fleet_base.py 36.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import copy
17
import warnings
18
import paddle
19
from paddle.fluid.framework import dygraph_only
20
from paddle.fluid import compiler
21
from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
22
from .strategy_compiler import StrategyCompiler
23
from .distributed_strategy import DistributedStrategy
24 25
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
26
from paddle.fluid.wrapped_decorator import wrap_decorator
27
from paddle.fluid.dygraph import parallel_helper
28

29

30 31 32 33 34 35 36 37 38 39 40 41
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


58
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
59
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
60 61


62 63 64
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
65
    Please reference the https://github.com/PaddlePaddle/FleetX for details
66 67 68 69 70


    Returns:
        Fleet: A Fleet instance

71
    Example for collective training:
1
123malin 已提交
72

73 74
        .. code-block:: python

1
123malin 已提交
75 76
            import paddle
            paddle.enable_static()
77
            import paddle.distributed.fleet as fleet
78 79 80

            fleet.init(is_collective=True)

81 82 83
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
84 85 86 87 88 89 90 91

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
92 93
            import paddle
            paddle.enable_static()
94 95 96 97 98 99 100 101
            import paddle.distributed.fleet as fleet

            fleet.init()

            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

102 103
            if fleet.is_first_worker():
                print("this is first worker")
104

105 106
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
107

108 109 110
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
111

112 113
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
114

115 116 117
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
118 119


120 121 122
    """

    def __init__(self):
123
        self._role_maker = None
124
        self.strategy_compiler = None
125
        self._is_collective = False
126
        self._runtime_handle = None
D
Dong Daxiang 已提交
127 128
        self._util = None
        self._context = {}
129

130 131 132 133
    def init(self, role_maker=None, is_collective=False):
        """
        Initialize role_maker in Fleet.

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
167
                role = fleet.PaddleCloudRoleMaker()
168
                fleet.init(role)
169

170
        """
171 172

        if role_maker is None:
173 174 175 176 177 178
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
179 180
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
181
        else:
182 183 184 185 186 187
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
            else:
                raise ValueError(
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".
                    format(type(role_maker)))
188
        self._role_maker._generate_role()
189

190 191 192
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

193
        self.strategy_compiler = StrategyCompiler()
194 195 196 197 198 199 200 201 202

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

203
        if paddle.fluid.framework.in_dygraph_mode():
204 205
            if self.worker_num() == 1:
                return
206 207 208 209 210
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
                paddle.distributed.init_parallel_env()
211 212 213 214 215 216 217 218

    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
219

220 221 222 223 224 225 226 227
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

228
        """
229
        return self._role_maker._is_first_worker()
230 231 232 233 234 235 236

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
237 238 239 240

        Examples:

            .. code-block:: python
1
123malin 已提交
241

242 243 244 245
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

246
        """
247
        return self._role_maker._worker_index()
248 249 250 251 252 253 254

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
255

256
        Examples:
1
123malin 已提交
257

258 259 260 261 262 263
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

264
        """
265
        return self._role_maker._worker_num()
266 267 268 269 270 271 272 273

    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
274 275

        Examples:
1
123malin 已提交
276

277 278 279 280 281 282
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

283
        """
284
        return self._role_maker._is_worker()
285 286 287

    def worker_endpoints(self, to_string=False):
        """
288
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
289 290 291

        Returns:
            list/string: server endpoints
292 293

        Examples:
1
123malin 已提交
294

295 296 297 298 299 300
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

301 302
        """
        if to_string:
303
            return ",".join(self._role_maker._get_trainer_endpoints())
304
        else:
305
            return self._role_maker._get_trainer_endpoints()
306 307 308 309 310 311 312

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
313 314

        Examples:
1
123malin 已提交
315

316
            .. code-block:: python
1
123malin 已提交
317 318 319 320

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
321
        """
322
        return len(self._role_maker._get_pserver_endpoints())
323 324 325 326 327 328 329

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
330 331

        Examples:
1
123malin 已提交
332

333 334 335 336 337 338
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

339
        """
340
        return self._role_maker._server_index()
341 342 343 344 345 346 347

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
348 349

        Examples:
1
123malin 已提交
350

351 352 353 354 355 356
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

357
        """
358

359
        if to_string:
360
            return ",".join(self._role_maker._get_pserver_endpoints())
361
        else:
362
            return self._role_maker._get_pserver_endpoints()
363 364 365 366 367 368 369 370

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
371 372 373 374

        Examples:

            .. code-block:: python
1
123malin 已提交
375

376 377 378 379
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

380
        """
381
        return self._role_maker._is_server(
382
        ) or self._role_maker._is_heter_worker()
383 384 385

    def barrier_worker(self):
        """
386 387 388 389
        barrier all workers

        Returns:
            None
390
        """
391
        self._role_maker._barrier("worker")
392

393
    @is_non_distributed_check
394
    @inited_runtime_handler
395 396
    def init_worker(self):
        """
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

415 416 417
        """
        self._runtime_handle._init_worker()

418
    @is_non_distributed_check
419
    @inited_runtime_handler
420
    def init_server(self, *args, **kwargs):
421
        """
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

441
        """
442
        self._runtime_handle._init_server(*args, **kwargs)
443

444
    @is_non_distributed_check
445
    @inited_runtime_handler
446 447
    def run_server(self):
        """
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

466 467 468
        """
        self._runtime_handle._run_server()

469
    @is_non_distributed_check
470
    @inited_runtime_handler
471 472
    def stop_worker(self):
        """
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

490 491 492
        """
        self._runtime_handle._stop_worker()

493 494 495 496 497 498 499
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
                             export_for_deployment=True):
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """

520 521 522 523
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
            export_for_deployment)

524
    def save_persistables(self, executor, dirname, main_program=None, mode=1):
525 526
        """

1
123malin 已提交
527
        saves all persistable tensors from :code:`main_program` to
528 529
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
530 531
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
532 533 534
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
535
            executor(Executor): The executor to run for saving persistable tensors.
536 537 538 539 540
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
541
            main_program(Program, optional): The program whose persistbale tensors will
542 543 544 545 546 547 548 549 550 551
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
552 553
                import paddle
                paddle.enable_static()
554 555 556 557 558 559 560
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
561 562
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
563 564 565

        """

566 567
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
568

569
    def distributed_optimizer(self, optimizer, strategy=None):
570
        """
571 572 573 574 575 576 577 578 579
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
            strategy(DistributedStrategy): Extra properties for distributed optimizer.

580
        Returns:
581
            Fleet: instance of fleet.
582 583

        Examples:
584

585
            .. code-block:: python
586

1
123malin 已提交
587
                import paddle
588
                import paddle.distributed.fleet as fleet
1
123malin 已提交
589
                fleet.init(is_collective=True)
590 591 592 593
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

594 595
        """
        self.user_defined_optimizer = optimizer
596

597 598
        if strategy == None:
            strategy = DistributedStrategy()
D
Dong Daxiang 已提交
599 600 601

        self._user_defined_strategy = copy.deepcopy(strategy)
        self._context = {}
602 603
        return self

604
    @dygraph_only
605 606
    def distributed_model(self, model, group_size_limits=25,
                          small_group_size=1):
607
        """
608 609 610 611
        Return distributed data parallel model (Only work in dygraph mode)

        Args:
            model (Layer): the user-defind model which inherits Layer.
612 613 614 615 616 617
            group_size_limits(int, optional): It is up limited memory size(MB) of one group 
                                          parameters' gradient which is the input of communication 
                                          calling(e.g NCCLAllReduce). Default: 25.
            small_group_size(int, optional): It is up limited memory size(MB) of last group in communication
                                         calling. Making the last group small is useful to 
                                         improve performance. Default: 1.
618 619 620

        Returns:
            distributed data parallel model which inherits Layer.
621 622

        Examples:
623

624 625
            .. code-block:: python

626 627 628 629 630 631 632 633 634
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
635

636 637
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
638

1
123malin 已提交
639
                # 1. initialize fleet environment
640 641
                fleet.init(is_collective=True)

1
123malin 已提交
642
                # 2. create layer & optimizer
643 644 645 646 647
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
648
                # 3. get data_parallel model using fleet
649 650 651
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
652
                # 4. run layer
653 654 655 656 657 658 659 660 661 662 663 664
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

665

666 667
        """
        assert model is not None
668 669 670 671
        self.model = paddle.DataParallel(
            model,
            group_size_limits=group_size_limits,
            small_group_size=small_group_size)
672 673 674 675 676 677
        return self.model

    @dygraph_only
    def state_dict(self):
        """
        Get state dict information from optimizer.
678
        (Only work in dygraph mode)
679 680 681 682 683 684 685

        Returns: 
            state_dict(dict) : dict contains all the Tensor used by optimizer

        Examples:
            .. code-block:: python

686 687 688 689 690
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
691

692
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
693
                a = paddle.to_tensor(value)
694

695 696
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
697

698 699 700
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
701 702 703 704 705 706 707 708
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.state_dict()

    @dygraph_only
    def set_state_dict(self, state_dict):
        """
        Load optimizer state dict.
709
        (Only work in dygraph mode)
710 711 712 713

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer

714 715
        Returns:
            None
716 717 718 719

        Examples:
            .. code-block:: python

720 721 722
                import numpy as np
                import paddle
                from paddle.distributed import fleet
723

724 725 726
                fleet.init(is_collective=True)

                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
727
                a = paddle.to_tensor(value)
728

729 730
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
731

732 733 734
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
1
123malin 已提交
735 736 737
                paddle.save(state_dict, "paddle_dy")
                para_state_dict = paddle.load("paddle_dy")
                adam.set_state_dict(para_state_dict)
738 739 740 741 742 743 744 745
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_state_dict(state_dict)

    @dygraph_only
    def set_lr(self, value):
        """
        Set the value of the learning rate manually in the optimizer. 
746
        (Only work in dygraph mode)
747

748 749 750
        Args:
            value (float|Tensor): the value of learning rate

751 752
        Returns: 
            None 
753 754 755 756

        Examples:
            .. code-block:: python

757 758 759
                import numpy as np
                import paddle
                from paddle.distributed import fleet
760

761
                fleet.init(is_collective=True)
762

763
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
764
                a = paddle.to_tensor(value)
765

766 767
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
768

769 770 771 772 773 774 775 776 777 778 779 780 781 782
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6
783 784 785 786 787 788 789 790
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_lr(value)

    @dygraph_only
    def get_lr(self):
        """
        Get current step learning rate.
791
        (Only work in dygraph mode)
792 793 794 795 796

        Returns:
            float: The learning rate of the current step.

        Examples:
1
123malin 已提交
797

798 799
            .. code-block:: python

800 801 802 803 804
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
805

806
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
807
                a = paddle.to_tensor(value)
808

809 810
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
811

812 813
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
814

815 816
                lr = adam.get_lr()
                print(lr) # 0.01
817 818 819 820 821 822 823 824
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.get_lr()

    @dygraph_only
    def step(self):
        """
        Execute the optimizer once.
825
        (Only work in dygraph mode)
826

827 828
        Returns:
            None
829 830

        Examples:
1
123malin 已提交
831

832 833
            .. code-block:: python

834 835 836
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
837

838 839 840 841 842
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
843

844 845
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
846

1
123malin 已提交
847
                # 1. initialize fleet environment
848 849
                fleet.init(is_collective=True)

1
123malin 已提交
850
                # 2. create layer & optimizer
851 852 853 854 855
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
856
                # 3. get data_parallel model using fleet
857 858 859
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
860
                # 4. run layer
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()


        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.step()

    @dygraph_only
    def clear_grad(self):
        """
881 882
        Clear the gradients of all optimized parameters for model.
        (Only work in dygraph mode)
883

884 885
        Returns: 
            None
886 887

        Examples:
1
123malin 已提交
888

889 890
            .. code-block:: python

891 892 893
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
894

895 896 897 898 899
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
900

901 902
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
903

1
123malin 已提交
904
                # 1. initialize fleet environment
905 906
                fleet.init(is_collective=True)

1
123malin 已提交
907
                # 2. create layer & optimizer
908 909 910 911 912
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
913
                # 3. get data_parallel model using fleet
914 915 916
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
917
                # 4. run layer
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.clear_grad()

D
Dong Daxiang 已提交
934 935 936 937 938 939 940 941 942
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

961 962 963 964 965 966 967 968 969
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
970
            loss (Tensor): A ``Tensor`` containing the value to minimize.
971 972 973
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
974
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
975 976
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
977
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
978 979 980 981
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
982
            by minimize and a list of (param, grad) tensor pairs, param is
983
            ``Parameter``, grad is the gradient value corresponding to the parameter.
984 985
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
986 987 988
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
989

990
            .. code-block:: python
991

992
                import paddle
1
123malin 已提交
993
                paddle.enable_static()
994
                import paddle.distributed.fleet as fleet
1
123malin 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1006

1
123malin 已提交
1007
                fleet.init(is_collective=True)
1008 1009 1010 1011
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1012

1013
                # for more examples, please reference https://github.com/PaddlePaddle/FleetX
1014 1015

        """
D
Dong Daxiang 已提交
1016 1017 1018
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
1019 1020 1021
        if paddle.fluid.framework.in_dygraph_mode():
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1022
            self._context = context
1023 1024
            return target_opt.minimize(loss)

1025 1026
        # cache original feed forward program
        self.origin_main_program = loss.block.program
1027 1028
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
1029 1030
        if startup_program == None:
            self.origin_startup_program = \
1031 1032
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1033 1034 1035
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1036

1037 1038
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
1039 1040 1041 1042 1043

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1044

D
Dong Daxiang 已提交
1045 1046 1047
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1048 1049 1050 1051 1052 1053

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1054
        if copy_user_defined_strategy._is_strict_auto():
1055 1056
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1057
                opt._enable_strategy(copy_user_defined_strategy, context)
1058

1059 1060
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1061
        can_not_apply_optimizer_list = []
1062 1063 1064 1065
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1066
                                copy_user_defined_strategy)
1067 1068
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1069
            elif opt._can_apply() and opt._is_graph_out():
1070
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1071 1072
            else:
                can_not_apply_optimizer_list.append(opt)
1073
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1074
        meta_optimizer, graph_optimizer = \
1075 1076
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1077
                copy_user_defined_strategy, valid_optimizer_list,
1078
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1079

D
Dong Daxiang 已提交
1080
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1081 1082 1083
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
1084

1085 1086 1087 1088 1089 1090
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1091
        self._context = context
1092

D
Dong Daxiang 已提交
1093
        self.valid_strategy = valid_strategy
1094
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1095

1096 1097
        optimize_ops = []
        params_grads = []
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
            return self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1108
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1109

1110 1111
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1112
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1113

1114
            default_program = paddle.static.default_main_program()
1115 1116 1117 1118

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

1119 1120
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1121
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1122

1123 1124
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1125

1126
        if graph_optimizer:
D
Dong Daxiang 已提交
1127
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1128
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1129 1130 1131 1132
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1133 1134 1135
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads

1136
        if self._runtime_handle is None:
1137
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1138

1139 1140
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1141 1142

        return optimize_ops, params_grads