fleet_base.py 50.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import copy
17
import warnings
18
import paddle
19
import os
20
import numpy as np
21
from paddle.fluid.framework import dygraph_only
22
from paddle.fluid import compiler
23
from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
24
from .strategy_compiler import StrategyCompiler
25
from .distributed_strategy import DistributedStrategy
26 27
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
28
from paddle.fluid.wrapped_decorator import wrap_decorator
29
from paddle.fluid.dygraph import parallel_helper
30
from . import topology as tp
31
from .topology import ParallelMode
32
from ..meta_parallel import TensorParallel, model_parallel_random_seed
J
JZ-LIANG 已提交
33
from ..meta_parallel import PipelineParallel, ShardingParallel
34
from ..meta_optimizers import HybridParallelOptimizer
35
from ..meta_optimizers import HybridParallelGradScaler
36

37 38
__all__ = []

39

40 41 42 43 44 45 46 47 48 49 50 51
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


68
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
69
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
70 71


72 73 74
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
75
    Please reference the https://github.com/PaddlePaddle/FleetX for details
76 77 78 79 80


    Returns:
        Fleet: A Fleet instance

81
    Example for collective training:
1
123malin 已提交
82

83 84
        .. code-block:: python

1
123malin 已提交
85 86
            import paddle
            paddle.enable_static()
87
            import paddle.distributed.fleet as fleet
88 89 90

            fleet.init(is_collective=True)

91 92 93
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
94 95 96 97 98 99 100 101

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
102 103
            import paddle
            paddle.enable_static()
104 105
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
106
            fleet.init(strategy=strategy)
107

108
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
109
            optimizer = fleet.distributed_optimizer(optimizer)
110

111 112
            if fleet.is_first_worker():
                print("this is first worker")
113

114 115
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
116

117 118 119
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
120

121 122
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
123

124 125 126
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
127 128


129 130 131
    """

    def __init__(self):
132
        self._role_maker = None
133
        self.strategy_compiler = None
134
        self._is_collective = False
135
        self._runtime_handle = None
D
Dong Daxiang 已提交
136 137
        self._util = None
        self._context = {}
138

139
    def init(self, role_maker=None, is_collective=False, strategy=None):
140 141 142
        """
        Initialize role_maker in Fleet.

143 144 145 146 147 148 149 150 151 152 153
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
154 155 156 157
            strategy (DistributedStrategy): Extra properties for distributed training. 
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.


158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
180
                role = fleet.PaddleCloudRoleMaker()
181
                fleet.init(role)
182

183 184 185 186 187 188
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
189
                fleet.init(strategy=strategy)
190

191
        """
S
ShenLiang 已提交
192 193 194
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
195 196

        if role_maker is None:
197 198 199 200 201 202
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
203 204
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
205
        else:
206 207
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
208
                self._is_collective = role_maker._is_collective
209 210 211 212
            else:
                raise ValueError(
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".
                    format(type(role_maker)))
213
        self._role_maker._generate_role()
214

215 216 217
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

218
        self.strategy_compiler = StrategyCompiler()
219 220 221 222 223 224 225 226 227

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

228
        if paddle.fluid.framework.in_dygraph_mode():
229
            if self.worker_num() == 1:
230 231 232
                # if worker_num is 1, should construct default topology & hcg
                self._topology = tp.CommunicateTopology()
                self._hcg = tp.HybridCommunicateGroup(self._topology)
233
                return
234 235 236 237
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
238 239 240 241 242 243 244 245 246
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
                    warnings.warn(
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
                        "DistributedStrategy will not take effect here.")
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
                        self._user_defined_strategy.nccl_comm_num)
247
                paddle.distributed.init_parallel_env()
248

249 250 251 252 253 254 255
            # init hybrid parallel environment in dygraph
            if tp._HYBRID_PARALLEL_GROUP is None:
                self._init_hybrid_parallel_env()
            else:
                warnings.warn(
                    "The dygraph hybrid parallel environment has been initialized."
                )
W
WangXi 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        elif self._is_collective:
            use_sharding = self._user_defined_strategy.sharding

            # global group
            global_rank = self.worker_index()
            global_world_size = self.worker_num()
            # NOTE(wangxi): see sharding_optimizer
            global_ring_id = 3 if use_sharding else 0
            global_ranks = list(range(global_world_size))

            if tp._HYBRID_PARALLEL_GROUP is None: tp._CommunicateGroup()
            cg = tp._HYBRID_PARALLEL_GROUP
            self._hcg = cg
            cg.set_comm_group('global', global_rank, global_world_size,
                              global_ring_id, global_ranks)

Y
Yuang Liu 已提交
272 273 274
            use_tensor_parallel = self._user_defined_strategy.tensor_parallel
            use_mp = use_sharding or use_tensor_parallel

W
WangXi 已提交
275
            # hybrid group
Y
Yuang Liu 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
            if use_mp is False: return

            mp_degree_sharding = 1
            mp_degree_tensor_parallel = 1
            if use_sharding:
                sharding_configs = self._user_defined_strategy.sharding_configs
                mp_degree_sharding = int(sharding_configs['mp_degree'])

            if use_tensor_parallel:
                tensor_parallel_configs = self._user_defined_strategy.tensor_parallel_configs
                mp_degree_tensor_parallel = int(tensor_parallel_configs[
                    'tensor_parallel_degree'])

            if use_sharding and use_tensor_parallel:
                assert mp_degree_sharding == mp_degree_tensor_parallel
W
WangXi 已提交
291

Y
Yuang Liu 已提交
292
            mp_degree = mp_degree_sharding if use_sharding else mp_degree_tensor_parallel
W
WangXi 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305

            if mp_degree > 1:
                assert global_world_size % mp_degree == 0
                # NOTE(wangxi): mp_ring_id sync with sharding_optimizer.py _build_groups
                mp_ring_id = 0
                mp_rank = global_rank % mp_degree
                mp_group_id = global_rank // mp_degree
                mp_group_ranks = [
                    idx for idx in global_ranks
                    if idx // mp_degree == mp_group_id
                ]
                cg.set_comm_group('model', mp_rank, mp_degree, mp_ring_id,
                                  mp_group_ranks)
306 307 308 309 310 311 312 313

    def _init_hybrid_parallel_env(self):
        """initialize the hybrid environment
        """
        self.hybrid_configs = self._user_defined_strategy.hybrid_configs
        self.dp_degree = self.hybrid_configs["dp_degree"]
        self.mp_degree = self.hybrid_configs["mp_degree"]
        self.pp_degree = self.hybrid_configs["pp_degree"]
J
JZ-LIANG 已提交
314
        self.sharding_degree = self.hybrid_configs["sharding_degree"]
315 316 317

        assert self.mp_degree >= 0, "mp_degree should be greater or equal to 0"
        assert self.pp_degree >= 0, "pp_degree should be greater or equal to 0"
J
JZ-LIANG 已提交
318
        assert self.sharding_degree >= 0, "sharding_degree should be greater or equal to 0"
319 320 321 322 323 324 325 326 327 328 329

        self.mp_degree = max(self.mp_degree, 1)
        self.pp_degree = max(self.pp_degree, 1)

        if self.dp_degree < 0:
            nranks = paddle.distributed.get_world_size()
            self.dp_degree = nranks // (self.mp_degree * self.pp_degree)

        self.dp_degree = max(self.dp_degree, 1)

        self._topology = tp.CommunicateTopology(
J
JZ-LIANG 已提交
330 331 332 333 334
            hybrid_group_names=["data", "pipe", "sharding", "model"],
            dims=[
                self.dp_degree, self.pp_degree, self.sharding_degree,
                self.mp_degree
            ])
335 336 337

        self._hcg = tp.HybridCommunicateGroup(self._topology)

338 339 340 341 342 343 344 345
        if self.mp_degree > 1:
            tensor_parallel_configs = self._user_defined_strategy.tensor_parallel_configs
            tensor_init_seed = tensor_parallel_configs["tensor_init_seed"]
            if tensor_init_seed == -1:
                model_parallel_random_seed()
            else:
                model_parallel_random_seed(tensor_init_seed)

346 347 348 349 350 351 352 353
    def get_hybrid_communicate_group(self):
        assert self._hcg is not None
        return self._hcg

    def get_hybrid_parallel_topology(self):
        assert self._topology is not None
        return self._topology

354 355 356 357 358 359 360
    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
361

362 363 364 365 366 367 368 369
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

370
        """
371
        return self._role_maker._is_first_worker()
372 373 374 375 376 377 378

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
379 380 381 382

        Examples:

            .. code-block:: python
1
123malin 已提交
383

384 385 386 387
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

388
        """
389
        return self._role_maker._worker_index()
390 391 392 393 394 395 396

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
397

398
        Examples:
1
123malin 已提交
399

400 401 402 403 404 405
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

406
        """
407
        return self._role_maker._worker_num()
408

409 410 411 412 413 414 415 416 417 418 419 420
    def node_num(self):
        return self._role_maker._get_node_num()

    def local_rank(self):
        return self._role_maker._get_local_rank()

    def local_device_ids(self):
        return self._role_maker._get_local_device_ids()

    def world_device_ids(self):
        return self._role_maker._get_world_device_ids()

421 422 423 424 425 426 427
    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
428 429

        Examples:
1
123malin 已提交
430

431 432 433 434 435 436
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

437
        """
438
        return self._role_maker._is_worker()
439 440 441

    def worker_endpoints(self, to_string=False):
        """
442
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
443 444 445

        Returns:
            list/string: server endpoints
446 447

        Examples:
1
123malin 已提交
448

449 450 451 452 453 454
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

455 456
        """
        if to_string:
457
            return ",".join(self._role_maker._get_trainer_endpoints())
458
        else:
459
            return self._role_maker._get_trainer_endpoints()
460 461 462 463 464 465 466

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
467 468

        Examples:
1
123malin 已提交
469

470
            .. code-block:: python
1
123malin 已提交
471 472 473 474

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
475
        """
476
        return len(self._role_maker._get_pserver_endpoints())
477 478 479 480 481 482 483

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
484 485

        Examples:
1
123malin 已提交
486

487 488 489 490 491 492
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

493
        """
494
        return self._role_maker._server_index()
495 496 497 498 499 500 501

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
502 503

        Examples:
1
123malin 已提交
504

505 506 507 508 509 510
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

511
        """
512

513
        if to_string:
514
            return ",".join(self._role_maker._get_pserver_endpoints())
515
        else:
516
            return self._role_maker._get_pserver_endpoints()
517 518 519 520 521 522 523 524

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
525 526 527 528

        Examples:

            .. code-block:: python
1
123malin 已提交
529

530 531 532 533
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

534
        """
535
        return self._role_maker._is_server(
536
        ) or self._role_maker._is_heter_worker()
537 538 539

    def barrier_worker(self):
        """
540 541 542 543
        barrier all workers

        Returns:
            None
544
        """
545
        self._role_maker._barrier("worker")
546

547
    @is_non_distributed_check
548
    @inited_runtime_handler
549 550
    def init_worker(self):
        """
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

569 570 571
        """
        self._runtime_handle._init_worker()

572
    @is_non_distributed_check
573
    @inited_runtime_handler
574
    def init_server(self, *args, **kwargs):
575
        """
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

595
        """
596
        self._runtime_handle._init_server(*args, **kwargs)
597

T
Thunderbrook 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
    def load_model(self, path, mode):
        """
        load fleet model from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.load_model("path", "mode")

        """
        self._runtime_handle.load_model(path, mode)

621
    @is_non_distributed_check
622
    @inited_runtime_handler
623 624
    def run_server(self):
        """
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

643 644 645
        """
        self._runtime_handle._run_server()

646
    @is_non_distributed_check
647
    @inited_runtime_handler
648 649
    def stop_worker(self):
        """
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

667 668 669
        """
        self._runtime_handle._stop_worker()

T
tangwei12 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
    def save(self, dirname, feed=[], fetch=[], **configs):
        inference = True

        if not feed and not fetch:
            inference = False

        place = paddle.CPUPlace()
        executor = paddle.static.Executor(place)

        if inference:
            feeded_var_names = []
            fetch_var_names = []

            for var in feed:
                if isinstance(var, str):
                    feeded_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    feeded_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            for var in fetch:
                if isinstance(var, str):
                    fetch_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    fetch_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            fetch_vars = [
                paddle.static.default_main_program().global_block().var(name)
                for name in fetch_var_names
            ]

            self._runtime_handle._save_inference_model(
                executor, dirname, feeded_var_names, fetch_vars, None, True, 0)
        else:
            increment_mode = 0
            if "mode" in configs:
                increment_mode = int(configs["mode"])
            self._runtime_handle._save_persistables(
                executor, dirname, main_program=None, mode=increment_mode)

713 714 715 716 717 718
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
719 720
                             export_for_deployment=True,
                             mode=0):
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """
T
tangwei12 已提交
740 741 742
        # warnings.warn(
        #     "'save_inference_model' is a deprecated, will be deleted after v2.2.0, Please use fleet.save instead."
        # )
743

744 745
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
746
            export_for_deployment, mode)
747

748
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
749 750
        """

1
123malin 已提交
751
        saves all persistable tensors from :code:`main_program` to
752 753
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
754 755
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
756 757 758
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
759
            executor(Executor): The executor to run for saving persistable tensors.
760 761 762 763 764
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
765
            main_program(Program, optional): The program whose persistbale tensors will
766 767 768 769 770 771 772 773 774 775
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
776 777
                import paddle
                paddle.enable_static()
778 779 780 781 782 783 784
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
785 786
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
787 788

        """
T
tangwei12 已提交
789 790 791
        # warnings.warn(
        #     "'save_persistables' is a deprecated, will be deleted after v2.2.0, Please use fleet.save instead."
        # )
792

793 794
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
795

796 797 798
    def shrink(self, threshold):
        self._runtime_handle._shrink(threshold)

799
    def distributed_optimizer(self, optimizer, strategy=None):
800
        """
801 802 803 804 805 806 807
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
808 809 810 811 812
            strategy(DistributedStrategy): Extra properties for distributed optimizer. 
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
                here is for compatibility. If the strategy in fleet.distributed_optimizer() 
                is not None, then it will overwrite the DistributedStrategy in fleet.init(), 
                which will take effect in distributed training.
813

814
        Returns:
815
            Fleet: instance of fleet.
816 817

        Examples:
818

819
            .. code-block:: python
820

1
123malin 已提交
821
                import paddle
822
                import paddle.distributed.fleet as fleet
1
123malin 已提交
823
                fleet.init(is_collective=True)
824 825 826 827
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

828 829
        """
        self.user_defined_optimizer = optimizer
830

831
        if strategy is not None:
T
tangwei12 已提交
832 833 834 835 836 837 838
            if self._is_collective:
                warnings.warn(
                    "It is recommended to use DistributedStrategy "
                    "in fleet.init(). The strategy here is only for compatibility. "
                    "If the strategy in fleet.distributed_optimizer() is "
                    "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
                    "which will take effect in distributed training.")
839
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
840 841

        self._context = {}
S
ShenLiang 已提交
842 843

        if paddle.fluid.framework.in_dygraph_mode():
844 845 846 847 848
            if self.worker_num() > 1:
                return HybridParallelOptimizer(optimizer, self._hcg,
                                               self._user_defined_strategy)
            else:
                return optimizer
849 850
        return self

851
    @dygraph_only
852
    def distributed_model(self, model):
853
        """
854 855 856 857 858 859 860
        Return distributed data parallel model (Only work in dygraph mode)

        Args:
            model (Layer): the user-defind model which inherits Layer.

        Returns:
            distributed data parallel model which inherits Layer.
861 862

        Examples:
863

864 865
            .. code-block:: python

866 867 868 869 870 871 872 873 874
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
875

876 877
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
878

1
123malin 已提交
879
                # 1. initialize fleet environment
880 881
                fleet.init(is_collective=True)

1
123malin 已提交
882
                # 2. create layer & optimizer
883 884 885 886 887
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
888
                # 3. get data_parallel model using fleet
889 890 891
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
892
                # 4. run layer
893 894 895 896 897 898 899 900 901 902 903 904
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

905

906
        """
907 908 909
        assert model is not None, "model should not be None"
        if self.worker_num() <= 1:
            return model
J
JZ-LIANG 已提交
910 911 912 913 914

        if self._hcg.get_parallel_mode() == ParallelMode.SHARDING_PARALLEL:
            distributed_model = ShardingParallel(
                model, self._hcg, strategy=self._user_defined_strategy)
        elif self._hcg.get_parallel_mode() == ParallelMode.DATA_PARALLEL:
915 916 917 918 919 920 921 922
            distributed_model = paddle.DataParallel(
                model,
                comm_buffer_size=self._user_defined_strategy.
                fuse_grad_size_in_MB,
                last_comm_buffer_size=self._user_defined_strategy.
                last_comm_group_size_MB,
                find_unused_parameters=self._user_defined_strategy.
                find_unused_parameters)
923 924
        elif self._hcg.get_parallel_mode() == ParallelMode.TENSOR_PARALLEL:
            distributed_model = TensorParallel(
925
                model, self._hcg, strategy=self._user_defined_strategy)
926 927 928
        elif self._hcg.get_parallel_mode() == ParallelMode.PIPELINE_PARALLEL:
            distributed_model = PipelineParallel(
                model, self._hcg, strategy=self._user_defined_strategy)
J
JZ-LIANG 已提交
929

930
        return distributed_model
931 932 933 934 935

    @dygraph_only
    def state_dict(self):
        """
        Get state dict information from optimizer.
936
        (Only work in dygraph mode)
937 938 939 940 941 942 943

        Returns: 
            state_dict(dict) : dict contains all the Tensor used by optimizer

        Examples:
            .. code-block:: python

944 945 946 947 948
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
949

950
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
951
                a = paddle.to_tensor(value)
952

953 954
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
955

956 957 958
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
959 960 961 962 963 964 965 966
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.state_dict()

    @dygraph_only
    def set_state_dict(self, state_dict):
        """
        Load optimizer state dict.
967
        (Only work in dygraph mode)
968 969 970 971

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer

972 973
        Returns:
            None
974 975 976 977

        Examples:
            .. code-block:: python

978 979 980
                import numpy as np
                import paddle
                from paddle.distributed import fleet
981

982 983 984
                fleet.init(is_collective=True)

                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
985
                a = paddle.to_tensor(value)
986

987 988
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
989

990 991 992
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
1
123malin 已提交
993 994 995
                paddle.save(state_dict, "paddle_dy")
                para_state_dict = paddle.load("paddle_dy")
                adam.set_state_dict(para_state_dict)
996 997 998 999 1000 1001 1002 1003
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_state_dict(state_dict)

    @dygraph_only
    def set_lr(self, value):
        """
        Set the value of the learning rate manually in the optimizer. 
1004
        (Only work in dygraph mode)
1005

1006 1007 1008
        Args:
            value (float|Tensor): the value of learning rate

1009 1010
        Returns: 
            None 
1011 1012 1013 1014

        Examples:
            .. code-block:: python

1015 1016 1017
                import numpy as np
                import paddle
                from paddle.distributed import fleet
1018

1019
                fleet.init(is_collective=True)
1020

1021
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
1022
                a = paddle.to_tensor(value)
1023

1024 1025
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
1026

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6
1041 1042 1043 1044 1045 1046 1047 1048
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_lr(value)

    @dygraph_only
    def get_lr(self):
        """
        Get current step learning rate.
1049
        (Only work in dygraph mode)
1050 1051 1052 1053 1054

        Returns:
            float: The learning rate of the current step.

        Examples:
1
123malin 已提交
1055

1056 1057
            .. code-block:: python

1058 1059 1060 1061 1062
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
1063

1064
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
1065
                a = paddle.to_tensor(value)
1066

1067 1068
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
1069

1070 1071
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
1072

1073 1074
                lr = adam.get_lr()
                print(lr) # 0.01
1075 1076 1077 1078 1079 1080 1081 1082
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.get_lr()

    @dygraph_only
    def step(self):
        """
        Execute the optimizer once.
1083
        (Only work in dygraph mode)
1084

1085 1086
        Returns:
            None
1087 1088

        Examples:
1
123malin 已提交
1089

1090 1091
            .. code-block:: python

1092 1093 1094
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
1095

1096 1097 1098 1099 1100
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
1101

1102 1103
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
1104

1
123malin 已提交
1105
                # 1. initialize fleet environment
1106 1107
                fleet.init(is_collective=True)

1
123malin 已提交
1108
                # 2. create layer & optimizer
1109 1110 1111 1112 1113
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
1114
                # 3. get data_parallel model using fleet
1115 1116 1117
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
1118
                # 4. run layer
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()


        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.step()

    @dygraph_only
    def clear_grad(self):
        """
1139 1140
        Clear the gradients of all optimized parameters for model.
        (Only work in dygraph mode)
1141

1142 1143
        Returns: 
            None
1144 1145

        Examples:
1
123malin 已提交
1146

1147 1148
            .. code-block:: python

1149 1150 1151
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
1152

1153 1154 1155 1156 1157
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
1158

1159 1160
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
1161

1
123malin 已提交
1162
                # 1. initialize fleet environment
1163 1164
                fleet.init(is_collective=True)

1
123malin 已提交
1165
                # 2. create layer & optimizer
1166 1167 1168 1169 1170
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
1171
                # 3. get data_parallel model using fleet
1172 1173 1174
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
1175
                # 4. run layer
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.clear_grad()

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
    def _get_amp_optimizer(self):
        # imitate target optimizer retrieval
        amp_optimizer = None
        for optimizer in self.strategy_compiler._get_applied_meta_optimizer():
            if hasattr(optimizer, 'amp_init'):
                amp_optimizer = optimizer
                break

        if amp_optimizer is None:
            if hasattr(self.user_defined_optimizer, 'amp_init'):
                amp_optimizer = self.user_defined_optimizer

        assert amp_optimizer is not None, \
            "amp_init can only be used when the amp(auto mixed precision) strategy is turned on."
        return amp_optimizer

    def get_loss_scaling(self):
1209 1210
        """Return the real-time loss scaling factor.
        """
1211 1212 1213
        amp_optimizer = self._get_amp_optimizer()
        return amp_optimizer.get_loss_scaling()

H
huangxu96 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
    def amp_init(self,
                 place,
                 scope=None,
                 test_program=None,
                 use_fp16_test=False):
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
  
        Args:
            place(CUDAPlace): place is used to initialize 
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
            
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
                    # or the slow convergence in a way. 
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
                    
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
                    run_example_code()       
        """
1274
        amp_optimizer = self._get_amp_optimizer()
1275
        return amp_optimizer.amp_init(place, scope, test_program, use_fp16_test)
H
huangxu96 已提交
1276

D
Dong Daxiang 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1304 1305 1306 1307 1308 1309 1310 1311 1312
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1313
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1314 1315 1316
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1317
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1318 1319
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1320
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1321 1322 1323 1324
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1325
            by minimize and a list of (param, grad) tensor pairs, param is
1326
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1327 1328
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1329 1330 1331
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1332

1333
            .. code-block:: python
1334

1335
                import paddle
1
123malin 已提交
1336
                paddle.enable_static()
1337
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1349

1
123malin 已提交
1350
                fleet.init(is_collective=True)
1351 1352 1353 1354
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1355

1356
                # for more examples, please reference https://github.com/PaddlePaddle/FleetX
1357 1358

        """
D
Dong Daxiang 已提交
1359 1360 1361
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
1362 1363 1364
        if paddle.fluid.framework.in_dygraph_mode():
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1365
            self._context = context
1366 1367
            return target_opt.minimize(loss)

1368 1369
        # cache original feed forward program
        self.origin_main_program = loss.block.program
1370 1371
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
1372 1373
        if startup_program == None:
            self.origin_startup_program = \
1374 1375
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1376 1377 1378
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1379

1380 1381
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
1382 1383 1384 1385 1386

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1387

D
Dong Daxiang 已提交
1388 1389 1390
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1391 1392 1393 1394 1395 1396

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1397
        if copy_user_defined_strategy._is_strict_auto():
1398 1399
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1400
                opt._enable_strategy(copy_user_defined_strategy, context)
1401

1402 1403
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1404
        can_not_apply_optimizer_list = []
1405 1406 1407 1408
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1409
                                copy_user_defined_strategy)
1410 1411
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1412
            elif opt._can_apply() and opt._is_graph_out():
1413
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1414 1415
            else:
                can_not_apply_optimizer_list.append(opt)
1416
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1417
        meta_optimizer, graph_optimizer = \
1418 1419
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1420
                copy_user_defined_strategy, valid_optimizer_list,
1421
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1422

D
Dong Daxiang 已提交
1423
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1424 1425 1426
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
1427

1428 1429 1430 1431 1432 1433
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1434
        self._context = context
1435

D
Dong Daxiang 已提交
1436
        self.valid_strategy = valid_strategy
1437
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1438

1439 1440
        optimize_ops = []
        params_grads = []
1441

1442 1443 1444 1445 1446 1447 1448 1449 1450
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
            return self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1451
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1452

1453 1454
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1455
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1456

1457
            default_program = paddle.static.default_main_program()
1458 1459 1460 1461

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

1462 1463
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1464
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1465

1466 1467
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1468

1469
        if graph_optimizer:
D
Dong Daxiang 已提交
1470
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1471
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1472 1473 1474 1475
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1476 1477 1478
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads

1479
        if self._runtime_handle is None:
1480
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1481

1482 1483
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1484 1485

        return optimize_ops, params_grads
1486 1487 1488 1489

    @dygraph_only
    def distributed_scaler(self, scaler):
        return HybridParallelGradScaler(scaler, self._hcg)