 541 542 543 544 545 546
      readers_[i]->SetOutputChannel(multi_consume_channel_[channel_idx].get());
      readers_[i]->SetConsumeChannel(multi_output_channel_[channel_idx].get());
    }
    ++channel_idx;
    if (channel_idx >= channel_num_) {
      channel_idx = 0;
    }
547
  }
J
jiaqi 已提交
548
  VLOG(3) << "readers size: " << readers_.size();
549 550
}

551 552 553
template <typename T>
void DatasetImpl<T>::DestroyReaders() {
  VLOG(3) << "Calling DestroyReaders()";
554
  VLOG(3) << "readers size1: " << readers_.size();
555
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(readers_);
556
  VLOG(3) << "readers size: " << readers_.size();
J
jiaqi 已提交
557 558
  file_idx_ = 0;
  cur_channel_ = 1 - cur_channel_;
559 560
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
template <typename T>
void DatasetImpl<T>::SetPreLoadThreadNum(int thread_num) {
  preload_thread_num_ = thread_num;
}

template <typename T>
void DatasetImpl<T>::CreatePreLoadReaders() {
  VLOG(3) << "Begin CreatePreLoadReaders";
  if (preload_thread_num_ == 0) {
    preload_thread_num_ = thread_num_;
  }
  CHECK(preload_thread_num_ > 0) << "thread num should > 0";
  CHECK(input_channel_ != nullptr);
  preload_readers_.clear();
  for (int i = 0; i < preload_thread_num_; ++i) {
    preload_readers_.push_back(
        DataFeedFactory::CreateDataFeed(data_feed_desc_.name()));
    preload_readers_[i]->Init(data_feed_desc_);
    preload_readers_[i]->SetThreadId(i);
    preload_readers_[i]->SetThreadNum(preload_thread_num_);
    preload_readers_[i]->SetFileListMutex(&mutex_for_pick_file_);
    preload_readers_[i]->SetFileListIndex(&file_idx_);
    preload_readers_[i]->SetFileList(filelist_);
    preload_readers_[i]->SetParseInsId(parse_ins_id_);
585
    preload_readers_[i]->SetParseContent(parse_content_);
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
    preload_readers_[i]->SetInputChannel(input_channel_.get());
    preload_readers_[i]->SetOutputChannel(nullptr);
    preload_readers_[i]->SetConsumeChannel(nullptr);
  }
  VLOG(3) << "End CreatePreLoadReaders";
}

template <typename T>
void DatasetImpl<T>::DestroyPreLoadReaders() {
  VLOG(3) << "Begin DestroyPreLoadReaders";
  preload_readers_.clear();
  std::vector<std::shared_ptr<paddle::framework::DataFeed>>().swap(
      preload_readers_);
  file_idx_ = 0;
  VLOG(3) << "End DestroyPreLoadReaders";
}

603 604
template <typename T>
int64_t DatasetImpl<T>::GetMemoryDataSize() {
J
jiaqi 已提交
605
  return input_channel_->Size();
606 607 608 609 610
}

template <typename T>
int64_t DatasetImpl<T>::GetShuffleDataSize() {
  int64_t sum = 0;
J
jiaqi 已提交
611 612
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    sum += multi_output_channel_[i]->Size() + multi_consume_channel_[i]->Size();
613 614 615 616
  }
  return sum;
}

617 618
template <typename T>
int DatasetImpl<T>::ReceiveFromClient(int msg_type, int client_id,
D
dongdaxiang 已提交
619
                                      const std::string& msg) {
D
dongdaxiang 已提交
620
#ifdef _LINUX
621
  VLOG(3) << "ReceiveFromClient msg_type=" << msg_type
622
          << ", client_id=" << client_id << ", msg length=" << msg.length();
J
jiaqi 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636
  if (msg.length() == 0) {
    return 0;
  }
  paddle::framework::BinaryArchive ar;
  ar.SetReadBuffer(const_cast<char*>(msg.c_str()), msg.length(), nullptr);
  if (ar.Cursor() == ar.Finish()) {
    return 0;
  }
  std::vector<T> data;
  while (ar.Cursor() < ar.Finish()) {
    data.push_back(ar.Get<T>());
  }
  CHECK(ar.Cursor() == ar.Finish());

637
  auto fleet_ptr = FleetWrapper::GetInstance();
638 639 640 641 642 643 644 645 646 647
  // not use random because it doesn't perform well here.
  // to make sure each channel get data equally, we just put data to
  // channel one by one.
  // int64_t index = fleet_ptr->LocalRandomEngine()() % channel_num_;
  int64_t index = 0;
  {
    std::unique_lock<std::mutex> lk(global_index_mutex_);
    index = global_index_++;
  }
  index = index % channel_num_;
648
  VLOG(3) << "ramdom index=" << index;
J
jiaqi 已提交
649 650 651 652
  multi_output_channel_[index]->Write(std::move(data));

  data.clear();
  data.shrink_to_fit();
D
dongdaxiang 已提交
653
#endif
654 655 656
  return 0;
}

657
// explicit instantiation
J
jiaqi 已提交
658
template class DatasetImpl<Record>;
659

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
void MultiSlotDataset::GenerateLocalTablesUnlock(int table_id, int feadim,
                                                 int read_thread_num,
                                                 int consume_thread_num,
                                                 int shard_num) {
  VLOG(3) << "MultiSlotDataset::GenerateUniqueFeasign begin";
  if (!gen_uni_feasigns_) {
    VLOG(3) << "generate_unique_feasign_=false, will not GenerateUniqueFeasign";
    return;
  }

  CHECK(multi_output_channel_.size() != 0);  // NOLINT
  auto fleet_ptr_ = FleetWrapper::GetInstance();
  std::vector<std::unordered_map<uint64_t, std::vector<float>>>&
      local_map_tables = fleet_ptr_->GetLocalTable();
  local_map_tables.resize(shard_num);
  // read thread
  int channel_num = multi_output_channel_.size();
  if (read_thread_num < channel_num) {
    read_thread_num = channel_num;
  }
  std::vector<std::thread> threads(read_thread_num);
  consume_task_pool_.resize(consume_thread_num);
  for (size_t i = 0; i < consume_task_pool_.size(); i++) {
    consume_task_pool_[i].reset(new ::ThreadPool(1));
  }
  auto consume_func = [&local_map_tables](int shard_id, int feadim,
                                          std::vector<uint64_t>& keys) {
    for (auto k : keys) {
      if (local_map_tables[shard_id].find(k) ==
          local_map_tables[shard_id].end()) {
        local_map_tables[shard_id][k] = std::vector<float>(feadim, 0);
      }
    }
  };
  auto gen_func = [this, &shard_num, &feadim, &local_map_tables,
                   &consume_func](int i) {
    std::vector<Record> vec_data;
    std::vector<std::vector<uint64_t>> task_keys(shard_num);
    std::vector<std::future<void>> task_futures;
    this->multi_output_channel_[i]->Close();
    this->multi_output_channel_[i]->ReadAll(vec_data);
    for (size_t j = 0; j < vec_data.size(); j++) {
      for (auto& feature : vec_data[j].uint64_feasigns_) {
        int shard = feature.sign().uint64_feasign_ % shard_num;
        task_keys[shard].push_back(feature.sign().uint64_feasign_);
      }
    }

    for (int shard_id = 0; shard_id < shard_num; shard_id++) {
      task_futures.emplace_back(consume_task_pool_[shard_id]->enqueue(
          consume_func, shard_id, feadim, task_keys[shard_id]));
    }

    multi_output_channel_[i]->Open();
    multi_output_channel_[i]->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
    for (auto& tk : task_keys) {
      tk.clear();
      std::vector<uint64_t>().swap(tk);
    }
    task_keys.clear();
    std::vector<std::vector<uint64_t>>().swap(task_keys);
    for (auto& tf : task_futures) {
      tf.wait();
    }
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(gen_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
  }
  for (size_t i = 0; i < consume_task_pool_.size(); i++) {
    consume_task_pool_[i].reset();
  }
  consume_task_pool_.clear();
  fleet_ptr_->PullSparseToLocal(table_id, feadim);
}
739 740 741 742 743 744 745 746
void MultiSlotDataset::MergeByInsId() {
  VLOG(3) << "MultiSlotDataset::MergeByInsId begin";
  if (!merge_by_insid_) {
    VLOG(3) << "merge_by_insid=false, will not MergeByInsId";
    return;
  }
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  std::vector<std::string> use_slots;
747
  std::vector<bool> use_slots_is_dense;
748
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
749 750 751
    const auto& slot = multi_slot_desc.slots(i);
    if (slot.is_used()) {
      use_slots.push_back(slot.name());
752
      use_slots_is_dense.push_back(slot.is_dense());
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
    }
  }
  CHECK(multi_output_channel_.size() != 0);  // NOLINT
  auto channel_data = paddle::framework::MakeChannel<Record>();
  VLOG(3) << "multi_output_channel_.size() " << multi_output_channel_.size();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    multi_output_channel_[i]->Close();
    multi_output_channel_[i]->ReadAll(vec_data);
    channel_data->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
    multi_output_channel_[i]->Clear();
  }
  channel_data->Close();
  std::vector<Record> recs;
  recs.reserve(channel_data->Size());
  channel_data->ReadAll(recs);
  channel_data->Clear();
  std::sort(recs.begin(), recs.end(), [](const Record& a, const Record& b) {
    return a.ins_id_ < b.ins_id_;
  });

  std::vector<Record> results;
777 778 779 780 781
  uint64_t drop_ins_num = 0;
  std::unordered_set<uint16_t> all_int64;
  std::unordered_set<uint16_t> all_float;
  std::unordered_set<uint16_t> local_uint64;
  std::unordered_set<uint16_t> local_float;
782 783 784 785 786
  std::unordered_map<uint16_t, std::vector<FeatureItem>> all_dense_uint64;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> all_dense_float;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> local_dense_uint64;
  std::unordered_map<uint16_t, std::vector<FeatureItem>> local_dense_float;
  std::unordered_map<uint16_t, bool> dense_empty;
787

788 789 790 791 792 793
  VLOG(3) << "recs.size() " << recs.size();
  for (size_t i = 0; i < recs.size();) {
    size_t j = i + 1;
    while (j < recs.size() && recs[j].ins_id_ == recs[i].ins_id_) {
      j++;
    }
794 795 796 797
    if (merge_size_ > 0 && j - i != merge_size_) {
      drop_ins_num += j - i;
      LOG(WARNING) << "drop ins " << recs[i].ins_id_ << " size=" << j - i
                   << ", because merge_size=" << merge_size_;
798 799 800 801
      i = j;
      continue;
    }

802 803
    all_int64.clear();
    all_float.clear();
804 805
    all_dense_uint64.clear();
    all_dense_float.clear();
806 807 808 809 810 811
    bool has_conflict_slot = false;
    uint16_t conflict_slot = 0;

    Record rec;
    rec.ins_id_ = recs[i].ins_id_;
    rec.content_ = recs[i].content_;
812

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
    for (size_t k = i; k < j; k++) {
      dense_empty.clear();
      local_dense_uint64.clear();
      local_dense_float.clear();
      for (auto& feature : recs[k].uint64_feasigns_) {
        uint16_t slot = feature.slot();
        if (!use_slots_is_dense[slot]) {
          continue;
        }
        local_dense_uint64[slot].push_back(feature);
        if (feature.sign().uint64_feasign_ != 0) {
          dense_empty[slot] = false;
        } else if (dense_empty.find(slot) == dense_empty.end() &&
                   all_dense_uint64.find(slot) == all_dense_uint64.end()) {
          dense_empty[slot] = true;
        }
      }
      for (auto& feature : recs[k].float_feasigns_) {
        uint16_t slot = feature.slot();
        if (!use_slots_is_dense[slot]) {
          continue;
        }
        local_dense_float[slot].push_back(feature);
        if (fabs(feature.sign().float_feasign_) >= 1e-6) {
          dense_empty[slot] = false;
        } else if (dense_empty.find(slot) == dense_empty.end() &&
                   all_dense_float.find(slot) == all_dense_float.end()) {
          dense_empty[slot] = true;
        }
      }
      for (auto& p : dense_empty) {
        if (local_dense_uint64.find(p.first) != local_dense_uint64.end()) {
          all_dense_uint64[p.first] = std::move(local_dense_uint64[p.first]);
        } else if (local_dense_float.find(p.first) != local_dense_float.end()) {
          all_dense_float[p.first] = std::move(local_dense_float[p.first]);
        }
      }
    }
    for (auto& f : all_dense_uint64) {
      rec.uint64_feasigns_.insert(rec.uint64_feasigns_.end(), f.second.begin(),
                                  f.second.end());
    }
    for (auto& f : all_dense_float) {
      rec.float_feasigns_.insert(rec.float_feasigns_.end(), f.second.begin(),
                                 f.second.end());
    }

860 861 862
    for (size_t k = i; k < j; k++) {
      local_uint64.clear();
      local_float.clear();
863
      for (auto& feature : recs[k].uint64_feasigns_) {
864
        uint16_t slot = feature.slot();
865 866 867
        if (use_slots_is_dense[slot]) {
          continue;
        } else if (all_int64.find(slot) != all_int64.end()) {
868 869 870
          has_conflict_slot = true;
          conflict_slot = slot;
          break;
871
        }
872 873 874 875 876
        local_uint64.insert(slot);
        rec.uint64_feasigns_.push_back(std::move(feature));
      }
      if (has_conflict_slot) {
        break;
877
      }
878 879
      all_int64.insert(local_uint64.begin(), local_uint64.end());

880
      for (auto& feature : recs[k].float_feasigns_) {
881
        uint16_t slot = feature.slot();
882 883 884
        if (use_slots_is_dense[slot]) {
          continue;
        } else if (all_float.find(slot) != all_float.end()) {
885 886 887
          has_conflict_slot = true;
          conflict_slot = slot;
          break;
888
        }
889 890 891 892 893
        local_float.insert(slot);
        rec.float_feasigns_.push_back(std::move(feature));
      }
      if (has_conflict_slot) {
        break;
894
      }
895
      all_float.insert(local_float.begin(), local_float.end());
896 897
    }

898 899 900 901
    if (has_conflict_slot) {
      LOG(WARNING) << "drop ins " << recs[i].ins_id_ << " size=" << j - i
                   << ", because conflict_slot=" << use_slots[conflict_slot];
      drop_ins_num += j - i;
902
    } else {
903
      results.push_back(std::move(rec));
904
    }
905
    i = j;
906
  }
907
  std::vector<Record>().swap(recs);
908
  VLOG(3) << "results size " << results.size();
909
  LOG(WARNING) << "total drop ins num: " << drop_ins_num;
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
  results.shrink_to_fit();

  auto fleet_ptr = FleetWrapper::GetInstance();
  std::shuffle(results.begin(), results.end(), fleet_ptr->LocalRandomEngine());
  channel_data->Open();
  channel_data->Write(std::move(results));
  channel_data->Close();
  results.clear();
  results.shrink_to_fit();
  VLOG(3) << "channel data size " << channel_data->Size();
  channel_data->SetBlockSize(channel_data->Size() / channel_num_ + 1);
  VLOG(3) << "channel data block size " << channel_data->BlockSize();
  for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
    std::vector<Record> vec_data;
    channel_data->Read(vec_data);
    multi_output_channel_[i]->Open();
    multi_output_channel_[i]->Write(std::move(vec_data));
    vec_data.clear();
    vec_data.shrink_to_fit();
  }
  CHECK(channel_data->Size() == 0);  // NOLINT
  channel_data->Clear();
  VLOG(3) << "MultiSlotDataset::MergeByInsId end";
}

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
void MultiSlotDataset::GetRandomData(const std::set<uint16_t>& slots_to_replace,
                                     std::vector<Record>* result) {
  int debug_erase_cnt = 0;
  int debug_push_cnt = 0;
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  slots_shuffle_rclist_.ReInit();
  for (const auto& rec : slots_shuffle_original_data_) {
    RecordCandidate rand_rec;
    Record new_rec = rec;
    slots_shuffle_rclist_.AddAndGet(rec, &rand_rec);
    for (auto it = new_rec.uint64_feasigns_.begin();
         it != new_rec.uint64_feasigns_.end();) {
      if (slots_to_replace.find(it->slot()) != slots_to_replace.end()) {
        it = new_rec.uint64_feasigns_.erase(it);
        debug_erase_cnt += 1;
      } else {
        ++it;
      }
    }
    for (auto slot : slots_to_replace) {
      auto range = rand_rec.feas.equal_range(slot);
      for (auto it = range.first; it != range.second; ++it) {
        new_rec.uint64_feasigns_.push_back({it->second, it->first});
        debug_push_cnt += 1;
      }
    }
    result->push_back(std::move(new_rec));
  }
  VLOG(2) << "erase feasign num: " << debug_erase_cnt
          << " repush feasign num: " << debug_push_cnt;
}

// slots shuffle to input_channel_ with needed-shuffle slots
void MultiSlotDataset::SlotsShuffle(
    const std::set<std::string>& slots_to_replace) {
  int out_channel_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      out_channel_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      out_channel_size += multi_consume_channel_[i]->Size();
    }
  }
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() begin with input channel size: "
          << input_channel_->Size()
          << " output channel size: " << out_channel_size;
  if (!slots_shuffle_fea_eval_) {
    VLOG(3) << "DatasetImpl<T>::SlotsShuffle() end,"
               "fea eval mode off, need to set on for slots shuffle";
    return;
  }
  if ((!input_channel_ || input_channel_->Size() == 0) &&
      slots_shuffle_original_data_.size() == 0 && out_channel_size == 0) {
    VLOG(3) << "DatasetImpl<T>::SlotsShuffle() end, no data to slots shuffle";
    return;
  }
  platform::Timer timeline;
  timeline.Start();
  auto multi_slot_desc = data_feed_desc_.multi_slot_desc();
  std::set<uint16_t> index_slots;
997
  for (int i = 0; i < multi_slot_desc.slots_size(); ++i) {
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    std::string cur_slot = multi_slot_desc.slots(i).name();
    if (slots_to_replace.find(cur_slot) != slots_to_replace.end()) {
      index_slots.insert(i);
    }
  }
  if (slots_shuffle_original_data_.size() == 0) {
    // before first slots shuffle, instances could be in
    // input_channel, oupput_channel or consume_channel
    if (input_channel_ && input_channel_->Size() != 0) {
      slots_shuffle_original_data_.reserve(input_channel_->Size());
      input_channel_->Close();
      input_channel_->ReadAll(slots_shuffle_original_data_);
    } else {
      CHECK(out_channel_size > 0);  // NOLINT
      if (cur_channel_ == 0) {
        for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_output_channel_[i]->Close();
          multi_output_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_output_channel_[i]->Clear();
        }
      } else {
        for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
          std::vector<Record> vec_data;
          multi_consume_channel_[i]->Close();
          multi_consume_channel_[i]->ReadAll(vec_data);
          slots_shuffle_original_data_.reserve(
              slots_shuffle_original_data_.size() + vec_data.size());
          slots_shuffle_original_data_.insert(
              slots_shuffle_original_data_.end(),
              std::make_move_iterator(vec_data.begin()),
              std::make_move_iterator(vec_data.end()));
          vec_data.clear();
          vec_data.shrink_to_fit();
          multi_consume_channel_[i]->Clear();
        }
      }
    }
  } else {
    // if already have original data for slots shuffle, clear channel
    input_channel_->Clear();
    if (cur_channel_ == 0) {
      for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
        if (!multi_output_channel_[i]) {
          continue;
        }
        multi_output_channel_[i]->Clear();
      }
    } else {
      for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
        if (!multi_consume_channel_[i]) {
          continue;
        }
        multi_consume_channel_[i]->Clear();
      }
    }
  }
  int end_size = 0;
  if (cur_channel_ == 0) {
    for (size_t i = 0; i < multi_output_channel_.size(); ++i) {
      if (!multi_output_channel_[i]) {
        continue;
      }
      end_size += multi_output_channel_[i]->Size();
    }
  } else {
    for (size_t i = 0; i < multi_consume_channel_.size(); ++i) {
      if (!multi_consume_channel_[i]) {
        continue;
      }
      end_size += multi_consume_channel_[i]->Size();
    }
  }
  CHECK(input_channel_->Size() == 0)
      << "input channel should be empty before slots shuffle";
  std::vector<Record> random_data;
  random_data.clear();
  // get slots shuffled random_data
  GetRandomData(index_slots, &random_data);
  input_channel_->Open();
  input_channel_->Write(std::move(random_data));
  random_data.clear();
  random_data.shrink_to_fit();
  input_channel_->Close();
Y
yaoxuefeng 已提交
1090
  cur_channel_ = 0;
1091 1092 1093 1094 1095 1096 1097

  timeline.Pause();
  VLOG(2) << "DatasetImpl<T>::SlotsShuffle() end"
          << ", memory data size for slots shuffle=" << input_channel_->Size()
          << ", cost time=" << timeline.ElapsedSec() << " seconds";
}

D
dongdaxiang 已提交
1098 1099
}  // end namespace framework
}  // end namespace paddle