Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
91a0acdb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
91a0acdb
编写于
6月 25, 2021
作者:
W
WangXi
提交者:
GitHub
6月 25, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
static support mp_layers (#33700)
上级
58e465aa
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
273 addition
and
6 deletion
+273
-6
python/paddle/distributed/collective.py
python/paddle/distributed/collective.py
+23
-3
python/paddle/distributed/fleet/base/fleet_base.py
python/paddle/distributed/fleet/base/fleet_base.py
+34
-0
python/paddle/distributed/fleet/base/topology.py
python/paddle/distributed/fleet/base/topology.py
+28
-0
python/paddle/distributed/fleet/meta_parallel/parallel_layers/mp_layers.py
...tributed/fleet/meta_parallel/parallel_layers/mp_layers.py
+3
-3
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-0
python/paddle/fluid/tests/unittests/test_fleet_static_mp_layers.py
...ddle/fluid/tests/unittests/test_fleet_static_mp_layers.py
+183
-0
未找到文件。
python/paddle/distributed/collective.py
浏览文件 @
91a0acdb
...
...
@@ -92,8 +92,6 @@ class Group():
return
True
def
get_group_rank
(
self
,
rank
):
if
self
.
id
==
0
:
return
rank
if
self
.
is_member
()
and
rank
in
self
.
ranks
:
return
self
.
ranks
.
index
(
rank
)
else
:
...
...
@@ -126,7 +124,8 @@ def _get_group_map():
global
_group_map
if
not
_group_map
:
genv
=
_get_global_env
()
_group_map
[
0
]
=
Group
(
genv
.
rank
,
genv
.
world_size
,
0
)
_group_map
[
0
]
=
Group
(
genv
.
rank
,
genv
.
world_size
,
list
(
range
(
genv
.
world_size
)))
return
_group_map
...
...
@@ -1014,6 +1013,27 @@ def _c_softmax_with_cross_entropy(logits,
else
:
return
loss
,
softmax
attrs
=
{
'ring_id'
:
ring_id
,
'rank'
:
rank
,
'nranks'
:
nranks
,
}
helper
=
LayerHelper
(
'c_softmax_with_cross_entropy'
,
**
locals
())
softmax
=
helper
.
create_variable_for_type_inference
(
dtype
=
logits
.
dtype
)
loss
=
helper
.
create_variable_for_type_inference
(
dtype
=
logits
.
dtype
)
helper
.
append_op
(
type
=
'c_softmax_with_cross_entropy'
,
inputs
=
{
'Logits'
:
logits
,
'Label'
:
label
},
outputs
=
{
'Softmax'
:
softmax
,
'Loss'
:
loss
},
attrs
=
attrs
)
if
return_softmax
:
return
loss
,
softmax
return
loss
def
_linear
(
x
,
weight
,
bias
=
None
,
name
=
None
):
"""
...
...
python/paddle/distributed/fleet/base/fleet_base.py
浏览文件 @
91a0acdb
...
...
@@ -253,6 +253,40 @@ class Fleet(object):
warnings
.
warn
(
"The dygraph hybrid parallel environment has been initialized."
)
elif
self
.
_is_collective
:
use_sharding
=
self
.
_user_defined_strategy
.
sharding
# global group
global_rank
=
self
.
worker_index
()
global_world_size
=
self
.
worker_num
()
# NOTE(wangxi): see sharding_optimizer
global_ring_id
=
3
if
use_sharding
else
0
global_ranks
=
list
(
range
(
global_world_size
))
if
tp
.
_HYBRID_PARALLEL_GROUP
is
None
:
tp
.
_CommunicateGroup
()
cg
=
tp
.
_HYBRID_PARALLEL_GROUP
self
.
_hcg
=
cg
cg
.
set_comm_group
(
'global'
,
global_rank
,
global_world_size
,
global_ring_id
,
global_ranks
)
# hybrid group
if
use_sharding
is
False
:
return
sharding_configs
=
self
.
_user_defined_strategy
.
sharding_configs
mp_degree
=
int
(
sharding_configs
[
'mp_degree'
])
if
mp_degree
>
1
:
assert
global_world_size
%
mp_degree
==
0
# NOTE(wangxi): mp_ring_id sync with sharding_optimizer.py _build_groups
mp_ring_id
=
0
mp_rank
=
global_rank
%
mp_degree
mp_group_id
=
global_rank
//
mp_degree
mp_group_ranks
=
[
idx
for
idx
in
global_ranks
if
idx
//
mp_degree
==
mp_group_id
]
cg
.
set_comm_group
(
'model'
,
mp_rank
,
mp_degree
,
mp_ring_id
,
mp_group_ranks
)
def
_init_hybrid_parallel_env
(
self
):
"""initialize the hybrid environment
...
...
python/paddle/distributed/fleet/base/topology.py
浏览文件 @
91a0acdb
...
...
@@ -262,3 +262,31 @@ class HybridCommunicateGroup(object):
def
get_rank_from_stage
(
self
,
stage_id
,
**
kwargs
):
return
self
.
_topo
.
get_rank_from_stage
(
self
.
global_rank
,
pipe
=
stage_id
,
**
kwargs
)
class
_CommunicateGroup
(
object
):
""" tmp for static """
def
__init__
(
self
):
global
_HYBRID_PARALLEL_GROUP
_HYBRID_PARALLEL_GROUP
=
self
self
.
groups
=
dict
()
def
set_comm_group
(
self
,
group_name
,
group_rank
,
group_size
,
ring_id
,
group_ranks
):
group
=
paddle
.
distributed
.
collective
.
Group
(
group_rank
,
group_size
,
ring_id
,
group_ranks
)
self
.
groups
[
group_name
]
=
group
def
get_group
(
self
,
group_name
):
assert
group_name
in
self
.
groups
return
self
.
groups
[
group_name
]
def
get_model_parallel_group
(
self
):
return
self
.
get_group
(
'model'
)
def
get_model_parallel_world_size
(
self
):
return
self
.
get_group
(
'model'
).
nranks
def
get_model_parallel_rank
(
self
):
return
self
.
get_group
(
'model'
).
rank
python/paddle/distributed/fleet/meta_parallel/parallel_layers/mp_layers.py
浏览文件 @
91a0acdb
...
...
@@ -56,7 +56,7 @@ class VocabParallelEmbedding(Layer):
self
.
_weight_attr
=
weight_attr
self
.
_name
=
name
if
self
.
is_mp
:
if
self
.
is_mp
and
paddle
.
in_dynamic_mode
()
:
with
get_rng_state_tracker
().
rng_state
():
self
.
weight
=
self
.
create_parameter
(
attr
=
self
.
_weight_attr
,
...
...
@@ -121,7 +121,7 @@ class ColumnParallelLinear(Layer):
self
.
_weight_attr
=
weight_attr
self
.
_dtype
=
self
.
_helper
.
get_default_dtype
()
if
self
.
is_mp
:
if
self
.
is_mp
and
paddle
.
in_dynamic_mode
()
:
with
get_rng_state_tracker
().
rng_state
():
self
.
weight
=
self
.
create_parameter
(
shape
=
[
in_features
,
self
.
output_size_per_partition
],
...
...
@@ -198,7 +198,7 @@ class RowParallelLinear(Layer):
self
.
input_size_per_partition
=
in_features
//
self
.
world_size
if
self
.
is_mp
:
if
self
.
is_mp
and
paddle
.
in_dynamic_mode
()
:
with
get_rng_state_tracker
().
rng_state
():
self
.
weight
=
self
.
create_parameter
(
shape
=
[
self
.
input_size_per_partition
,
self
.
out_features
],
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
91a0acdb
...
...
@@ -70,6 +70,7 @@ list(APPEND MIXED_DIST_TEST_OPS test_fleet_graph_executor)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_meta_optimizer_base
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_distributed_strategy
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_auto
)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_static_mp_layers
)
foreach
(
TEST_OP
${
MIXED_DIST_TEST_OPS
}
)
list
(
REMOVE_ITEM TEST_OPS
${
TEST_OP
}
)
endforeach
()
...
...
@@ -525,6 +526,7 @@ if(WITH_DISTRIBUTE)
py_test_modules
(
test_fleet_private_function MODULES test_fleet_private_function ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_meta_optimizer_base MODULES test_fleet_meta_optimizer_base ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_distributed_strategy MODULES test_fleet_distributed_strategy
)
py_test_modules
(
test_fleet_static_mp_layers MODULES test_fleet_static_mp_layers
)
#py_test_modules(test_fleet_auto MODULES test_fleet_auto ENVS ${dist_ENVS})
if
(
NOT WIN32
)
py_test_modules
(
test_fleet_localsgd_meta_optimizer MODULES test_fleet_localsgd_meta_optimizer ENVS
${
dist_ENVS
}
)
...
...
python/paddle/fluid/tests/unittests/test_fleet_static_mp_layers.py
0 → 100644
浏览文件 @
91a0acdb
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
from
__future__
import
print_function
import
unittest
import
paddle
import
numpy
as
np
import
random
import
paddle.distributed
as
dist
import
paddle.fluid
as
fluid
import
paddle.distributed.fleet
as
fleet
from
paddle
import
framework
import
os
paddle
.
enable_static
()
class
ColumnLinearNet
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
input_size
,
output_size
):
super
(
ColumnLinearNet
,
self
).
__init__
()
self
.
parallel_linear
=
fleet
.
meta_parallel
.
ColumnParallelLinear
(
in_features
=
input_size
,
out_features
=
output_size
,
weight_attr
=
None
,
has_bias
=
True
,
gather_output
=
True
,
name
=
"test_column_linear"
)
def
forward
(
self
,
x
):
output
=
self
.
parallel_linear
(
x
)
return
output
class
RowLinearNet
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
input_size
,
output_size
):
super
(
RowLinearNet
,
self
).
__init__
()
self
.
parallel_linear
=
fleet
.
meta_parallel
.
RowParallelLinear
(
in_features
=
input_size
,
out_features
=
output_size
,
has_bias
=
True
,
input_is_parallel
=
False
,
name
=
"test_row_linear"
)
def
forward
(
self
,
x
):
output
=
self
.
parallel_linear
(
x
)
return
output
class
EmbeddingNet
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
vocab_size
,
hidden_size
):
super
(
EmbeddingNet
,
self
).
__init__
()
self
.
embedding
=
fleet
.
meta_parallel
.
VocabParallelEmbedding
(
vocab_size
,
hidden_size
)
def
forward
(
self
,
x
):
output
=
self
.
embedding
(
x
)
return
output
class
TestDistTraning
(
unittest
.
TestCase
):
def
setUp
(
self
):
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"2"
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36001,127.0.0.1:36002,127.0.0.1:36003,127.0.0.1:36004"
strategy
=
fleet
.
DistributedStrategy
()
self
.
model_parallel_size
=
2
strategy
.
sharding
=
True
strategy
.
sharding_configs
=
{
"mp_degree"
:
self
.
model_parallel_size
,
"sharding_degree"
:
2
,
}
fleet
.
init
(
is_collective
=
True
,
strategy
=
strategy
)
def
get_program
(
self
):
return
paddle
.
static
.
Program
(),
paddle
.
static
.
Program
()
def
test_column_parallel_layer
(
self
):
main_program
,
startup_program
=
self
.
get_program
()
with
paddle
.
static
.
program_guard
(
main_program
,
startup_program
):
input_size
,
output_size
=
28
,
64
model_a
=
ColumnLinearNet
(
input_size
,
output_size
)
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
[
None
,
input_size
])
y
=
model_a
(
x
)
#print(main_program)
ops
=
main_program
.
global_block
().
ops
ops
=
[
op
.
type
for
op
in
ops
]
self
.
assertEqual
(
ops
,
[
'c_identity'
,
'matmul'
,
'elementwise_add'
,
'c_concat'
])
weight
=
model_a
.
parallel_linear
.
weight
bias
=
model_a
.
parallel_linear
.
bias
self
.
assertEqual
(
weight
.
shape
,
(
input_size
,
output_size
//
self
.
model_parallel_size
))
self
.
assertEqual
(
bias
.
shape
,
(
output_size
//
self
.
model_parallel_size
,
))
def
test_row_parallel_layer
(
self
):
main_program
,
startup_program
=
self
.
get_program
()
with
paddle
.
static
.
program_guard
(
main_program
,
startup_program
):
input_size
,
output_size
=
28
,
64
model_a
=
RowLinearNet
(
input_size
,
output_size
)
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
[
None
,
input_size
])
y
=
model_a
(
x
)
#print(main_program)
ops
=
main_program
.
global_block
().
ops
ops
=
[
op
.
type
for
op
in
ops
]
self
.
assertEqual
(
ops
,
[
'c_split'
,
'matmul'
,
'c_allreduce_sum'
,
'elementwise_add'
])
weight
=
model_a
.
parallel_linear
.
weight
bias
=
model_a
.
parallel_linear
.
bias
self
.
assertEqual
(
weight
.
shape
,
(
input_size
//
self
.
model_parallel_size
,
output_size
))
self
.
assertEqual
(
bias
.
shape
,
(
output_size
,
))
def
test_parallel_embedding
(
self
):
main_program
,
startup_program
=
self
.
get_program
()
with
paddle
.
static
.
program_guard
(
main_program
,
startup_program
):
vocab_size
,
hidden_size
=
1000
,
512
seq_len
=
128
# model_a
model_a
=
EmbeddingNet
(
vocab_size
,
hidden_size
)
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
[
None
,
seq_len
],
dtype
=
'int64'
)
y
=
model_a
(
x
)
#print(main_program)
ops
=
main_program
.
global_block
().
ops
ops
=
[
op
.
type
for
op
in
ops
]
self
.
assertEqual
(
ops
,
[
'c_embedding'
,
'c_allreduce_sum'
])
weight
=
model_a
.
embedding
.
weight
self
.
assertEqual
(
weight
.
shape
,
(
vocab_size
//
self
.
model_parallel_size
,
hidden_size
))
def
test_parallel_cross_entropy
(
self
):
main_program
,
startup_program
=
self
.
get_program
()
with
paddle
.
static
.
program_guard
(
main_program
,
startup_program
):
batch_size
=
8
seq_length
=
16
class_size
=
1000
class_size_per_card
=
class_size
//
self
.
model_parallel_size
# model_a
model_a
=
fleet
.
meta_parallel
.
ParallelCrossEntropy
()
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
[
batch_size
,
seq_length
,
class_size_per_card
])
label
=
paddle
.
static
.
data
(
name
=
'label'
,
shape
=
[
batch_size
,
seq_length
],
dtype
=
'int64'
)
loss_a
=
model_a
(
x
,
label
)
#print(main_program)
ops
=
main_program
.
global_block
().
ops
ops
=
[
op
.
type
for
op
in
ops
]
self
.
assertEqual
(
ops
,
[
'unsqueeze2'
,
'c_softmax_with_cross_entropy'
])
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录