fleet_base.py 47.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
16
import copy
17
import warnings
18
import paddle
19
import os
20
import numpy as np
21
from paddle.fluid.framework import dygraph_only
22
from paddle.fluid import compiler
23
from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase
24
from .strategy_compiler import StrategyCompiler
25
from .distributed_strategy import DistributedStrategy
26 27
from .meta_optimizer_factory import MetaOptimizerFactory
from .runtime_factory import RuntimeFactory
28
from paddle.fluid.wrapped_decorator import wrap_decorator
29
from paddle.fluid.dygraph import parallel_helper
30
from . import topology as tp
31
from .topology import ParallelMode
32
from ..meta_parallel import TensorParallel, model_parallel_random_seed
33
from ..meta_parallel import PipelineParallel
34
from ..meta_optimizers import HybridParallelOptimizer
35
from ..meta_optimizers import HybridParallelGradScaler
36

37 38
__all__ = []

39

40 41 42 43 44 45 46 47 48 49 50 51
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._role_maker is not None and cls._role_maker._is_non_distributed(
        ) is True:
            warnings.warn(
                "%s() function doesn't work when use non_distributed fleet." %
                (func.__name__))
            return

        return func(*args, **kwargs)

    return __impl__


68
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
69
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
70 71


72 73 74
class Fleet(object):
    """
    Unified API for distributed training of PaddlePaddle
75
    Please reference the https://github.com/PaddlePaddle/FleetX for details
76 77 78 79 80


    Returns:
        Fleet: A Fleet instance

81
    Example for collective training:
1
123malin 已提交
82

83 84
        .. code-block:: python

1
123malin 已提交
85 86
            import paddle
            paddle.enable_static()
87
            import paddle.distributed.fleet as fleet
88 89 90

            fleet.init(is_collective=True)

91 92 93
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
94 95 96 97 98 99 100 101

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
102 103
            import paddle
            paddle.enable_static()
104 105
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
106
            fleet.init(strategy=strategy)
107

108
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
109
            optimizer = fleet.distributed_optimizer(optimizer)
110

111 112
            if fleet.is_first_worker():
                print("this is first worker")
113

114 115
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
116

117 118 119
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
120

121 122
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
123

124 125 126
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
127 128


129 130 131
    """

    def __init__(self):
132
        self._role_maker = None
133
        self.strategy_compiler = None
134
        self._is_collective = False
135
        self._runtime_handle = None
D
Dong Daxiang 已提交
136 137
        self._util = None
        self._context = {}
138

139
    def init(self, role_maker=None, is_collective=False, strategy=None):
140 141 142
        """
        Initialize role_maker in Fleet.

143 144 145 146 147 148 149 150 151 152 153
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
                of environment variables related to distributed training.If you did not initialize 
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program 
                runs on the CPU or GPU. False means set distributed training using CPU, and True means
                GPU.The default value is False.The default value is False.
154 155 156 157
            strategy (DistributedStrategy): Extra properties for distributed training. 
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.


158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
180
                role = fleet.PaddleCloudRoleMaker()
181
                fleet.init(role)
182

183 184 185 186 187 188
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
189
                fleet.init(strategy=strategy)
190

191
        """
S
ShenLiang 已提交
192 193 194
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
195 196

        if role_maker is None:
197 198 199 200 201 202
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
                    is_collective=self._is_collective)
            else:
                raise ValueError(
203 204
                    "`is_collective` should be instance of `bool`, but got {}".
                    format(type(is_collective)))
205
        else:
206 207
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
208
                self._is_collective = role_maker._is_collective
209 210 211 212
            else:
                raise ValueError(
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".
                    format(type(role_maker)))
213
        self._role_maker._generate_role()
214

215 216 217
        import paddle.distributed.fleet as fleet
        fleet.util._set_role_maker(self._role_maker)

218
        self.strategy_compiler = StrategyCompiler()
219 220 221 222 223 224 225 226 227

        if self._role_maker._is_non_distributed() and self._is_collective:
            if paddle.fluid.core.is_compiled_with_cuda():
                gpus_num = paddle.fluid.core.get_cuda_device_count()
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

228
        if paddle.fluid.framework.in_dygraph_mode():
229
            if self.worker_num() == 1:
230 231 232
                # if worker_num is 1, should construct default topology & hcg
                self._topology = tp.CommunicateTopology()
                self._hcg = tp.HybridCommunicateGroup(self._topology)
233
                return
234 235 236 237
            if parallel_helper._is_parallel_ctx_initialized():
                warnings.warn(
                    "The dygraph parallel environment has been initialized.")
            else:
238 239 240 241 242 243 244 245 246
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
                    warnings.warn(
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
                        "DistributedStrategy will not take effect here.")
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
                        self._user_defined_strategy.nccl_comm_num)
247
                paddle.distributed.init_parallel_env()
248

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
            # init hybrid parallel environment in dygraph
            if tp._HYBRID_PARALLEL_GROUP is None:
                self._init_hybrid_parallel_env()
            else:
                warnings.warn(
                    "The dygraph hybrid parallel environment has been initialized."
                )

    def _init_hybrid_parallel_env(self):
        """initialize the hybrid environment
        """
        self.hybrid_configs = self._user_defined_strategy.hybrid_configs
        self.dp_degree = self.hybrid_configs["dp_degree"]
        self.mp_degree = self.hybrid_configs["mp_degree"]
        self.pp_degree = self.hybrid_configs["pp_degree"]

        assert self.mp_degree >= 0, "mp_degree should be greater or equal to 0"
        assert self.pp_degree >= 0, "pp_degree should be greater or equal to 0"

        self.mp_degree = max(self.mp_degree, 1)
        self.pp_degree = max(self.pp_degree, 1)

        if self.dp_degree < 0:
            nranks = paddle.distributed.get_world_size()
            self.dp_degree = nranks // (self.mp_degree * self.pp_degree)

        self.dp_degree = max(self.dp_degree, 1)

        self._topology = tp.CommunicateTopology(
            hybrid_group_names=["data", "pipe", "model"],
            dims=[self.dp_degree, self.pp_degree, self.mp_degree])

        self._hcg = tp.HybridCommunicateGroup(self._topology)

283 284 285 286 287 288 289 290
        if self.mp_degree > 1:
            tensor_parallel_configs = self._user_defined_strategy.tensor_parallel_configs
            tensor_init_seed = tensor_parallel_configs["tensor_init_seed"]
            if tensor_init_seed == -1:
                model_parallel_random_seed()
            else:
                model_parallel_random_seed(tensor_init_seed)

291 292 293 294 295 296 297 298
    def get_hybrid_communicate_group(self):
        assert self._hcg is not None
        return self._hcg

    def get_hybrid_parallel_topology(self):
        assert self._topology is not None
        return self._topology

299 300 301 302 303 304 305
    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
306

307 308 309 310 311 312 313 314
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

315
        """
316
        return self._role_maker._is_first_worker()
317 318 319 320 321 322 323

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
324 325 326 327

        Examples:

            .. code-block:: python
1
123malin 已提交
328

329 330 331 332
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

333
        """
334
        return self._role_maker._worker_index()
335 336 337 338 339 340 341

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
342

343
        Examples:
1
123malin 已提交
344

345 346 347 348 349 350
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

351
        """
352
        return self._role_maker._worker_num()
353

354 355 356 357 358 359 360 361 362 363 364 365
    def node_num(self):
        return self._role_maker._get_node_num()

    def local_rank(self):
        return self._role_maker._get_local_rank()

    def local_device_ids(self):
        return self._role_maker._get_local_device_ids()

    def world_device_ids(self):
        return self._role_maker._get_world_device_ids()

366 367 368 369 370 371 372
    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
373 374

        Examples:
1
123malin 已提交
375

376 377 378 379 380 381
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

382
        """
383
        return self._role_maker._is_worker()
384 385 386

    def worker_endpoints(self, to_string=False):
        """
387
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
388 389 390

        Returns:
            list/string: server endpoints
391 392

        Examples:
1
123malin 已提交
393

394 395 396 397 398 399
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

400 401
        """
        if to_string:
402
            return ",".join(self._role_maker._get_trainer_endpoints())
403
        else:
404
            return self._role_maker._get_trainer_endpoints()
405 406 407 408 409 410 411

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
412 413

        Examples:
1
123malin 已提交
414

415
            .. code-block:: python
1
123malin 已提交
416 417 418 419

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
420
        """
421
        return len(self._role_maker._get_pserver_endpoints())
422 423 424 425 426 427 428

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
429 430

        Examples:
1
123malin 已提交
431

432 433 434 435 436 437
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

438
        """
439
        return self._role_maker._server_index()
440 441 442 443 444 445 446

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
447 448

        Examples:
1
123malin 已提交
449

450 451 452 453 454 455
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

456
        """
457

458
        if to_string:
459
            return ",".join(self._role_maker._get_pserver_endpoints())
460
        else:
461
            return self._role_maker._get_pserver_endpoints()
462 463 464 465 466 467 468 469

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
470 471 472 473

        Examples:

            .. code-block:: python
1
123malin 已提交
474

475 476 477 478
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

479
        """
480
        return self._role_maker._is_server(
481
        ) or self._role_maker._is_heter_worker()
482 483 484

    def barrier_worker(self):
        """
485 486 487 488
        barrier all workers

        Returns:
            None
489
        """
490
        self._role_maker._barrier("worker")
491

492
    @is_non_distributed_check
493
    @inited_runtime_handler
494 495
    def init_worker(self):
        """
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

514 515 516
        """
        self._runtime_handle._init_worker()

517
    @is_non_distributed_check
518
    @inited_runtime_handler
519
    def init_server(self, *args, **kwargs):
520
        """
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

540
        """
541
        self._runtime_handle._init_server(*args, **kwargs)
542

T
Thunderbrook 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    def load_model(self, path, mode):
        """
        load fleet model from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.load_model("path", "mode")

        """
        self._runtime_handle.load_model(path, mode)

566
    @is_non_distributed_check
567
    @inited_runtime_handler
568 569
    def run_server(self):
        """
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

588 589 590
        """
        self._runtime_handle._run_server()

591
    @is_non_distributed_check
592
    @inited_runtime_handler
593 594
    def stop_worker(self):
        """
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

612 613 614
        """
        self._runtime_handle._stop_worker()

T
tangwei12 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    def save(self, dirname, feed=[], fetch=[], **configs):
        inference = True

        if not feed and not fetch:
            inference = False

        place = paddle.CPUPlace()
        executor = paddle.static.Executor(place)

        if inference:
            feeded_var_names = []
            fetch_var_names = []

            for var in feed:
                if isinstance(var, str):
                    feeded_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    feeded_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            for var in fetch:
                if isinstance(var, str):
                    fetch_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    fetch_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            fetch_vars = [
                paddle.static.default_main_program().global_block().var(name)
                for name in fetch_var_names
            ]

            self._runtime_handle._save_inference_model(
                executor, dirname, feeded_var_names, fetch_vars, None, True, 0)
        else:
            increment_mode = 0
            if "mode" in configs:
                increment_mode = int(configs["mode"])
            self._runtime_handle._save_persistables(
                executor, dirname, main_program=None, mode=increment_mode)

658 659 660 661 662 663
    def save_inference_model(self,
                             executor,
                             dirname,
                             feeded_var_names,
                             target_vars,
                             main_program=None,
664 665
                             export_for_deployment=True,
                             mode=0):
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """
T
tangwei12 已提交
685 686 687
        # warnings.warn(
        #     "'save_inference_model' is a deprecated, will be deleted after v2.2.0, Please use fleet.save instead."
        # )
688

689 690
        self._runtime_handle._save_inference_model(
            executor, dirname, feeded_var_names, target_vars, main_program,
691
            export_for_deployment, mode)
692

693
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
694 695
        """

1
123malin 已提交
696
        saves all persistable tensors from :code:`main_program` to
697 698
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
699 700
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
701 702 703
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
704
            executor(Executor): The executor to run for saving persistable tensors.
705 706 707 708 709
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
710
            main_program(Program, optional): The program whose persistbale tensors will
711 712 713 714 715 716 717 718 719 720
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
721 722
                import paddle
                paddle.enable_static()
723 724 725 726 727 728 729
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
730 731
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
732 733

        """
T
tangwei12 已提交
734 735 736
        # warnings.warn(
        #     "'save_persistables' is a deprecated, will be deleted after v2.2.0, Please use fleet.save instead."
        # )
737

738 739
        self._runtime_handle._save_persistables(executor, dirname, main_program,
                                                mode)
740

741 742 743
    def shrink(self, threshold):
        self._runtime_handle._shrink(threshold)

744
    def distributed_optimizer(self, optimizer, strategy=None):
745
        """
746 747 748 749 750 751 752
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
753 754 755 756 757
            strategy(DistributedStrategy): Extra properties for distributed optimizer. 
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
                here is for compatibility. If the strategy in fleet.distributed_optimizer() 
                is not None, then it will overwrite the DistributedStrategy in fleet.init(), 
                which will take effect in distributed training.
758

759
        Returns:
760
            Fleet: instance of fleet.
761 762

        Examples:
763

764
            .. code-block:: python
765

1
123malin 已提交
766
                import paddle
767
                import paddle.distributed.fleet as fleet
1
123malin 已提交
768
                fleet.init(is_collective=True)
769 770 771 772
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

773 774
        """
        self.user_defined_optimizer = optimizer
775

776
        if strategy is not None:
T
tangwei12 已提交
777 778 779 780 781 782 783
            if self._is_collective:
                warnings.warn(
                    "It is recommended to use DistributedStrategy "
                    "in fleet.init(). The strategy here is only for compatibility. "
                    "If the strategy in fleet.distributed_optimizer() is "
                    "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
                    "which will take effect in distributed training.")
784
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
785 786

        self._context = {}
S
ShenLiang 已提交
787 788

        if paddle.fluid.framework.in_dygraph_mode():
789 790 791 792 793
            if self.worker_num() > 1:
                return HybridParallelOptimizer(optimizer, self._hcg,
                                               self._user_defined_strategy)
            else:
                return optimizer
794 795
        return self

796
    @dygraph_only
797
    def distributed_model(self, model):
798
        """
799 800 801 802 803 804 805
        Return distributed data parallel model (Only work in dygraph mode)

        Args:
            model (Layer): the user-defind model which inherits Layer.

        Returns:
            distributed data parallel model which inherits Layer.
806 807

        Examples:
808

809 810
            .. code-block:: python

811 812 813 814 815 816 817 818 819
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
820

821 822
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
823

1
123malin 已提交
824
                # 1. initialize fleet environment
825 826
                fleet.init(is_collective=True)

1
123malin 已提交
827
                # 2. create layer & optimizer
828 829 830 831 832
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
833
                # 3. get data_parallel model using fleet
834 835 836
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
837
                # 4. run layer
838 839 840 841 842 843 844 845 846 847 848 849
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

850

851
        """
852 853 854 855 856 857 858 859 860 861 862 863
        assert model is not None, "model should not be None"
        if self.worker_num() <= 1:
            return model
        if self._hcg.get_parallel_mode() == ParallelMode.DATA_PARALLEL:
            distributed_model = paddle.DataParallel(
                model,
                comm_buffer_size=self._user_defined_strategy.
                fuse_grad_size_in_MB,
                last_comm_buffer_size=self._user_defined_strategy.
                last_comm_group_size_MB,
                find_unused_parameters=self._user_defined_strategy.
                find_unused_parameters)
864 865
        elif self._hcg.get_parallel_mode() == ParallelMode.TENSOR_PARALLEL:
            distributed_model = TensorParallel(
866
                model, self._hcg, strategy=self._user_defined_strategy)
867 868 869
        elif self._hcg.get_parallel_mode() == ParallelMode.PIPELINE_PARALLEL:
            distributed_model = PipelineParallel(
                model, self._hcg, strategy=self._user_defined_strategy)
870
        return distributed_model
871 872 873 874 875

    @dygraph_only
    def state_dict(self):
        """
        Get state dict information from optimizer.
876
        (Only work in dygraph mode)
877 878 879 880 881 882 883

        Returns: 
            state_dict(dict) : dict contains all the Tensor used by optimizer

        Examples:
            .. code-block:: python

884 885 886 887 888
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
889

890
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
891
                a = paddle.to_tensor(value)
892

893 894
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
895

896 897 898
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
899 900 901 902 903 904 905 906
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.state_dict()

    @dygraph_only
    def set_state_dict(self, state_dict):
        """
        Load optimizer state dict.
907
        (Only work in dygraph mode)
908 909 910 911

        Args: 
            state_dict(dict) : Dict contains all the Tensor needed by optimizer

912 913
        Returns:
            None
914 915 916 917

        Examples:
            .. code-block:: python

918 919 920
                import numpy as np
                import paddle
                from paddle.distributed import fleet
921

922 923 924
                fleet.init(is_collective=True)

                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
925
                a = paddle.to_tensor(value)
926

927 928
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
929

930 931 932
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
                state_dict = adam.state_dict()
1
123malin 已提交
933 934 935
                paddle.save(state_dict, "paddle_dy")
                para_state_dict = paddle.load("paddle_dy")
                adam.set_state_dict(para_state_dict)
936 937 938 939 940 941 942 943
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_state_dict(state_dict)

    @dygraph_only
    def set_lr(self, value):
        """
        Set the value of the learning rate manually in the optimizer. 
944
        (Only work in dygraph mode)
945

946 947 948
        Args:
            value (float|Tensor): the value of learning rate

949 950
        Returns: 
            None 
951 952 953 954

        Examples:
            .. code-block:: python

955 956 957
                import numpy as np
                import paddle
                from paddle.distributed import fleet
958

959
                fleet.init(is_collective=True)
960

961
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
962
                a = paddle.to_tensor(value)
963

964 965
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
966

967 968 969 970 971 972 973 974 975 976 977 978 979 980
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

                lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                for i in range(5):
                    adam.set_lr(lr_list[i])
                    lr = adam.get_lr()
                    print("current lr is {}".format(lr))
                # Print:
                #    current lr is 0.2
                #    current lr is 0.3
                #    current lr is 0.4
                #    current lr is 0.5
                #    current lr is 0.6
981 982 983 984 985 986 987 988
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.set_lr(value)

    @dygraph_only
    def get_lr(self):
        """
        Get current step learning rate.
989
        (Only work in dygraph mode)
990 991 992 993 994

        Returns:
            float: The learning rate of the current step.

        Examples:
1
123malin 已提交
995

996 997
            .. code-block:: python

998 999 1000 1001 1002
                import numpy as np
                import paddle
                from paddle.distributed import fleet

                fleet.init(is_collective=True)
1003

1004
                value = np.arange(26).reshape(2, 13).astype("float32")
1
123malin 已提交
1005
                a = paddle.to_tensor(value)
1006

1007 1008
                layer = paddle.nn.Linear(13, 5)
                adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters())
1009

1010 1011
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)
1012

1013 1014
                lr = adam.get_lr()
                print(lr) # 0.01
1015 1016 1017 1018 1019 1020 1021 1022
        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.get_lr()

    @dygraph_only
    def step(self):
        """
        Execute the optimizer once.
1023
        (Only work in dygraph mode)
1024

1025 1026
        Returns:
            None
1027 1028

        Examples:
1
123malin 已提交
1029

1030 1031
            .. code-block:: python

1032 1033 1034
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
1035

1036 1037 1038 1039 1040
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
1041

1042 1043
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
1044

1
123malin 已提交
1045
                # 1. initialize fleet environment
1046 1047
                fleet.init(is_collective=True)

1
123malin 已提交
1048
                # 2. create layer & optimizer
1049 1050 1051 1052 1053
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
1054
                # 3. get data_parallel model using fleet
1055 1056 1057
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
1058
                # 4. run layer
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()


        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.step()

    @dygraph_only
    def clear_grad(self):
        """
1079 1080
        Clear the gradients of all optimized parameters for model.
        (Only work in dygraph mode)
1081

1082 1083
        Returns: 
            None
1084 1085

        Examples:
1
123malin 已提交
1086

1087 1088
            .. code-block:: python

1089 1090 1091
                import paddle
                import paddle.nn as nn
                from paddle.distributed import fleet
1092

1093 1094 1095 1096 1097
                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear1 = nn.Linear(10, 10)
                        self._linear2 = nn.Linear(10, 1)
1098

1099 1100
                    def forward(self, x):
                        return self._linear2(self._linear1(x))
1101

1
123malin 已提交
1102
                # 1. initialize fleet environment
1103 1104
                fleet.init(is_collective=True)

1
123malin 已提交
1105
                # 2. create layer & optimizer
1106 1107 1108 1109 1110
                layer = LinearNet()
                loss_fn = nn.MSELoss()
                adam = paddle.optimizer.Adam(
                    learning_rate=0.001, parameters=layer.parameters())

1
123malin 已提交
1111
                # 3. get data_parallel model using fleet
1112 1113 1114
                adam = fleet.distributed_optimizer(adam)
                dp_layer = fleet.distributed_model(layer)

1
123malin 已提交
1115
                # 4. run layer
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)

                print("loss:", loss.numpy())

                loss.backward()

                adam.step()
                adam.clear_grad()

        """
        # imitate target optimizer retrieval
        return self.user_defined_optimizer.clear_grad()

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
    def _get_amp_optimizer(self):
        # imitate target optimizer retrieval
        amp_optimizer = None
        for optimizer in self.strategy_compiler._get_applied_meta_optimizer():
            if hasattr(optimizer, 'amp_init'):
                amp_optimizer = optimizer
                break

        if amp_optimizer is None:
            if hasattr(self.user_defined_optimizer, 'amp_init'):
                amp_optimizer = self.user_defined_optimizer

        assert amp_optimizer is not None, \
            "amp_init can only be used when the amp(auto mixed precision) strategy is turned on."
        return amp_optimizer

    def get_loss_scaling(self):
1149 1150
        """Return the real-time loss scaling factor.
        """
1151 1152 1153
        amp_optimizer = self._get_amp_optimizer()
        return amp_optimizer.get_loss_scaling()

H
huangxu96 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
    def amp_init(self,
                 place,
                 scope=None,
                 test_program=None,
                 use_fp16_test=False):
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
  
        Args:
            place(CUDAPlace): place is used to initialize 
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
            
        Examples:
            .. code-block:: python

                import numpy as np
                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
                    # or the slow convergence in a way. 
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
                    
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
                    run_example_code()       
        """
1214
        amp_optimizer = self._get_amp_optimizer()
1215
        return amp_optimizer.amp_init(place, scope, test_program, use_fp16_test)
H
huangxu96 已提交
1216

D
Dong Daxiang 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1244 1245 1246 1247 1248 1249 1250 1251 1252
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1253
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1254 1255 1256
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1257
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1258 1259
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1260
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1261 1262 1263 1264
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1265
            by minimize and a list of (param, grad) tensor pairs, param is
1266
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1267 1268
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1269 1270 1271
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1272

1273
            .. code-block:: python
1274

1275
                import paddle
1
123malin 已提交
1276
                paddle.enable_static()
1277
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1289

1
123malin 已提交
1290
                fleet.init(is_collective=True)
1291 1292 1293 1294
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1295

1296
                # for more examples, please reference https://github.com/PaddlePaddle/FleetX
1297 1298

        """
D
Dong Daxiang 已提交
1299 1300 1301
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
1302 1303 1304
        if paddle.fluid.framework.in_dygraph_mode():
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1305
            self._context = context
1306 1307
            return target_opt.minimize(loss)

1308 1309
        # cache original feed forward program
        self.origin_main_program = loss.block.program
1310 1311
        context["origin_main_program"] = self.origin_main_program
        context["loss"] = loss
1312 1313
        if startup_program == None:
            self.origin_startup_program = \
1314 1315
                paddle.static.default_startup_program().clone(for_test=False)
            startup_program = paddle.static.default_startup_program()
1316 1317 1318
        else:
            self.origin_startup_program = \
                startup_program.clone(for_test=False)
1319

1320 1321
        context["origin_startup_program"] = startup_program
        context["role_maker"] = self._role_maker
1322 1323 1324 1325 1326

        # compile time
        distributed_optimizer_list = \
            MetaOptimizerFactory()._get_valid_meta_optimizers(
                self.user_defined_optimizer)
D
Dong Daxiang 已提交
1327

D
Dong Daxiang 已提交
1328 1329 1330
        context["user_defined_strategy"] = copy.deepcopy(
            self._user_defined_strategy)
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1331 1332 1333 1334 1335 1336

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1337
        if copy_user_defined_strategy._is_strict_auto():
1338 1339
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1340
                opt._enable_strategy(copy_user_defined_strategy, context)
1341

1342 1343
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1344
        can_not_apply_optimizer_list = []
1345 1346 1347 1348
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
            opt._set_basic_info(loss, self._role_maker,
                                self.user_defined_optimizer,
D
Dong Daxiang 已提交
1349
                                copy_user_defined_strategy)
1350 1351
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1352
            elif opt._can_apply() and opt._is_graph_out():
1353
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1354 1355
            else:
                can_not_apply_optimizer_list.append(opt)
1356
        # combine recalled meta optimizers to be a valid meta optimizer
D
Dong Daxiang 已提交
1357
        meta_optimizer, graph_optimizer = \
1358 1359
            self.strategy_compiler.generate_optimizer(
                loss, self._role_maker, self.user_defined_optimizer,
D
Dong Daxiang 已提交
1360
                copy_user_defined_strategy, valid_optimizer_list,
1361
                valid_graph_optimizer_list)
D
Dong Daxiang 已提交
1362

D
Dong Daxiang 已提交
1363
        valid_strategy = self.strategy_compiler._get_valid_strategy(
D
Dong Daxiang 已提交
1364 1365 1366
            copy_user_defined_strategy, can_not_apply_optimizer_list)

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
1367

1368 1369 1370 1371 1372 1373
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1374
        self._context = context
1375

D
Dong Daxiang 已提交
1376
        self.valid_strategy = valid_strategy
1377
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1378

1379 1380
        optimize_ops = []
        params_grads = []
1381

1382 1383 1384 1385 1386 1387 1388 1389 1390
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
                self.origin_main_program).with_data_parallel(
                    loss_name=loss.name, share_vars_from=None)
            loss.block.program._graph = compiled_program
            return self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1391
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1392

1393 1394
        if meta_optimizer:
            optimize_ops, params_grads = meta_optimizer.minimize(
M
MRXLT 已提交
1395
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1396

1397
            default_program = paddle.static.default_main_program()
1398 1399 1400 1401

            if id(default_program) != id(loss.block.program):
                paddle.fluid.framework.switch_main_program(loss.block.program)

1402 1403
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
M
MRXLT 已提交
1404
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1405

1406 1407
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1408

1409
        if graph_optimizer:
D
Dong Daxiang 已提交
1410
            optimize_ops, params_grads = graph_optimizer.minimize(
M
MRXLT 已提交
1411
                loss, startup_program, parameter_list, no_grad_set=no_grad_set)
1412 1413 1414 1415
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1416 1417 1418
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads

1419
        if self._runtime_handle is None:
1420
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1421

1422 1423
        import paddle.distributed.fleet as fleet
        fleet.util._set_strategy(context["valid_strategy"])
1424 1425

        return optimize_ops, params_grads
1426 1427 1428 1429

    @dygraph_only
    def distributed_scaler(self, scaler):
        return HybridParallelGradScaler(scaler, self._hcg)