Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e35ad3ee
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e35ad3ee
编写于
9月 03, 2020
作者:
D
danleifeng
提交者:
GitHub
9月 03, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
【paddle.fleet】support running python train.py for fleet tasks (#26249)
* support running python train.py for fleet-task; test=develop
上级
9cb57f94
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
149 addition
and
8 deletion
+149
-8
python/paddle/distributed/fleet/base/fleet_base.py
python/paddle/distributed/fleet/base/fleet_base.py
+39
-2
python/paddle/distributed/fleet/base/role_maker.py
python/paddle/distributed/fleet/base/role_maker.py
+30
-6
python/paddle/fluid/tests/unittests/test_fleet_base.py
python/paddle/fluid/tests/unittests/test_fleet_base.py
+80
-0
未找到文件。
python/paddle/distributed/fleet/base/fleet_base.py
浏览文件 @
e35ad3ee
...
...
@@ -13,7 +13,9 @@
# limitations under the License.
from
__future__
import
print_function
import
warnings
import
paddle
from
paddle.fluid
import
compiler
from
.role_maker
import
UserDefinedRoleMaker
,
PaddleCloudRoleMaker
,
RoleMakerBase
from
.strategy_compiler
import
StrategyCompiler
from
.distributed_strategy
import
DistributedStrategy
...
...
@@ -35,7 +37,24 @@ def _inited_runtime_handler_(func):
return
__impl__
def
_is_non_distributed_check_
(
func
):
def
__impl__
(
*
args
,
**
kwargs
):
cls
=
args
[
0
]
if
cls
.
_role_maker
is
not
None
and
cls
.
_role_maker
.
_is_non_distributed
(
)
is
True
:
warnings
.
warn
(
"%s() function doesn't work when use non_distributed fleet."
%
(
func
.
__name__
))
return
return
func
(
*
args
,
**
kwargs
)
return
__impl__
inited_runtime_handler
=
wrap_decorator
(
_inited_runtime_handler_
)
is_non_distributed_check
=
wrap_decorator
(
_is_non_distributed_check_
)
class
Fleet
(
object
):
...
...
@@ -367,6 +386,7 @@ class Fleet(object):
"""
self
.
_role_maker
.
barrier_worker
()
@
is_non_distributed_check
@
inited_runtime_handler
def
init_worker
(
self
):
"""
...
...
@@ -391,6 +411,7 @@ class Fleet(object):
"""
self
.
_runtime_handle
.
_init_worker
()
@
is_non_distributed_check
@
inited_runtime_handler
def
init_server
(
self
,
*
args
,
**
kwargs
):
"""
...
...
@@ -416,6 +437,7 @@ class Fleet(object):
"""
self
.
_runtime_handle
.
_init_server
(
*
args
,
**
kwargs
)
@
is_non_distributed_check
@
inited_runtime_handler
def
run_server
(
self
):
"""
...
...
@@ -440,6 +462,7 @@ class Fleet(object):
"""
self
.
_runtime_handle
.
_run_server
()
@
is_non_distributed_check
@
inited_runtime_handler
def
stop_worker
(
self
):
"""
...
...
@@ -593,8 +616,8 @@ class Fleet(object):
tuple: tuple (optimize_ops, params_grads), A list of operators appended
by minimize and a list of (param, grad) variable pairs, param is
``Parameter``, grad is the gradient value corresponding to the parameter.
The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
indicate program pruning. If so, the program will be pruned by ``feed`` and
The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
indicate program pruning. If so, the program will be pruned by ``feed`` and
``fetch_list`` before run, see details in ``Executor``.
Examples:
...
...
@@ -672,6 +695,20 @@ class Fleet(object):
optimize_ops
=
[]
params_grads
=
[]
if
self
.
_role_maker
.
_is_non_distributed
()
and
not
self
.
_is_collective
:
if
self
.
_runtime_handle
is
None
:
self
.
_runtime_handle
=
RuntimeFactory
().
_create_runtime
(
context
)
compiled_program
=
compiler
.
CompiledProgram
(
self
.
origin_main_program
).
with_data_parallel
(
loss_name
=
loss
.
name
,
share_vars_from
=
None
)
loss
.
block
.
program
.
_graph
=
compiled_program
return
self
.
user_defined_optimizer
.
minimize
(
loss
,
startup_program
=
startup_program
,
parameter_list
=
parameter_list
,
no_grad_set
=
no_grad_set
)
if
meta_optimizer
:
optimize_ops
,
params_grads
=
meta_optimizer
.
minimize
(
loss
,
...
...
python/paddle/distributed/fleet/base/role_maker.py
浏览文件 @
e35ad3ee
...
...
@@ -232,6 +232,8 @@ class PaddleCloudRoleMaker(RoleMakerBase):
self
.
_node_type_comm
=
None
self
.
_all_comm
=
None
self
.
_non_distributed
=
False
if
not
self
.
_is_collective
:
self
.
_hdfs_name
=
kwargs
.
get
(
"hdfs_name"
,
""
)
self
.
_hdfs_ugi
=
kwargs
.
get
(
"hdfs_ugi"
,
""
)
...
...
@@ -373,6 +375,15 @@ class PaddleCloudRoleMaker(RoleMakerBase):
self
.
generate_role
()
return
self
.
_server_endpoints
def
_is_non_distributed
(
self
):
"""
Return True if indispensable environment for fleetrun is not found
(use python-run to launch fleet-code directly)
"""
if
not
self
.
_role_is_generated
:
self
.
generate_role
()
return
self
.
_non_distributed
def
_heter_worker_num
(
self
):
"""
get heter worker nums
...
...
@@ -409,13 +420,22 @@ class PaddleCloudRoleMaker(RoleMakerBase):
try
:
# Environment variable PADDLE_PSERVERS_IP_PORT_LIST must be set
# format: string(ip:port,ip:port), eg. 127.0.0.1:6001,127.0.0.1:6002
self
.
_server_endpoints
=
os
.
getenv
(
"PADDLE_PSERVERS_IP_PORT_LIST"
,
""
).
split
(
","
)
assert
self
.
_server_endpoints
!=
""
self
.
_server_endpoints
=
os
.
getenv
(
"PADDLE_PSERVERS_IP_PORT_LIST"
)
self
.
_worker_endpoints
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
,
""
).
split
(
","
)
assert
self
.
_server_endpoints
!=
""
if
self
.
_server_endpoints
is
None
:
# back to non_distributed execution.
self
.
_server_endpoints
=
""
self
.
_trainers_num
=
1
self
.
_role
=
Role
.
WORKER
self
.
_current_id
=
0
self
.
_node_num
=
1
self
.
_heter_trainers_num
=
0
self
.
_heter_trainer_endpoints
=
None
self
.
_non_distributed
=
True
return
self
.
_server_endpoints
=
self
.
_server_endpoints
.
split
(
","
)
trainers_num
=
int
(
os
.
environ
[
"PADDLE_TRAINERS_NUM"
])
training_role
=
os
.
environ
[
"TRAINING_ROLE"
]
...
...
@@ -488,7 +508,11 @@ class PaddleCloudRoleMaker(RoleMakerBase):
assert
(
self
.
_training_role
==
"TRAINER"
)
self
.
_worker_endpoints
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
)
self
.
_cur_endpoint
=
os
.
getenv
(
"PADDLE_CURRENT_ENDPOINT"
)
assert
self
.
_worker_endpoints
is
not
None
,
"can't find PADDLE_TRAINER_ENDPOINTS"
if
self
.
_worker_endpoints
is
None
:
# back to non_distributed execution.
self
.
_worker_endpoints
=
"127.0.0.1:6170"
self
.
_cur_endpoint
=
self
.
_worker_endpoints
self
.
_non_distributed
=
True
self
.
_worker_endpoints
=
self
.
_worker_endpoints
.
split
(
","
)
self
.
_trainers_num
=
len
(
self
.
_worker_endpoints
)
self
.
_node_num
=
len
(
...
...
python/paddle/fluid/tests/unittests/test_fleet_base.py
浏览文件 @
e35ad3ee
...
...
@@ -18,6 +18,7 @@ import paddle.distributed.fleet as fleet
import
paddle.distributed.fleet.base.role_maker
as
role_maker
import
os
import
paddle.fluid
as
fluid
import
numpy
as
np
class
TestFleetBase
(
unittest
.
TestCase
):
...
...
@@ -125,5 +126,84 @@ class TestFleetBase(unittest.TestCase):
self
.
assertRaises
(
Exception
,
fleet
.
init_worker
)
class
TestFleetBaseSingleRunCollective
(
unittest
.
TestCase
):
def
setUp
(
self
):
os
.
environ
.
pop
(
"PADDLE_TRAINER_ENDPOINTS"
)
def
gen_data
(
self
):
return
{
"x"
:
np
.
random
.
random
(
size
=
(
128
,
32
)).
astype
(
'float32'
),
"y"
:
np
.
random
.
randint
(
2
,
size
=
(
128
,
1
)).
astype
(
'int64'
)
}
def
test_single_run_collective_minimize
(
self
):
input_x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
mean
(
x
=
cost
)
fleet
.
init
(
is_collective
=
True
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
)
optimizer
.
minimize
(
avg_cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
paddle
.
fluid
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
paddle
.
static
.
default_startup_program
())
for
i
in
range
(
10
):
cost_val
=
exe
.
run
(
feed
=
self
.
gen_data
(),
fetch_list
=
[
avg_cost
.
name
])
print
(
"cost of step[{}] = {}"
.
format
(
i
,
cost_val
))
class
TestFleetBaseSingleRunPS
(
unittest
.
TestCase
):
def
setUp
(
self
):
os
.
environ
.
pop
(
"PADDLE_PSERVERS_IP_PORT_LIST"
)
def
gen_data
(
self
):
return
{
"x"
:
np
.
random
.
random
(
size
=
(
128
,
32
)).
astype
(
'float32'
),
"y"
:
np
.
random
.
randint
(
2
,
size
=
(
128
,
1
)).
astype
(
'int64'
)
}
def
test_single_run_ps_minimize
(
self
):
input_x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
mean
(
x
=
cost
)
fleet
.
init
()
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
if
fleet
.
is_server
():
fleet
.
init_server
()
fleet
.
run_server
()
elif
fleet
.
is_worker
():
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
paddle
.
static
.
default_startup_program
())
step
=
100
for
i
in
range
(
step
):
cost_val
=
exe
.
run
(
program
=
fluid
.
default_main_program
(),
feed
=
self
.
gen_data
(),
fetch_list
=
[
avg_cost
.
name
])
print
(
"worker_index: %d, step%d cost = %f"
%
(
fleet
.
worker_index
(),
i
,
cost_val
[
0
]))
fleet
.
save_persistables
(
exe
,
"fleet_single_model/"
)
print
(
"save fleet models done."
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录