Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
561dc719
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
561dc719
编写于
4月 25, 2021
作者:
L
lilong12
提交者:
GitHub
4月 25, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add pipeline for dynamic graph (#32511)
* add pp dygraph, test=develop
上级
583ebab7
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
685 addition
and
0 deletion
+685
-0
python/paddle/distributed/fleet/base/fleet_base.py
python/paddle/distributed/fleet/base/fleet_base.py
+4
-0
python/paddle/distributed/fleet/meta_parallel/__init__.py
python/paddle/distributed/fleet/meta_parallel/__init__.py
+1
-0
python/paddle/distributed/fleet/meta_parallel/meta_parallel_base.py
...dle/distributed/fleet/meta_parallel/meta_parallel_base.py
+1
-0
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
...ddle/distributed/fleet/meta_parallel/pipeline_parallel.py
+427
-0
python/paddle/distributed/fleet/meta_parallel/pp_utils/__init__.py
...ddle/distributed/fleet/meta_parallel/pp_utils/__init__.py
+15
-0
python/paddle/distributed/fleet/meta_parallel/pp_utils/utils.py
.../paddle/distributed/fleet/meta_parallel/pp_utils/utils.py
+111
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+3
-0
python/paddle/fluid/tests/unittests/hybrid_parallel_pp_model.py
.../paddle/fluid/tests/unittests/hybrid_parallel_pp_model.py
+93
-0
python/paddle/fluid/tests/unittests/test_pipeline_parallel.py
...on/paddle/fluid/tests/unittests/test_pipeline_parallel.py
+29
-0
python/setup.py.in
python/setup.py.in
+1
-0
未找到文件。
python/paddle/distributed/fleet/base/fleet_base.py
浏览文件 @
561dc719
...
...
@@ -29,6 +29,7 @@ from paddle.fluid.dygraph import parallel_helper
from
.
import
topology
as
tp
from
.topology
import
ParallelMode
from
..meta_parallel
import
ModelParallel
from
..meta_parallel
import
PipelineParallel
from
..meta_optimizers
import
HybridParallelOptimizer
from
..meta_optimizers
import
HybridParallelGradScaler
...
...
@@ -780,6 +781,9 @@ class Fleet(object):
elif
self
.
_hcg
.
get_parallel_mode
()
==
ParallelMode
.
MODEL_PARALLEL
:
distributed_model
=
ModelParallel
(
model
,
self
.
_hcg
,
strategy
=
self
.
_user_defined_strategy
)
elif
self
.
_hcg
.
get_parallel_mode
()
==
ParallelMode
.
PIPELINE_PARALLEL
:
distributed_model
=
PipelineParallel
(
model
,
self
.
_hcg
,
strategy
=
self
.
_user_defined_strategy
)
return
distributed_model
@
dygraph_only
...
...
python/paddle/distributed/fleet/meta_parallel/__init__.py
浏览文件 @
561dc719
...
...
@@ -14,3 +14,4 @@
from
.parallel_layers
import
*
from
.model_parallel
import
ModelParallel
from
.pipeline_parallel
import
PipelineParallel
python/paddle/distributed/fleet/meta_parallel/meta_parallel_base.py
浏览文件 @
561dc719
...
...
@@ -21,6 +21,7 @@ class MetaParallelBase(Layer):
self
).
__init__
(
layers
.
full_name
()
+
"_meta_parallel_base"
)
self
.
_layers
=
layers
self
.
_hcg
=
hcg
self
.
_strategy
=
strategy
self
.
_prepare_for_model
()
def
_prepare_for_model
(
self
):
...
...
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
0 → 100644
浏览文件 @
561dc719
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import
time
import
copy
import
os
from
types
import
MethodType
from
numpy
import
prod
import
paddle
import
paddle.fluid
as
fluid
from
.meta_parallel_base
import
MetaParallelBase
from
.pp_utils.utils
import
get_tensor_bytes
from
.pp_utils
import
utils
from
.parallel_layers.pp_layers
import
PipelineLayer
FLOAT_TYPES
=
[
paddle
.
float16
,
paddle
.
float32
,
paddle
.
float64
,
]
class
PipelineParallel
(
MetaParallelBase
):
def
__init__
(
self
,
layers
,
hcg
,
strategy
):
super
(
PipelineParallel
,
self
).
__init__
(
layers
,
hcg
,
strategy
)
self
.
use_pipe_parallel
=
self
.
_hcg
.
get_pipe_parallel_world_size
()
>
1
self
.
use_data_parallel
=
self
.
_hcg
.
get_data_parallel_world_size
()
>
1
self
.
use_model_parallel
=
self
.
_hcg
.
get_model_parallel_world_size
()
>
1
self
.
num_caches
=
0
self
.
caches
=
{
'inputs'
:
[],
'labels'
:
[],
'outputs'
:
[],
'backward_tensors'
:
[],
}
self
.
recv_cache
=
None
self
.
grad_tensors
=
None
self
.
meta_buffer
=
None
self
.
send_meta
=
True
self
.
first_gradient_send
=
True
self
.
current_loss
=
paddle
.
to_tensor
(
0.0
)
self
.
total_loss
=
None
def
_prepare_for_model
(
self
):
self
.
micro_batch_size
=
self
.
_strategy
.
pipeline_configs
[
'micro_batch_size'
]
self
.
accumulate_steps
=
self
.
_strategy
.
pipeline_configs
[
'accumulate_steps'
]
self
.
num_stages
=
self
.
_hcg
.
get_pipe_parallel_world_size
()
self
.
stage_id
=
self
.
_hcg
.
get_stage_id
()
self
.
prev_stage_id
=
self
.
stage_id
-
1
self
.
next_stage_id
=
self
.
stage_id
+
1
self
.
_layers
=
PipelineLayer
(
layers
=
self
.
_layers
,
num_stages
=
self
.
num_stages
)
#TODO: init process group
def
_allocate_caches
(
self
,
num_caches
):
if
self
.
num_caches
>=
num_caches
:
return
num
=
num_caches
-
self
.
num_caches
self
.
num_caches
=
num_caches
for
key
in
self
.
caches
:
self
.
caches
[
key
].
extend
([
None
]
*
num
)
def
train_batch
(
self
,
data_iter
,
optimizer
):
self
.
optimizer
=
optimizer
assert
fluid
.
framework
.
_dygraph_tracer
().
_has_grad
,
(
'Please enable the generation of gradients.'
)
if
self
.
stage_id
==
0
or
self
.
stage_id
==
self
.
num_stages
-
1
:
assert
data_iter
,
(
"For the first and the last stage, the data_iter must be set."
)
else
:
assert
data_iter
is
None
,
(
"For pipe stages other than the first and the last one, "
"the data_iter must be None."
)
self
.
data_iter
=
data_iter
self
.
_layers
.
train
()
self
.
total_loss
=
None
minibatch_cmds
=
utils
.
TrainGenerator
(
self
.
accumulate_steps
,
self
.
num_stages
,
self
.
stage_id
)
self
.
_train
(
minibatch_cmds
)
return
self
.
total_loss
def
_train
(
self
,
minibatch_cmds
):
self
.
_allocate_caches
(
self
.
num_stages
)
for
microbatch_cmds
in
minibatch_cmds
:
for
cmd
in
microbatch_cmds
:
if
type
(
cmd
)
not
in
self
.
_COMMAND_MAP
:
#FIXME:
continue
self
.
_apply_cmd
=
MethodType
(
self
.
_COMMAND_MAP
[
type
(
cmd
)],
self
)
self
.
_apply_cmd
(
**
cmd
.
kwargs
)
def
_allreduce_grads
(
self
):
self
.
_modifying_grad
=
True
assert
self
.
use_data_parallel
<=
1
,
(
"Do not support data parallel "
"with pipeline parallel now."
)
self
.
_modifying_grad
=
False
def
_get_data
(
self
):
if
self
.
use_model_parallel
:
mp_rank
=
self
.
_hcg
.
get_model_parallel_rank
()
else
:
mp_rank
=
0
data
=
None
# mp rank 0 loads the data and broadcat it to others.
if
mp_rank
==
0
:
data
=
next
(
self
.
data_iter
)
if
self
.
use_model_parallel
:
data
=
paddle
.
distributed
.
broadcast
(
data
,
group
=
self
.
_hcg
.
get_model_parallel_group
())
return
data
def
_forward
(
self
,
cache_id
):
if
isinstance
(
self
.
caches
[
'inputs'
][
cache_id
],
tuple
):
inputs
=
tuple
(
t
.
clone
()
for
t
in
self
.
caches
[
'inputs'
][
cache_id
])
else
:
inputs
=
self
.
caches
[
'inputs'
][
cache_id
].
clone
()
self
.
_clear_grads
(
inputs
)
outputs
=
self
.
_layers
.
forward
(
inputs
)
self
.
caches
[
'outputs'
][
cache_id
]
=
outputs
if
self
.
stage_id
==
self
.
num_stages
-
1
:
self
.
current_loss
=
outputs
if
isinstance
(
self
.
current_loss
,
paddle
.
Tensor
):
if
self
.
total_loss
is
None
:
self
.
total_loss
=
paddle
.
zeros_like
(
self
.
current_loss
)
self
.
total_loss
+=
self
.
current_loss
.
detach
()
else
:
if
self
.
total_loss
is
None
:
self
.
total_loss
=
[
paddle
.
zeros_like
(
v
)
for
v
in
self
.
current_loss
]
for
idx
,
v
in
enumerate
(
self
.
current_loss
):
self
.
total_loss
[
idx
]
+=
v
.
detach
()
def
_backward
(
self
,
cache_id
):
assert
self
.
optimizer
is
not
None
if
self
.
stage_id
==
self
.
num_stages
-
1
:
paddle
.
autograd
.
backward
(
self
.
current_loss
)
return
outputs
=
self
.
caches
[
'outputs'
][
cache_id
]
grad_tensors
=
self
.
grad_tensors
if
isinstance
(
outputs
,
tuple
):
out_tensors
=
[
t
for
t
in
outputs
if
t
.
dtype
in
FLOAT_TYPES
]
assert
len
(
out_tensors
)
==
len
(
grad_tensors
)
paddle
.
autograd
.
backward
(
tensors
=
out_tensors
,
grad_tensors
=
grad_tensors
)
else
:
paddle
.
autograd
.
backward
(
tensors
=
[
outputs
],
grad_tensors
=
[
grad_tensors
])
self
.
caches
[
'outputs'
][
cache_id
]
=
None
grad_tensors
=
None
def
_load_micro_batch
(
self
,
cache_id
):
inputs
=
self
.
_get_data
()
if
self
.
stage_id
==
0
:
data
=
None
if
isinstance
(
inputs
[
0
],
paddle
.
Tensor
):
data
=
inputs
[
0
].
clone
().
detach
()
data
.
stop_gradient
=
data
.
dtype
==
paddle
.
float32
else
:
assert
isinstance
(
inputs
[
0
],
tuple
)
# Assume list or tuple
data
=
[]
for
d
in
inputs
[
0
]:
assert
isinstance
(
d
,
paddle
.
Tensor
)
d
=
d
.
clone
().
detach
()
d
.
stop_gradient
=
d
.
dtype
==
paddle
.
float32
loaded
.
append
(
d
)
data
=
tuple
(
data
)
self
.
caches
[
'inputs'
][
cache_id
]
=
data
if
self
.
stage_id
==
self
.
num_stages
-
1
:
label
=
None
if
isinstance
(
inputs
[
1
],
paddle
.
Tensor
):
label
=
inputs
[
1
]
elif
isinstance
(
data
[
1
],
tuple
):
label
=
[]
for
l
in
inputs
[
1
]:
assert
isinstance
(
l
,
paddle
.
Tensor
)
l
=
l
.
detach
()
label
.
append
(
l
)
label
=
tuple
(
label
)
self
.
caches
[
'labels'
][
cache_id
]
=
label
def
_send_meta
(
self
,
data
,
peer
):
"""
% type (0: tensor, 1: tuple)
% num_tensors if type=tuple
foreach tensor:
% ndims
% shape
"""
if
isinstance
(
data
,
paddle
.
Tensor
):
tensor_type
=
paddle
.
to_tensor
([
0
])
paddle
.
distributed
.
send
(
tensor_type
,
peer
)
dims
=
paddle
.
to_tensor
(
len
(
data
.
shape
))
paddle
.
distributed
.
send
(
dims
,
peer
)
shape
=
paddle
.
to_tensor
(
data
.
shape
)
paddle
.
distributed
.
send
(
shape
,
peer
)
elif
isinstance
(
data
,
tuple
):
tensor_type
=
paddle
.
to_tensor
([
1
])
paddle
.
distributed
.
send
(
tensor_type
,
peer
)
nums
=
paddle
.
to_tensor
(
len
(
data
))
paddle
.
distributed
.
send
(
nums
,
peer
)
for
idx
,
d
in
enumerate
(
data
):
assert
isinstance
(
d
,
paddle
.
Tensor
)
dims
=
paddle
.
to_tensor
(
len
(
d
.
shape
))
paddle
.
distributed
.
send
(
dims
,
peer
)
shape
=
paddle
.
to_tensor
(
d
.
shape
)
paddle
.
distributed
.
send
(
shape
,
peer
)
def
_recv_meta
(
self
,
peer
):
tensor_type
=
paddle
.
to_tensor
([
0
])
paddle
.
distributed
.
recv
(
tensor_type
,
peer
)
tensor_type
=
tensor_type
.
numpy
()[
0
]
if
tensor_type
==
0
:
dims
=
paddle
.
to_tensor
([
0
])
paddle
.
distributed
.
recv
(
dims
,
peer
)
dims
=
dims
.
numpy
()[
0
]
shape
=
paddle
.
to_tensor
([
0
]
*
dims
)
paddle
.
distributed
.
recv
(
shape
,
peer
)
shape
=
shape
.
numpy
().
tolist
()
return
self
.
_allocate_buffer
(
shape
,
dtype
=
"float32"
,
num_caches
=
1
)[
0
]
elif
tensor_type
==
1
:
num
=
paddle
.
to_tensor
([
0
])
paddle
.
distributed
.
recv
(
num
,
peer
)
num
=
num
.
numpy
()[
0
]
shapes
=
[]
for
i
in
range
(
num
):
dims
=
paddle
.
to_tensor
([
0
])
paddle
.
distributed
.
recv
(
dims
,
peer
)
dims
=
dims
.
numpy
()[
0
]
shape
=
paddle
.
to_tensor
([
0
]
*
dims
)
paddle
.
distributed
.
recv
(
shape
,
peer
)
shapes
.
append
(
shape
.
numpy
().
tolist
())
dtypes
=
[
"float32"
]
*
len
(
shapes
)
caches
=
self
.
_allocate_buffers
(
shapes
,
dtypes
,
num_buffers
=
1
)[
0
]
buffers
=
tuple
(
buffers
)
return
buffers
def
_send_activations
(
self
,
cache_id
):
outputs
=
self
.
caches
[
'outputs'
][
cache_id
]
if
self
.
send_meta
:
self
.
send_meta
=
False
self
.
_send_meta
(
outputs
,
self
.
next_stage_id
)
if
isinstance
(
outputs
,
paddle
.
Tensor
):
paddle
.
distributed
.
send
(
outputs
,
self
.
next_stage_id
)
elif
isinstance
(
outputs
,
tuple
):
for
output
in
outputs
:
paddle
.
distributed
.
send
(
output
,
self
.
next_stage_id
)
def
_send_gradients
(
self
,
cache_id
):
inputs
=
self
.
caches
[
'inputs'
][
cache_id
]
if
isinstance
(
inputs
,
paddle
.
Tensor
):
assert
inputs
.
grad
is
not
None
paddle
.
distributed
.
send
(
paddle
.
to_tensor
(
inputs
.
grad
),
self
.
prev_stage_id
)
else
:
for
idx
,
d
in
enumerate
(
inputs
):
# Skip tensors that will not produce a grad
if
not
d
.
dtype
in
FLOAT_TYPES
:
assert
d
.
grad
is
None
continue
assert
d
.
grad
is
not
None
paddle
.
distributed
.
send
(
d
.
grad
,
self
.
prev_stage_id
)
self
.
caches
[
'inputs'
][
cache_id
]
=
None
def
_recv_activations
(
self
,
cache_id
):
inputs
=
None
# Allocate the buffer if necessary
if
self
.
recv_cache
is
None
:
self
.
recv_cache
=
self
.
_recv_meta
(
self
.
prev_stage_id
)
if
isinstance
(
self
.
recv_cache
,
paddle
.
Tensor
):
paddle
.
distributed
.
recv
(
self
.
recv_cache
,
self
.
prev_stage_id
)
inputs
=
self
.
recv_cache
.
clone
().
detach
()
inputs
.
stop_gradient
=
inputs
.
dtype
not
in
FLOAT_TYPES
else
:
assert
isinstance
(
self
.
recv_cache
,
tuple
)
inputs
=
[
None
]
*
len
(
self
.
recv_cache
)
for
idx
,
d
in
enumerate
(
self
.
recv_cache
):
assert
isinstance
(
d
,
paddle
.
Tensor
)
paddle
.
distributed
.
recv
(
d
,
self
.
prev_stage_id
)
inputs
[
idx
]
=
d
.
clone
().
detach
()
inputs
=
tuple
(
inputs
)
for
d
in
inputs
:
d
.
stop_gradient
=
d
.
dtype
not
in
FLOAT_TYPES
self
.
caches
[
'inputs'
][
cache_id
]
=
inputs
def
_recv_gradients
(
self
,
cache_id
):
outputs
=
self
.
caches
[
'outputs'
][
cache_id
]
if
self
.
grad_tensors
is
None
:
if
isinstance
(
outputs
,
paddle
.
Tensor
):
s
=
list
(
outputs
.
shape
)
dtype
=
'float32'
self
.
grad_tensors
=
self
.
_allocate_buffer
(
s
,
dtype
,
num_buffers
=
1
)[
0
]
else
:
sizes
=
[
list
(
d
.
shape
)
for
d
in
outputs
if
d
.
dtype
in
FLOAT_TYPES
]
dtypes
=
[
'float32'
]
*
len
(
sizes
)
self
.
grad_tensors
=
self
.
_allocate_buffers
(
sizes
,
dtypes
,
num_buffers
=
1
)[
0
]
if
isinstance
(
self
.
grad_tensors
,
paddle
.
Tensor
):
paddle
.
distributed
.
recv
(
self
.
grad_tensors
,
self
.
next_stage_id
)
else
:
assert
isinstance
(
outputs
,
tuple
)
for
d
in
self
.
grad_tensors
:
paddle
.
distributed
.
recv
(
d
,
self
.
next_stage_id
)
def
_step
(
self
,
lr_kwargs
=
None
):
self
.
_modifying_grad
=
True
self
.
optimizer
.
step
()
self
.
optimizer
.
clear_gradients
()
self
.
_modifying_grad
=
False
def
_clear_grads
(
self
,
inputs
):
if
isinstance
(
inputs
,
paddle
.
Tensor
):
if
inputs
.
grad
is
not
None
:
inputs
.
clear_gradient
()
else
:
for
d
in
inputs
:
if
d
.
grad
is
not
None
:
d
.
clear_gradient
()
def
_allocate_zeros
(
self
,
shape
,
dtype
):
return
paddle
.
zeros
(
shape
,
dtype
)
def
_allocate_buffer
(
self
,
shape
,
dtype
,
num_buffers
=-
1
,
**
kwargs
):
buffers
=
[]
if
num_buffers
==
-
1
:
num_buffers
=
self
.
num_caches
for
count
in
range
(
num_buffers
):
buffers
.
append
(
self
.
_allocate_zeros
(
shape
,
dtype
))
return
buffers
def
_allocate_buffers
(
self
,
shapes
,
dtypes
,
num_buffers
=-
1
):
buffers
=
[]
if
num_buffers
==
-
1
:
num_buffers
=
self
.
num_caches
for
count
in
range
(
num_buffers
):
buffer
=
[]
for
shape
,
dtype
in
zip
(
shapes
,
dtypes
):
buffer
.
append
(
self
.
_allocate_zeros
(
shape
,
dtype
,
requires_grad
=
requires_grad
))
buffers
.
append
(
buffer
)
return
buffers
def
save_state_dict
(
self
,
model_path
):
state_dict
=
self
.
_layers
.
state_dict
()
paddle
.
save
(
state_dict
,
model_path
)
def
load_state_dict
(
self
,
model_path
):
state_dict
=
paddle
.
load
(
self
.
model_path
)
self
.
_layers
.
set_state_dict
(
state_dict
)
_COMMAND_MAP
=
{
utils
.
Optimize
:
_step
,
#utils.ReduceGrads: _allreduce_grads,
utils
.
Forward
:
_forward
,
utils
.
Backward
:
_backward
,
}
def
_pre_forward
(
self
,
*
inputs
,
**
kwargs
):
pass
def
forward
(
self
,
*
inputs
,
**
kwargs
):
raise
RuntimeError
(
"Call train_batch for pipeline instead of forward."
)
def
_post_forward
(
self
,
output
):
pass
def
_pre_backward
(
self
,
loss
):
pass
def
backward_impl
(
self
,
loss
,
parameters
):
pass
def
_post_backward
(
self
,
loss
):
pass
python/paddle/distributed/fleet/meta_parallel/pp_utils/__init__.py
0 → 100644
浏览文件 @
561dc719
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.utils
import
*
python/paddle/distributed/fleet/meta_parallel/pp_utils/utils.py
0 → 100644
浏览文件 @
561dc719
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
abc
import
paddle
from
...utils
import
hybrid_parallel_util
as
hp_util
__all__
=
[
'get_tensor_bytes'
,
]
def
get_tensor_bytes
(
tensor
):
"""Get the bytes a tensor occupied."""
elem_size
=
None
if
tensor
.
dtype
==
paddle
.
float32
:
elem_size
=
4
elif
tensor
.
dtype
==
paddle
.
float64
:
elem_size
=
8
elif
tensor
.
dtype
==
paddle
.
int64
:
elem_size
=
8
elif
tensor
.
dtype
==
paddle
.
int32
:
elem_size
=
4
elif
tensor
.
dtype
==
paddle
.
float16
:
elem_size
=
2
elif
tensor
.
dtype
==
paddle
.
int8
:
elem_size
=
1
else
:
raise
ValueError
(
"unknown data type: {}"
.
format
(
tensor
.
dtype
))
return
tensor
.
numel
()
*
elem_size
class
Generator
():
def
__init__
(
self
,
micro_batches
,
stages
,
stage_id
):
__metaclass__
=
abc
.
ABCMeta
self
.
micro_batches
=
micro_batches
self
.
stages
=
stages
self
.
stage_id
=
stage_id
self
.
prev_stage
=
self
.
stage_id
-
1
self
.
next_stage
=
self
.
stage_id
+
1
assert
self
.
micro_batches
>=
self
.
stages
,
(
"micro_batches {} "
"must be greater than or equal to {}"
.
format
(
self
.
micro_batches
,
self
.
stages
))
@
abc
.
abstractmethod
def
generate
(
self
):
pass
def
__iter__
(
self
):
self
.
iter
=
None
return
self
def
__next__
(
self
):
if
self
.
iter
is
None
:
self
.
iter
=
self
.
generate
()
return
next
(
self
.
iter
)
class
TrainGenerator
(
Generator
):
def
generate
(
self
):
startup_steps
=
self
.
stages
-
self
.
stage_id
-
1
cmds
=
[]
forward_steps
=
0
backward_steps
=
0
while
(
forward_steps
<
startup_steps
):
cmds
.
append
(
Forward
)
forward_steps
+=
1
while
(
forward_steps
<
self
.
micro_batches
):
cmds
.
append
(
Forward
)
forward_steps
+=
1
cmds
.
append
(
Backward
)
backward_steps
+=
1
while
(
backward_steps
<
self
.
micro_batches
):
cmds
.
append
(
Backward
)
backward_steps
+=
1
cmds
.
append
(
Optimize
)
yield
cmds
class
Command
:
def
__init__
(
self
,
**
kwargs
):
self
.
name
=
self
.
__class__
.
__name__
self
.
kwargs
=
kwargs
for
key
,
val
in
kwargs
.
items
():
setattr
(
self
,
key
,
val
)
def
__repr__
(
self
):
return
hp_util
.
call_to_str
(
self
.
name
,
**
self
.
kwargs
)
class
Optimize
(
Command
):
pass
class
Forward
(
Command
):
pass
class
Backward
(
Command
):
pass
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
561dc719
...
...
@@ -79,6 +79,7 @@ if(((NOT WITH_ROCM) AND (NOT WITH_GPU)) OR WIN32)
LIST
(
REMOVE_ITEM TEST_OPS test_allreduce
)
LIST
(
REMOVE_ITEM TEST_OPS test_broadcast
)
LIST
(
REMOVE_ITEM TEST_OPS test_collective_reduce
)
LIST
(
REMOVE_ITEM TEST_OPS test_pipeline_parallel
)
LIST
(
REMOVE_ITEM TEST_OPS test_collective_scatter
)
LIST
(
REMOVE_ITEM TEST_OPS test_collective_sendrecv
)
LIST
(
REMOVE_ITEM TEST_OPS test_reducescatter
)
...
...
@@ -878,6 +879,7 @@ if((WITH_ROCM OR WITH_GPU) AND NOT WIN32)
set_tests_properties
(
test_broadcast PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_reducescatter PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_collective_reduce_api PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_pipeline_parallel PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_collective_reduce PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_allreduce PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_c_concat PROPERTIES TIMEOUT 120
)
...
...
@@ -895,6 +897,7 @@ if((WITH_ROCM OR WITH_GPU) AND NOT WIN32)
test_collective_scatter_api
test_collective_barrier_api
test_collective_reduce_api
test_pipeline_parallel
test_collective_allreduce_api
test_new_group_api
test_collective_broadcast_api
...
...
python/paddle/fluid/tests/unittests/hybrid_parallel_pp_model.py
0 → 100644
浏览文件 @
561dc719
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
from
__future__
import
print_function
import
paddle
import
numpy
as
np
import
random
import
paddle.distributed
as
dist
import
paddle.fluid
as
fluid
import
paddle.distributed.fleet
as
fleet
from
paddle.io
import
DataLoader
,
Dataset
import
unittest
def
set_random_seed
(
seed
,
dp_id
,
rank_id
):
"""Set random seed for reproducability."""
random
.
seed
(
seed
)
np
.
random
.
seed
(
seed
+
dp_id
)
paddle
.
seed
(
seed
+
rank_id
)
HIDDEN_DIM
=
32
LAYERS
=
8
def
sequential_model
():
model
=
paddle
.
nn
.
Sequential
(
paddle
.
nn
.
Linear
(
HIDDEN_DIM
,
HIDDEN_DIM
),
paddle
.
nn
.
Linear
(
HIDDEN_DIM
,
HIDDEN_DIM
),
paddle
.
nn
.
Linear
(
HIDDEN_DIM
,
HIDDEN_DIM
),
paddle
.
nn
.
Linear
(
HIDDEN_DIM
,
HIDDEN_DIM
),
paddle
.
nn
.
Linear
(
HIDDEN_DIM
,
HIDDEN_DIM
),
paddle
.
nn
.
Linear
(
HIDDEN_DIM
,
HIDDEN_DIM
),
paddle
.
nn
.
Linear
(
HIDDEN_DIM
,
HIDDEN_DIM
),
paddle
.
nn
.
Linear
(
HIDDEN_DIM
,
HIDDEN_DIM
),
paddle
.
nn
.
Linear
(
HIDDEN_DIM
,
1
),
)
return
model
class
TestDistPPTraning
(
unittest
.
TestCase
):
def
setUp
(
self
):
strategy
=
fleet
.
DistributedStrategy
()
self
.
model_parallel_size
=
1
self
.
data_parallel_size
=
1
self
.
pipeline_parallel_size
=
2
strategy
.
hybrid_configs
=
{
"dp_degree"
:
self
.
data_parallel_size
,
"mp_degree"
:
self
.
model_parallel_size
,
"pp_degree"
:
self
.
pipeline_parallel_size
,
}
strategy
.
pipeline_configs
=
{
"accumulate_steps"
:
2
}
paddle
.
distributed
.
init_parallel_env
()
fleet
.
init
(
is_collective
=
True
,
strategy
=
strategy
)
def
test_mp_model
(
self
):
batch_input
=
paddle
.
randn
(
shape
=
(
1
,
HIDDEN_DIM
),
dtype
=
"float32"
)
pipe_model
=
sequential_model
()
sgd
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.0003
,
parameters
=
[])
pipe_model
=
paddle
.
distributed
.
fleet
.
distributed_model
(
pipe_model
)
if
pipe_model
.
stage_id
==
0
or
pipe_model
.
stage_id
==
1
:
pipe_input
=
batch_input
.
clone
().
detach
()
pipe_input
=
paddle
.
cast
(
pipe_input
,
'float32'
)
def
data_gen
():
gen
=
True
while
gen
:
yield
[
pipe_input
,
0
]
gen
=
False
loader
=
paddle
.
io
.
DataLoader
.
from_generator
(
capacity
=
5
)
loader
.
set_batch_generator
(
data_gen
)
data_iter
=
iter
(
loader
)
else
:
data_iter
=
None
return
True
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_pipeline_parallel.py
0 → 100644
浏览文件 @
561dc719
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
paddle.fluid
as
fluid
from
test_parallel_dygraph_dataparallel
import
TestMultipleGpus
class
TestPipelineParallel
(
TestMultipleGpus
):
def
test_pipeline_parallel
(
self
):
self
.
run_mnist_2gpu
(
'hybrid_parallel_pp_model.py'
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/setup.py.in
浏览文件 @
561dc719
...
...
@@ -159,6 +159,7 @@ packages=['paddle',
'paddle.distributed.fleet.proto',
'paddle.distributed.fleet.utils',
'paddle.distributed.fleet.meta_parallel',
'paddle.distributed.fleet.meta_parallel.pp_utils',
'paddle.distributed.fleet.meta_parallel.parallel_layers',
'paddle.framework',
'paddle.jit',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录