fleet_base.py 57.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import copy
17
import warnings
18
import paddle
19
import os
20
from types import MethodType
21
import numpy as np
22
from paddle.fluid.framework import dygraph_only, _global_flags
23
from paddle.fluid import compiler
24
from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
25
from .strategy_compiler import StrategyCompiler
26
from .distributed_strategy import DistributedStrategy
27 28
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
29
from paddle.fluid.wrapped_decorator import wrap_decorator
30
from paddle.fluid.dygraph import parallel_helper
31
from paddle.fluid.ir import apply_build_strategy
32
from . import topology as tp
33
from .topology import ParallelMode
34
from ..meta_parallel import TensorParallel, model_parallel_random_seed
J
JZ-LIANG 已提交
35
from ..meta_parallel import PipelineParallel, ShardingParallel
K
kuizhiqing 已提交
36
from ..meta_optimizers import HybridParallelOptimizer, HeterParallelOptimizer
37
from paddle import _C_ops
38 39
from paddle.fluid import core
from paddle.fluid.dygraph import to_variable
40

41 42
__all__ = []

43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
def apply_ir_passes(main_program, startup_program, config):
    build_strategy = config._user_defined_strategy.build_strategy._copy()
    if not _global_flags()['FLAGS_apply_pass_to_program']:
        return build_strategy

    pipeline_opt = getattr(main_program, "_pipeline_opt", {})
    if pipeline_opt:
        main_program = pipeline_opt["section_program"]
        startup_program = startup_program._pipeline_opt["startup_program"]

    pass_attrs = {"use_cuda": config._is_collective}
    fuse_all_reduce = config._user_defined_strategy.fuse_all_reduce_ops
    if fuse_all_reduce and build_strategy.fuse_all_optimizer_ops:
        # FIXME(zjl): currently, fuse_all_optimizer_ops
        # have conflict with fuse_all_reduce_ops because 
        # RawProgramOptimizer also inserts coalesce_tensor 
        # into program. These two procedures may conflict  
        # in which vars are to be fused. 
        warnings.warn(
            'Currently, the fuse_all_optimizer_ops pass has conflict with fuse_all_reduce_ops pass. Disable the fuse_all_optimizer_ops pass temporarily.'
        )
        build_strategy.fuse_all_optimizer_ops = False

    return apply_build_strategy(main_program, startup_program, build_strategy,
                                pass_attrs)


71 72 73 74 75 76 77 78 79 80 81 82
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


99
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
100
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
101 102


103 104 105
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
106
    Please reference the https://github.com/PaddlePaddle/FleetX for details
107 108 109 110 111


    Returns:
        Fleet: A Fleet instance

112
    Example for collective training:
1
123malin 已提交
113

114 115
        .. code-block:: python

1
123malin 已提交
116 117
            import paddle
            paddle.enable_static()
118
            import paddle.distributed.fleet as fleet
119 120 121

            fleet.init(is_collective=True)

122 123 124
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
125 126 127 128 129 130 131 132

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
133 134
            import paddle
            paddle.enable_static()
135 136
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
137
            fleet.init(strategy=strategy)
138

139
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
140
            optimizer = fleet.distributed_optimizer(optimizer)
141

142 143
            if fleet.is_first_worker():
                print("this is first worker")
144

145 146
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
147

148 149 150
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
151

152 153
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
154

155 156 157
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
158 159


160 161 162
    """

    def __init__(self):
163
        self._role_maker = None
164
        self.strategy_compiler = None
165
        self._is_collective = False
166
        self._runtime_handle = None
D
Dong Daxiang 已提交
167 168
        self._util = None
        self._context = {}
169

170
    def init(self, role_maker=None, is_collective=False, strategy=None):
171 172 173
        """
        Initialize role_maker in Fleet.

174 175 176 177 178 179 180 181 182 183 184
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
185 186 187 188
            strategy (DistributedStrategy): Extra properties for distributed training. 
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.


189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
211
                role = fleet.PaddleCloudRoleMaker()
212
                fleet.init(role)
213

214 215 216 217 218 219
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
220
                fleet.init(strategy=strategy)
221

222
        """
S
ShenLiang 已提交
223 224 225
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
226 227

        if role_maker is None:
228 229 230 231 232 233
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
234 235
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
236
        else:
237 238
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
239
                self._is_collective = role_maker._is_collective
240 241 242 243
            else:
                raise ValueError(
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".
                    format(type(role_maker)))
244
        self._role_maker._generate_role()
245

246 247 248
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

249
        self.strategy_compiler = StrategyCompiler()
250 251 252 253 254 255 256 257 258

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

259
        if paddle.fluid.framework.in_dygraph_mode():
260
            if self.worker_num() == 1:
261 262 263
                # if worker_num is 1, should construct default topology & hcg
                self._topology = tp.CommunicateTopology()
                self._hcg = tp.HybridCommunicateGroup(self._topology)
264
                return
265 266 267 268
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
269 270 271 272 273 274 275 276 277
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
                    warnings.warn(
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
                        "DistributedStrategy will not take effect here.")
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
                        self._user_defined_strategy.nccl_comm_num)
278
                paddle.distributed.init_parallel_env()
279

K
kuizhiqing 已提交
280 281 282 283 284 285 286 287 288
            # hybrid parallel not support for npu/xpu
            if self._user_defined_strategy.heter_ccl_mode == False:
                # init hybrid parallel environment in dygraph
                if tp._HYBRID_PARALLEL_GROUP is None:
                    self._init_hybrid_parallel_env()
                else:
                    warnings.warn(
                        "The dygraph hybrid parallel environment has been initialized."
                    )
W
WangXi 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
        elif self._is_collective:
            use_sharding = self._user_defined_strategy.sharding

            # global group
            global_rank = self.worker_index()
            global_world_size = self.worker_num()
            # NOTE(wangxi): see sharding_optimizer
            global_ring_id = 3 if use_sharding else 0
            global_ranks = list(range(global_world_size))

            if tp._HYBRID_PARALLEL_GROUP is None: tp._CommunicateGroup()
            cg = tp._HYBRID_PARALLEL_GROUP
            self._hcg = cg
            cg.set_comm_group('global', global_rank, global_world_size,
                              global_ring_id, global_ranks)

Y
Yuang Liu 已提交
305 306 307
            use_tensor_parallel = self._user_defined_strategy.tensor_parallel
            use_mp = use_sharding or use_tensor_parallel

W
WangXi 已提交
308
            # hybrid group
Y
Yuang Liu 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
            if use_mp is False: return

            mp_degree_sharding = 1
            mp_degree_tensor_parallel = 1
            if use_sharding:
                sharding_configs = self._user_defined_strategy.sharding_configs
                mp_degree_sharding = int(sharding_configs['mp_degree'])

            if use_tensor_parallel:
                tensor_parallel_configs = self._user_defined_strategy.tensor_parallel_configs
                mp_degree_tensor_parallel = int(tensor_parallel_configs[
                    'tensor_parallel_degree'])

            if use_sharding and use_tensor_parallel:
                assert mp_degree_sharding == mp_degree_tensor_parallel
W
WangXi 已提交
324

Y
Yuang Liu 已提交
325
            mp_degree = mp_degree_sharding if use_sharding else mp_degree_tensor_parallel
W
WangXi 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338

            if mp_degree > 1:
                assert global_world_size % mp_degree == 0
                # NOTE(wangxi): mp_ring_id sync with sharding_optimizer.py _build_groups
                mp_ring_id = 0
                mp_rank = global_rank % mp_degree
                mp_group_id = global_rank // mp_degree
                mp_group_ranks = [
                    idx for idx in global_ranks
                    if idx // mp_degree == mp_group_id
                ]
                cg.set_comm_group('model', mp_rank, mp_degree, mp_ring_id,
                                  mp_group_ranks)
339 340 341 342 343 344 345 346

    def _init_hybrid_parallel_env(self):
        """initialize the hybrid environment
        """
        self.hybrid_configs = self._user_defined_strategy.hybrid_configs
        self.dp_degree = self.hybrid_configs["dp_degree"]
        self.mp_degree = self.hybrid_configs["mp_degree"]
        self.pp_degree = self.hybrid_configs["pp_degree"]
J
JZ-LIANG 已提交
347
        self.sharding_degree = self.hybrid_configs["sharding_degree"]
348 349 350

        assert self.mp_degree >= 0, "mp_degree should be greater or equal to 0"
        assert self.pp_degree >= 0, "pp_degree should be greater or equal to 0"
J
JZ-LIANG 已提交
351
        assert self.sharding_degree >= 0, "sharding_degree should be greater or equal to 0"
352 353 354 355 356 357 358 359 360 361 362

        self.mp_degree = max(self.mp_degree, 1)
        self.pp_degree = max(self.pp_degree, 1)

        if self.dp_degree < 0:
            nranks = paddle.distributed.get_world_size()
            self.dp_degree = nranks // (self.mp_degree * self.pp_degree)

        self.dp_degree = max(self.dp_degree, 1)

        self._topology = tp.CommunicateTopology(
J
JZ-LIANG 已提交
363 364 365 366 367
            hybrid_group_names=["data", "pipe", "sharding", "model"],
            dims=[
                self.dp_degree, self.pp_degree, self.sharding_degree,
                self.mp_degree
            ])
368 369 370

        self._hcg = tp.HybridCommunicateGroup(self._topology)

371 372 373 374 375 376 377 378
        if self.mp_degree > 1:
            tensor_parallel_configs = self._user_defined_strategy.tensor_parallel_configs
            tensor_init_seed = tensor_parallel_configs["tensor_init_seed"]
            if tensor_init_seed == -1:
                model_parallel_random_seed()
            else:
                model_parallel_random_seed(tensor_init_seed)

379 380 381 382 383 384 385 386
    def get_hybrid_communicate_group(self):
        assert self._hcg is not None
        return self._hcg

    def get_hybrid_parallel_topology(self):
        assert self._topology is not None
        return self._topology

387 388 389 390 391 392 393
    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
394

395 396 397 398 399 400 401 402
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

403
        """
404
        return self._role_maker._is_first_worker()
405 406 407 408 409 410 411

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
412 413 414 415

        Examples:

            .. code-block:: python
1
123malin 已提交
416

417 418 419 420
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

421
        """
422
        return self._role_maker._worker_index()
423 424 425 426 427 428 429

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
430

431
        Examples:
1
123malin 已提交
432

433 434 435 436 437 438
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

439
        """
440
        return self._role_maker._worker_num()
441

442 443 444 445 446 447 448 449 450 451 452 453
    def node_num(self):
        return self._role_maker._get_node_num()

    def local_rank(self):
        return self._role_maker._get_local_rank()

    def local_device_ids(self):
        return self._role_maker._get_local_device_ids()

    def world_device_ids(self):
        return self._role_maker._get_world_device_ids()

454 455 456 457 458 459 460
    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
461 462

        Examples:
1
123malin 已提交
463

464 465 466 467 468 469
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

470
        """
471
        return self._role_maker._is_worker()
472 473 474

    def worker_endpoints(self, to_string=False):
        """
475
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
476 477 478

        Returns:
            list/string: server endpoints
479 480

        Examples:
1
123malin 已提交
481

482 483 484 485 486 487
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

488 489
        """
        if to_string:
490
            return ",".join(self._role_maker._get_trainer_endpoints())
491
        else:
492
            return self._role_maker._get_trainer_endpoints()
493 494 495 496 497 498 499

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
500 501

        Examples:
1
123malin 已提交
502

503
            .. code-block:: python
1
123malin 已提交
504 505 506 507

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
508
        """
509
        return len(self._role_maker._get_pserver_endpoints())
510 511 512 513 514 515 516

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
517 518

        Examples:
1
123malin 已提交
519

520 521 522 523 524 525
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

526
        """
527
        return self._role_maker._server_index()
528 529 530 531 532 533 534

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
535 536

        Examples:
1
123malin 已提交
537

538 539 540 541 542 543
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

544
        """
545

546
        if to_string:
547
            return ",".join(self._role_maker._get_pserver_endpoints())
548
        else:
549
            return self._role_maker._get_pserver_endpoints()
550 551 552 553 554 555 556 557

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
558 559 560 561

        Examples:

            .. code-block:: python
1
123malin 已提交
562

563 564 565 566
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

567
        """
568 569
        return self._role_maker._is_server()

570 571
    def barrier_worker(self):
        """
572 573 574 575
        barrier all workers

        Returns:
            None
576
        """
577
        self._role_maker._barrier("worker")
578

579
    @is_non_distributed_check
580
    @inited_runtime_handler
581 582
    def init_worker(self):
        """
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

601 602 603
        """
        self._runtime_handle._init_worker()

604
    @is_non_distributed_check
605
    @inited_runtime_handler
606
    def init_server(self, *args, **kwargs):
607
        """
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

627
        """
628
        self._runtime_handle._init_server(*args, **kwargs)
629

T
Thunderbrook 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
    def load_model(self, path, mode):
        """
        load fleet model from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.load_model("path", "mode")

        """
        self._runtime_handle.load_model(path, mode)

653
    @is_non_distributed_check
654
    @inited_runtime_handler
655 656
    def run_server(self):
        """
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

675 676 677
        """
        self._runtime_handle._run_server()

678
    @is_non_distributed_check
679
    @inited_runtime_handler
680 681
    def stop_worker(self):
        """
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

699 700 701
        """
        self._runtime_handle._stop_worker()

T
tangwei12 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
    def save(self, dirname, feed=[], fetch=[], **configs):
        inference = True

        if not feed and not fetch:
            inference = False

        place = paddle.CPUPlace()
        executor = paddle.static.Executor(place)

        if inference:
            feeded_var_names = []
            fetch_var_names = []

            for var in feed:
                if isinstance(var, str):
                    feeded_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    feeded_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            for var in fetch:
                if isinstance(var, str):
                    fetch_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    fetch_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            fetch_vars = [
                paddle.static.default_main_program().global_block().var(name)
                for name in fetch_var_names
            ]

            self._runtime_handle._save_inference_model(
                executor, dirname, feeded_var_names, fetch_vars, None, True, 0)
        else:
            increment_mode = 0
            if "mode" in configs:
                increment_mode = int(configs["mode"])
            self._runtime_handle._save_persistables(
                executor, dirname, main_program=None, mode=increment_mode)

745 746 747 748 749 750
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
751 752
                             export_for_deployment=True,
                             mode=0):
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """
T
tangwei12 已提交
772 773 774
        # warnings.warn(
        #     "'save_inference_model' is a deprecated, will be deleted after v2.2.0, Please use fleet.save instead."
        # )
775

776 777
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
778
            export_for_deployment, mode)
779

780
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
781 782
        """

1
123malin 已提交
783
        saves all persistable tensors from :code:`main_program` to
784 785
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
786 787
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
788 789 790
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
791
            executor(Executor): The executor to run for saving persistable tensors.
792 793 794 795 796
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
797
            main_program(Program, optional): The program whose persistbale tensors will
798 799 800 801 802 803 804 805 806 807
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
808 809
                import paddle
                paddle.enable_static()
810 811 812 813 814 815 816
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
817 818
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
819 820

        """
T
tangwei12 已提交
821 822 823
        # warnings.warn(
        #     "'save_persistables' is a deprecated, will be deleted after v2.2.0, Please use fleet.save instead."
        # )
824

825 826
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
827

828
    def shrink(self, threshold=None):
829 830
        self._runtime_handle._shrink(threshold)

831
    def distributed_optimizer(self, optimizer, strategy=None):
832
        """
833 834 835 836 837 838 839
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
840 841 842 843 844
            strategy(DistributedStrategy): Extra properties for distributed optimizer. 
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
                here is for compatibility. If the strategy in fleet.distributed_optimizer() 
                is not None, then it will overwrite the DistributedStrategy in fleet.init(), 
                which will take effect in distributed training.
845

846
        Returns:
847
            Fleet: instance of fleet.
848 849

        Examples:
850

851
            .. code-block:: python
852

1
123malin 已提交
853
                import paddle
854
                import paddle.distributed.fleet as fleet
1
123malin 已提交
855
                fleet.init(is_collective=True)
856 857 858 859
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

860 861
        """
        self.user_defined_optimizer = optimizer
862

863
        if strategy is not None:
T
tangwei12 已提交
864 865 866 867 868 869 870
            if self._is_collective:
                warnings.warn(
                    "It is recommended to use DistributedStrategy "
                    "in fleet.init(). The strategy here is only for compatibility. "
                    "If the strategy in fleet.distributed_optimizer() is "
                    "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
                    "which will take effect in distributed training.")
871
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
872 873

        self._context = {}
S
ShenLiang 已提交
874 875

        if paddle.fluid.framework.in_dygraph_mode():
876
            if self.worker_num() > 1:
K
kuizhiqing 已提交
877 878 879 880 881 882
                if self._user_defined_strategy.heter_ccl_mode == False:
                    return HybridParallelOptimizer(optimizer, self._hcg,
                                                   self._user_defined_strategy)
                else:
                    return HeterParallelOptimizer(optimizer,
                                                  self._user_defined_strategy)
883 884
            else:
                return optimizer
885 886
        return self

887
    @dygraph_only
888
    def distributed_model(self, model):
889
        """
890 891 892 893 894 895 896
        Return distributed data parallel model (Only work in dygraph mode)

        Args:
            model (Layer): the user-defind model which inherits Layer.

        Returns:
            distributed data parallel model which inherits Layer.
897 898

        Examples:
899

900 901
            .. code-block:: python

902 903 904 905 906 907 908 909 910
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
911

912 913
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
914

1
123malin 已提交
915
                # 1. initialize fleet environment
916 917
                fleet.init(is_collective=True)

1
123malin 已提交
918
                # 2. create layer & optimizer
919 920 921 922 923
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
924
                # 3. get data_parallel model using fleet
925 926 927
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
928
                # 4. run layer
929 930 931 932 933 934 935 936 937 938 939 940
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

941

942
        """
943 944 945
        assert model is not None, "model should not be None"
        if self.worker_num() <= 1:
            return model
J
JZ-LIANG 已提交
946

K
kuizhiqing 已提交
947 948 949 950 951 952 953 954 955 956 957
        if self._user_defined_strategy.heter_ccl_mode == True:
            distributed_model = paddle.DataParallel(
                model,
                comm_buffer_size=self._user_defined_strategy.
                fuse_grad_size_in_MB,
                last_comm_buffer_size=self._user_defined_strategy.
                last_comm_group_size_MB,
                find_unused_parameters=self._user_defined_strategy.
                find_unused_parameters)
            return distributed_model

J
JZ-LIANG 已提交
958 959 960 961
        if self._hcg.get_parallel_mode() == ParallelMode.SHARDING_PARALLEL:
            distributed_model = ShardingParallel(
                model, self._hcg, strategy=self._user_defined_strategy)
        elif self._hcg.get_parallel_mode() == ParallelMode.DATA_PARALLEL:
962 963 964 965 966 967 968 969

            # NOTE (JZ-LIANG) init parameters broadcast within sharding group
            # normally it should be done inside DataParallel
            if self.sharding_degree > 1:
                from paddle.distributed.fleet.utils.hybrid_parallel_util import broadcast_mp_parameters, broadcast_sharding_parameters
                assert self.sharding_degree == self._hcg.get_sharding_parallel_world_size(
                )
                broadcast_sharding_parameters(model, self._hcg)
970 971 972 973 974 975 976 977
            distributed_model = paddle.DataParallel(
                model,
                comm_buffer_size=self._user_defined_strategy.
                fuse_grad_size_in_MB,
                last_comm_buffer_size=self._user_defined_strategy.
                last_comm_group_size_MB,
                find_unused_parameters=self._user_defined_strategy.
                find_unused_parameters)
978 979
        elif self._hcg.get_parallel_mode() == ParallelMode.TENSOR_PARALLEL:
            distributed_model = TensorParallel(
980
                model, self._hcg, strategy=self._user_defined_strategy)
981 982 983
        elif self._hcg.get_parallel_mode() == ParallelMode.PIPELINE_PARALLEL:
            distributed_model = PipelineParallel(
                model, self._hcg, strategy=self._user_defined_strategy)
J
JZ-LIANG 已提交
984

985
        return distributed_model
986 987 988 989 990

    @dygraph_only
    def state_dict(self):
        """
        Get state dict information from optimizer.
991
        (Only work in dygraph mode)
992 993 994 995 996 997 998

        Returns: 
            state_dict(dict) : dict contains all the Tensor used by optimizer

        Examples:
            .. code-block:: python

999 1000 1001 1002 1003
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
1004

1005
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
1006
                a = paddle.to_tensor(value)
1007

1008 1009
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
1010

1011 1012 1013
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
1014 1015 1016 1017 1018 1019 1020 1021
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.state_dict()

    @dygraph_only
    def set_state_dict(self, state_dict):
        """
        Load optimizer state dict.
1022
        (Only work in dygraph mode)
1023 1024 1025 1026

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer

1027 1028
        Returns:
            None
1029 1030 1031 1032

        Examples:
            .. code-block:: python

1033 1034 1035
                import numpy as np
                import paddle
                from paddle.distributed import fleet
1036

1037 1038 1039
                fleet.init(is_collective=True)

                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
1040
                a = paddle.to_tensor(value)
1041

1042 1043
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
1044

1045 1046 1047
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
1
123malin 已提交
1048 1049 1050
                paddle.save(state_dict, "paddle_dy")
                para_state_dict = paddle.load("paddle_dy")
                adam.set_state_dict(para_state_dict)
1051 1052 1053 1054 1055 1056 1057 1058
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_state_dict(state_dict)

    @dygraph_only
    def set_lr(self, value):
        """
        Set the value of the learning rate manually in the optimizer. 
1059
        (Only work in dygraph mode)
1060

1061 1062 1063
        Args:
            value (float|Tensor): the value of learning rate

1064 1065
        Returns: 
            None 
1066 1067 1068 1069

        Examples:
            .. code-block:: python

1070 1071 1072
                import numpy as np
                import paddle
                from paddle.distributed import fleet
1073

1074
                fleet.init(is_collective=True)
1075

1076
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
1077
                a = paddle.to_tensor(value)
1078

1079 1080
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
1081

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6
1096 1097 1098 1099 1100 1101 1102 1103
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_lr(value)

    @dygraph_only
    def get_lr(self):
        """
        Get current step learning rate.
1104
        (Only work in dygraph mode)
1105 1106 1107 1108 1109

        Returns:
            float: The learning rate of the current step.

        Examples:
1
123malin 已提交
1110

1111 1112
            .. code-block:: python

1113 1114 1115 1116 1117
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
1118

1119
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
1120
                a = paddle.to_tensor(value)
1121

1122 1123
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
1124

1125 1126
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
1127

1128 1129
                lr = adam.get_lr()
                print(lr) # 0.01
1130 1131 1132 1133 1134 1135 1136 1137
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.get_lr()

    @dygraph_only
    def step(self):
        """
        Execute the optimizer once.
1138
        (Only work in dygraph mode)
1139

1140 1141
        Returns:
            None
1142 1143

        Examples:
1
123malin 已提交
1144

1145 1146
            .. code-block:: python

1147 1148 1149
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
1150

1151 1152 1153 1154 1155
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
1156

1157 1158
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
1159

1
123malin 已提交
1160
                # 1. initialize fleet environment
1161 1162
                fleet.init(is_collective=True)

1
123malin 已提交
1163
                # 2. create layer & optimizer
1164 1165 1166 1167 1168
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
1169
                # 3. get data_parallel model using fleet
1170 1171 1172
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
1173
                # 4. run layer
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()


        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.step()

    @dygraph_only
    def clear_grad(self):
        """
1194 1195
        Clear the gradients of all optimized parameters for model.
        (Only work in dygraph mode)
1196

1197 1198
        Returns: 
            None
1199 1200

        Examples:
1
123malin 已提交
1201

1202 1203
            .. code-block:: python

1204 1205 1206
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
1207

1208 1209 1210 1211 1212
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
1213

1214 1215
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
1216

1
123malin 已提交
1217
                # 1. initialize fleet environment
1218 1219
                fleet.init(is_collective=True)

1
123malin 已提交
1220
                # 2. create layer & optimizer
1221 1222 1223 1224 1225
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
1226
                # 3. get data_parallel model using fleet
1227 1228 1229
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
1230
                # 4. run layer
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.clear_grad()

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
    def _get_amp_optimizer(self):
        # imitate target optimizer retrieval
        amp_optimizer = None
        for optimizer in self.strategy_compiler._get_applied_meta_optimizer():
            if hasattr(optimizer, 'amp_init'):
                amp_optimizer = optimizer
                break

        if amp_optimizer is None:
            if hasattr(self.user_defined_optimizer, 'amp_init'):
                amp_optimizer = self.user_defined_optimizer

        assert amp_optimizer is not None, \
            "amp_init can only be used when the amp(auto mixed precision) strategy is turned on."
        return amp_optimizer

    def get_loss_scaling(self):
1264 1265
        """Return the real-time loss scaling factor.
        """
1266 1267 1268
        amp_optimizer = self._get_amp_optimizer()
        return amp_optimizer.get_loss_scaling()

H
huangxu96 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
    def amp_init(self,
                 place,
                 scope=None,
                 test_program=None,
                 use_fp16_test=False):
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
  
        Args:
            place(CUDAPlace): place is used to initialize 
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
            
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
                    # or the slow convergence in a way. 
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
                    
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
                    run_example_code()       
        """
1329
        amp_optimizer = self._get_amp_optimizer()
1330
        return amp_optimizer.amp_init(place, scope, test_program, use_fp16_test)
H
huangxu96 已提交
1331

D
Dong Daxiang 已提交
1332 1333 1334 1335 1336 1337 1338 1339 1340
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1359 1360 1361 1362 1363 1364 1365 1366 1367
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1368
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1369 1370 1371
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1372
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1373 1374
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1375
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1376 1377 1378 1379
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1380
            by minimize and a list of (param, grad) tensor pairs, param is
1381
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1382 1383
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1384 1385 1386
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1387

1388
            .. code-block:: python
1389

1390
                import paddle
1
123malin 已提交
1391
                paddle.enable_static()
1392
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1404

1
123malin 已提交
1405
                fleet.init(is_collective=True)
1406 1407 1408 1409
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1410

1411
                # for more examples, please reference https://github.com/PaddlePaddle/FleetX
1412 1413

        """
D
Dong Daxiang 已提交
1414 1415 1416
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
1417 1418 1419
        if paddle.fluid.framework.in_dygraph_mode():
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1420
            self._context = context
1421 1422
            return target_opt.minimize(loss)

1423 1424
        # cache original feed forward program
        self.origin_main_program = loss.block.program
1425 1426
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
1427 1428
        if startup_program == None:
            self.origin_startup_program = \
1429 1430
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1431 1432 1433
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1434

1435 1436
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
1437

1438
        # Use the auto-parallel's routines instead
1439
        if self._user_defined_strategy.semi_auto or self._user_defined_strategy.auto_search:
1440 1441 1442 1443
            from ...auto_parallel.parallelizer import AutoParallelizer
            auto_parallelizer = AutoParallelizer(self)
            optimize_ops, params_grads, dist_startup_prog, dist_main_prog = auto_parallelizer.parallelize(
                loss, startup_program, parameter_list, no_grad_set)
1444

1445 1446
            return optimize_ops, params_grads, dist_startup_prog, dist_main_prog

1447 1448 1449 1450
        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1451

D
Dong Daxiang 已提交
1452 1453 1454
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1455 1456 1457 1458 1459 1460

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1461
        if copy_user_defined_strategy._is_strict_auto():
1462 1463
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1464
                opt._enable_strategy(copy_user_defined_strategy, context)
1465

1466 1467
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1468
        can_not_apply_optimizer_list = []
1469 1470 1471 1472
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1473
                                copy_user_defined_strategy)
1474 1475
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1476
            elif opt._can_apply() and opt._is_graph_out():
1477
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1478 1479
            else:
                can_not_apply_optimizer_list.append(opt)
1480
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1481
        meta_optimizer, graph_optimizer = \
1482 1483
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1484
                copy_user_defined_strategy, valid_optimizer_list,
1485
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1486

D
Dong Daxiang 已提交
1487
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1488 1489 1490
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
1491

1492 1493 1494 1495 1496 1497
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1498
        self._context = context
1499

D
Dong Daxiang 已提交
1500
        self.valid_strategy = valid_strategy
1501
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1502

1503 1504
        optimize_ops = []
        params_grads = []
1505

1506 1507 1508 1509 1510 1511 1512 1513 1514
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
            return self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1515
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1516

1517 1518
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1519
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1520

1521
            default_program = paddle.static.default_main_program()
1522 1523 1524 1525

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

1526 1527
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1528
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1529

1530 1531
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1532

1533
        if graph_optimizer:
D
Dong Daxiang 已提交
1534
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1535
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1536 1537 1538 1539
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1540 1541
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads
1542 1543
        else:
            apply_ir_passes(loss.block.program, startup_program, self)
1544

1545 1546 1547 1548 1549 1550 1551 1552 1553
        if not self._role_maker._is_heter_parameter_server_mode:
            program = paddle.static.default_main_program()
            opt_info = {}
            opt_info["mpi_size"] = self.worker_num()
            opt_info["mpi_rank"] = self.worker_index()
            for k, v in self._user_defined_strategy.trainer_desc_configs.items(
            ):
                opt_info[k] = v
            program._fleet_opt = opt_info
1554

1555
        if self._runtime_handle is None:
1556
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1557

1558 1559
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1560 1561

        return optimize_ops, params_grads
1562 1563 1564

    @dygraph_only
    def distributed_scaler(self, scaler):
1565 1566 1567 1568 1569 1570
        def unscale_method(self, optimizer):
            if not self._enable:
                return
            if getattr(optimizer, '_param_groups', None) and isinstance(
                    optimizer._param_groups[0], dict):
                param_grads = []
1571 1572
                param_grads_fp16 = []
                param_grads_fp32 = []
1573 1574 1575 1576
                for group in optimizer._param_groups:
                    for param in group['params']:
                        if param._grad_ivar() is not None:
                            param_grads.append(param._grad_ivar())
1577 1578 1579 1580 1581
                            if param._grad_ivar(
                            ).dtype == core.VarDesc.VarType.FP16:
                                param_grads_fp16.append(param._grad_ivar())
                            else:
                                param_grads_fp32.append(param._grad_ivar())
1582 1583 1584 1585 1586
            else:
                param_grads = [
                    param._grad_ivar() for param in optimizer._parameter_list
                    if param._grad_ivar() is not None
                ]
1587 1588
                param_grads_fp16 = [
                    param._grad_ivar() for param in optimizer._parameter_list
1589 1590
                    if (param._grad_ivar() is not None) and (param._grad_ivar(
                    ).dtype == core.VarDesc.VarType.FP16)
1591 1592 1593
                ]
                param_grads_fp32 = [
                    param._grad_ivar() for param in optimizer._parameter_list
1594 1595
                    if (param._grad_ivar() is not None) and (param._grad_ivar(
                    ).dtype == core.VarDesc.VarType.FP32)
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
                ]
            temp_found_inf_fp16 = to_variable(np.array([0]).astype(np.bool))
            temp_found_inf_fp32 = to_variable(np.array([0]).astype(np.bool))
            if len(param_grads_fp16):
                _C_ops.check_finite_and_unscale(param_grads_fp16, self._scale,
                                                param_grads_fp16,
                                                temp_found_inf_fp16)
            if len(param_grads_fp32):
                _C_ops.check_finite_and_unscale(param_grads_fp32, self._scale,
                                                param_grads_fp32,
                                                temp_found_inf_fp32)
1607

1608
            self._found_inf = 1 if temp_found_inf_fp16 or temp_found_inf_fp32 else 0
1609
            is_found_inf = paddle.to_tensor([self._found_inf], dtype="int32")
1610 1611 1612 1613 1614

            # TODO(shenliang03) Since dp allreduce in the optimizer is 
            # after the gradscaler, check_finite needs to synchronize global 
            # information. In the future, we should use check_group to speed.
            paddle.distributed.all_reduce(
1615 1616
                is_found_inf, op=paddle.distributed.ReduceOp.MAX, group=None)
            self._found_inf = is_found_inf.numpy()[0]
1617 1618 1619 1620 1621 1622 1623

        # Only tensor_parallel and pipeline_parallel need to modify scaler
        if self._hcg.get_parallel_mode() in (ParallelMode.TENSOR_PARALLEL,
                                             ParallelMode.PIPELINE_PARALLEL):
            scaler._unscale = MethodType(unscale_method, scaler)

        return scaler