common.py 94.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import numpy

17
import paddle
18
from paddle import _C_ops, _legacy_C_ops
19
from paddle.common_ops_import import Variable, default_main_program
X
xiaoting 已提交
20
from paddle.fluid.layer_helper import LayerHelper
21 22
from paddle.framework import core, in_dynamic_mode
from paddle.tensor.creation import full
23 24 25 26

from ...fluid.data_feeder import (
    check_dtype,
    check_type,
27
    check_variable_and_dtype,
28
)
29
from ...fluid.framework import in_dygraph_mode
30 31
from ...tensor import clip, concat, sqrt, sum
from ...tensor.creation import zeros
Z
zhiboniu 已提交
32

33 34
# TODO: define the common functions to build a neural network
from ...tensor.manipulation import squeeze, unsqueeze
35

36 37
__all__ = []

X
xiaoting 已提交
38

39 40 41
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    r"""

42
    Return a col buffer of sliding local blocks of input x, also known
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter sliding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1

        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]

        Lout &= hout \times wout


    Parameters:
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
                                  data type can be float32 or float64
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
70
        strides(int|list, optional):        The strides, should be [stride_h, stride_w]
71 72
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
73
        paddings(int|list, optional):       The paddings of each dimension, should be
74 75 76 77 78 79
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
80
        dilations(int|list, optional):      the dilations of convolution kernel, should be
81 82 83 84 85 86 87 88
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
89
        Tensor, The tensor corresponding to the sliding local blocks.
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
        The data type of output is the same as the input :math:`x`

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
    """

106 107 108 109
    helper = LayerHelper("unfold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'unfold')

110
    assert len(x.shape) == 4, "input should be the format of [N, C, H, W]"
111 112 113 114

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
115 116 117
        assert isinstance(kernel_sizes, list) and (
            len(kernel_sizes) == 2
        ), "kernel_sizes should either be an integer or a list of two integers"
118 119 120 121

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
122 123 124
        assert isinstance(strides, list) and (
            len(strides) == 2
        ), "strides should either be an integer or a list of two integers"
125 126 127 128

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
129 130 131
        assert isinstance(dilations, list) and (
            len(dilations) == 2
        ), "dilations should either be an integer or a list of two integers"
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
147 148
            "of 2 or 4 integers"
        )
149 150

    if in_dygraph_mode():
151
        return _C_ops.unfold(x, kernel_sizes, strides, paddings, dilations)
152 153

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
154 155 156 157 158 159 160 161 162 163 164
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations,
        },
    )
165 166 167
    return out


168 169 170 171 172 173 174 175 176 177
def interpolate(
    x,
    size=None,
    scale_factor=None,
    mode='nearest',
    align_corners=False,
    align_mode=0,
    data_format='NCHW',
    name=None,
):
X
xiaoting 已提交
178
    """
S
swtkiwi 已提交
179

180
    This API resizes a batch of images.
181

182 183
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
X
xiaoting 已提交
184
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
185 186
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
187
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
188

X
xiaoting 已提交
189
    Supporting resample methods:
190 191 192 193 194 195 196

    - 'linear' : Linear interpolation
    - 'bilinear' : Bilinear interpolation
    - 'trilinear' : Trilinear interpolation
    - 'nearest' : Nearest neighbor interpolation
    - 'bicubic' : Bicubic interpolation
    - 'area': Area interpolation
197

198 199 200
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
215
    align_corners and align_mode are optional parameters,the calculation method
X
xiaoting 已提交
216 217 218 219 220 221 222
    of interpolation can be selected by them.

    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.

223 224
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
225 226
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
227 228
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
229 230 231 232
    Example:

    .. code-block:: text

233
        # For scale_factor:
X
xiaoting 已提交
234 235 236 237 238
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

239
        # Linear interpolation:
240 241 242 243 244 245 246 247 248
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
249

250
        # Nearest neighbor interpolation:
X
xiaoting 已提交
251

X
xiaoting 已提交
252 253 254 255 256
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
257

258
        # Bilinear interpolation:
X
xiaoting 已提交
259 260 261 262 263 264 265 266 267 268 269 270
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

271
        # Bicubic interpolation:
X
xiaoting 已提交
272 273 274 275 276 277 278 279 280 281 282 283
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

284
        # Trilinear interpolation:
X
xiaoting 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

299 300
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
301

X
xiaoting 已提交
302 303
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
304

X
xiaoting 已提交
305 306
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
307

X
xiaoting 已提交
308 309
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
310

X
xiaoting 已提交
311 312
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
313

X
xiaoting 已提交
314
    Parameters:
X
xiaoting 已提交
315
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
X
xiaoting 已提交
316
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
317
        size (list|tuple|Tensor|None): Output shape of image resize
318 319
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
320
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1] or [].
X
xiaoting 已提交
321
             If a Tensor, its dimensions size should be a 1.
322 323
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
324
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if it is either a list or a tuple or a Tensor.If a list/tuple, each element can be an integer or a Tensor of shape: [1] or [].
X
xiaoting 已提交
325
             Default: None.
326
        mode (str): The resample method. It supports 'linear', 'area', 'nearest', 'bilinear',
327
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
X
xiaoting 已提交
328 329
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
X
xiaoting 已提交
330
                               corner pixels.This only has an effect when 'linear', 'bilinear', 'bicubic' or 'trilinear'.
331 332 333 334
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
X
xiaoting 已提交
335
        data_format (str, optional): Specify the data format of the input, and the data format of the output
336
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`,  `"NCHW"`, `"NHWC"`, `"NCDHW"`,
X
xiaoting 已提交
337 338 339
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
340 341 342
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
X
xiaoting 已提交
343
    Returns:
344
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
X
xiaoting 已提交
345 346
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
347

348

X
xiaoting 已提交
349 350 351
    Examples:
        .. code-block:: python

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
            import paddle
            import paddle.nn.functional as F

            input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
            output_1 = F.interpolate(x=input_data, size=[12,12])
            print(output_1.shape)
            # [2L, 3L, 12L, 12L]

            # given scale
            output_2 = F.interpolate(x=input_data, scale_factor=[2,1])
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]

            # bilinear interp
            output_3 = F.interpolate(x=input_data, scale_factor=[2,1], mode="bilinear")
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]
X
xiaoting 已提交
369
    """
370 371 372 373 374 375 376 377 378 379
    data_format = data_format.upper()
    resample = mode.upper()
    resample_type = mode.lower()

    resample_methods = [
        'LINEAR',
        'BILINEAR',
        'TRILINEAR',
        'NEAREST',
        'BICUBIC',
380
        'AREA',
381
    ]
X
xiaoting 已提交
382 383
    if resample not in resample_methods:
        raise ValueError(
384
            "The 'resample' of image_resize can only be 'area', 'linear', 'bilinear', 'trilinear', "
385 386
            " 'bicubic' or 'nearest' currently."
        )
X
xiaoting 已提交
387

X
xiaoting 已提交
388
    if resample in ['LINEAR'] and len(x.shape) != 3:
389
        raise ValueError("'linear' only support 3-D tensor.")
390

391 392 393 394 395
    if resample in ['NEAREST'] and len(x.shape) != 4 and len(x.shape) != 5:
        raise ValueError("'NEAREST' only support 4-D  or 5-D tensor.")

    if resample in ['BILINEAR', 'BICUBIC'] and len(x.shape) != 4:
        raise ValueError("'bilinear' and 'bicubic' only support 4-D tensor.")
X
xiaoting 已提交
396
    if resample == 'TRILINEAR' and len(x.shape) != 5:
397 398 399 400
        raise ValueError("'trilinear'only support 5-D tensor.")

    if size is None and scale_factor is None:
        raise ValueError("One of size and scale_factor must not be None.")
X
xiaoting 已提交
401

402
    if isinstance(size, (tuple, list)) and (len(size) != x.ndim - 2):
403 404 405 406 407 408 409 410 411 412 413 414 415 416
        raise ValueError(
            'The x and size should satisfy rank(x) - 2 == len(size).'
        )

    if isinstance(size, Variable):
        if size.ndim != 1:
            raise ValueError(
                f"If size is a tensor, it's rank must be 1, but received {size.ndim}."
            )
        if size.shape[0] != x.ndim - 2:
            raise ValueError(
                'The x and size should satisfy rank(x) - 2 == size.shape[0].'
            )

X
xiaoting 已提交
417 418
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
419

X
xiaoting 已提交
420 421
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")
X
xiaoting 已提交
422 423 424 425
    if align_corners != 0 and resample == 'NEAREST':
        raise ValueError(
            "align_corners option can only be set with the interpolating modes: linear | bilinear | bicubic | trilinear"
        )
426

X
xiaoting 已提交
427
    if resample == 'AREA':
428
        if isinstance(size, (list, tuple, Variable)):
X
xiaoting 已提交
429 430
            if len(size) == 0:
                raise ValueError("output size can not be empty")
431 432
        if size is None:
            raise ValueError("output size can not be None in AREA mode")
X
xiaoting 已提交
433 434 435
        if len(x.shape) == 3:
            return paddle.nn.functional.adaptive_avg_pool1d(x, size)
        elif len(x.shape) == 4:
436
            print("size :", size)
X
xiaoting 已提交
437 438 439
            return paddle.nn.functional.adaptive_avg_pool2d(x, size)
        elif len(x.shape) == 5:
            return paddle.nn.functional.adaptive_avg_pool3d(x, size)
440
    helper = LayerHelper(f'{resample_type}_interp_v2', **locals())
X
xiaoting 已提交
441
    if len(x.shape) == 3 and data_format not in ['NCW', 'NWC']:
442
        raise ValueError(
443 444 445 446
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCW` or `NWC` supported for 3-D input."
        )
X
xiaoting 已提交
447
    elif len(x.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
X
xiaoting 已提交
448
        raise ValueError(
449 450 451 452
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCHW` or `NHWC` supported for 4-D input."
        )
X
xiaoting 已提交
453
    elif len(x.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
X
xiaoting 已提交
454
        raise ValueError(
455 456 457 458
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCDHW` or `NDHWC` supported for 5-D input."
        )
X
xiaoting 已提交
459 460

    def _is_list_or_turple_(data):
461
        return isinstance(data, (list, tuple))
X
xiaoting 已提交
462

463
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
X
xiaoting 已提交
464
        data_layout = 'NCHW'
465
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
X
xiaoting 已提交
466 467
        data_layout = 'NHWC'

X
xiaoting 已提交
468 469 470 471
    if resample == 'NEAREST':
        align_corners = False

    inputs = {"X": x}
X
xiaoting 已提交
472 473 474 475 476 477 478
    attrs = {
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode,
479
        "data_layout": data_layout,
X
xiaoting 已提交
480 481
    }

482 483
    out_shape = size
    scale = scale_factor
484 485
    if out_shape is not None and scale is not None:
        raise ValueError("Only one of size or scale_factor should be defined.")
X
xiaoting 已提交
486
    if out_shape is not None:
Z
zhiboniu 已提交
487
        if isinstance(out_shape, Variable) and not in_dynamic_mode():
X
xiaoting 已提交
488 489 490
            out_shape.stop_gradient = True
            inputs['OutSize'] = out_shape
        else:
Z
zhiboniu 已提交
491
            if in_dynamic_mode():
492
                if isinstance(out_shape, Variable):
493
                    out_shape = list(out_shape.numpy(False))
X
xiaoting 已提交
494 495
                else:
                    out_shape = list(out_shape)
496

497 498
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
499
                        out_shape[i] = dim.item()
X
xiaoting 已提交
500
            if not (_is_list_or_turple_(out_shape)):
501
                raise TypeError("size should be a list or tuple or Variable.")
X
xiaoting 已提交
502 503 504 505 506 507
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
508 509 510
                assert (
                    dim_size > 0
                ), "Each dimension size given in out_shape must be greater than 0."
X
xiaoting 已提交
511 512 513 514 515 516 517 518 519 520

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
521
                        assert isinstance(dim, int)
X
xiaoting 已提交
522
                        temp_out = helper.create_variable_for_type_inference(
523 524
                            'int32'
                        )
525
                        paddle.tensor.fill_constant(
526 527
                            [1], 'int32', dim, force_cpu=True, out=temp_out
                        )
X
xiaoting 已提交
528 529 530 531
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

X
xiaoting 已提交
532
            if len(x.shape) == 3:
533 534
                if len(out_shape) != 1:
                    raise ValueError(
535 536
                        "size length should be 2 for input 3-D tensor"
                    )
537 538 539 540 541
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
X
xiaoting 已提交
542
            if len(x.shape) == 4:
X
xiaoting 已提交
543
                if len(out_shape) != 2:
544 545 546
                    raise ValueError(
                        "size length should be 2 for " "input 4-D tensor."
                    )
X
xiaoting 已提交
547 548 549 550 551 552 553
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
X
xiaoting 已提交
554
            if len(x.shape) == 5:
X
xiaoting 已提交
555
                if len(out_shape) != 3:
556 557 558
                    raise ValueError(
                        "size length should be 3 for " "input 5-D tensor."
                    )
X
xiaoting 已提交
559 560 561 562 563 564 565 566 567 568 569
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]

    else:
Z
zhiboniu 已提交
570
        if in_dynamic_mode() and isinstance(scale, Variable):
571 572 573 574
            if scale.shape == []:
                scale = float(scale)
            else:
                scale = list(scale.numpy())
X
xiaoting 已提交
575 576 577
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
578
        elif isinstance(scale, (float, int, numpy.ndarray)):
X
xiaoting 已提交
579 580
            if scale <= 0:
                raise ValueError("Attr(scale) should be greater than zero.")
X
xiaoting 已提交
581 582 583 584
            scale_list = []
            for i in range(len(x.shape) - 2):
                scale_list.append(scale)
            attrs['scale'] = list(map(float, scale_list))
585
        elif isinstance(scale, (list, tuple)):
X
xiaoting 已提交
586
            if len(scale) != len(x.shape) - 2:
587 588 589 590
                raise ValueError(
                    "scale_shape length should be {} for "
                    "input {}-D tensor.".format(len(x.shape) - 2, len(x.shape))
                )
X
xiaoting 已提交
591 592 593 594
            for value in scale:
                if value <= 0:
                    raise ValueError("Attr(scale) should be greater than zero.")
            attrs['scale'] = list(map(float, scale))
X
xiaoting 已提交
595 596
        else:
            raise TypeError(
597 598
                "Attr(scale)'s type should be float, int, list, tuple, or Tensor."
            )
X
xiaoting 已提交
599

Z
zhiboniu 已提交
600
    if in_dynamic_mode():
X
xiaoting 已提交
601 602 603 604 605 606 607
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
608
            if in_dygraph_mode():
609
                out = _C_ops.linear_interp(
610 611
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
612 613
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
614 615 616 617 618 619 620 621 622
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
623
            else:
624
                out = _legacy_C_ops.linear_interp_v2(x, *dy_attr)
625
        elif resample_type == "bilinear":
626
            if in_dygraph_mode():
627
                out = _C_ops.bilinear_interp(
628 629
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
630 631
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
632 633 634 635 636 637 638 639 640
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
641
            else:
642
                out = _legacy_C_ops.bilinear_interp_v2(x, *dy_attr)
643
        elif resample_type == "trilinear":
644
            if in_dygraph_mode():
645
                out = _C_ops.trilinear_interp(
646 647
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
648 649
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
650 651 652 653 654 655 656 657 658
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
659
            else:
660
                out = _legacy_C_ops.trilinear_interp_v2(x, *dy_attr)
661
        elif resample_type == "nearest":
662
            if in_dygraph_mode():
663
                out = _C_ops.nearest_interp(
664 665
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
666 667
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
668 669 670 671 672 673 674 675 676
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
677
            else:
678
                out = _legacy_C_ops.nearest_interp_v2(x, *dy_attr)
679
        elif resample_type == "bicubic":
680
            if in_dygraph_mode():
681
                out = _C_ops.bicubic_interp(
682 683
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
684 685
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
686 687 688 689 690 691 692 693 694
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
695
            else:
696
                out = _legacy_C_ops.bicubic_interp_v2(x, *dy_attr)
X
xiaoting 已提交
697
        return out
W
Weilong Wu 已提交
698 699 700

    dtype = helper.input_dtype(input_param_name='x')

X
xiaoting 已提交
701
    out = helper.create_variable_for_type_inference(dtype)
702
    helper.append_op(
703
        type=f'{resample_type}_interp_v2',
704 705 706 707
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs,
    )
X
xiaoting 已提交
708
    return out
L
littletomatodonkey 已提交
709 710


711 712 713 714 715 716 717 718 719 720
def upsample(
    x,
    size=None,
    scale_factor=None,
    mode='nearest',
    align_corners=False,
    align_mode=0,
    data_format='NCHW',
    name=None,
):
X
xiaoting 已提交
721
    """
722

723
    This API resizes a batch of images.
724

X
xiaoting 已提交
725 726 727
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
728 729
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
730 731 732
    and the resizing only applies on the three dimensions(depth, height and width).

    Supporting resample methods:
733 734 735 736 737 738
    - 'linear' : Linear interpolation
    - 'bilinear' : Bilinear interpolation
    - 'trilinear' : Trilinear interpolation
    - 'nearest' : Nearest neighbor interpolation
    - 'bicubic' : Bicubic interpolation

739 740 741
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
742 743 744 745 746 747 748 749
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
750

X
xiaoting 已提交
751 752 753 754
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
755

X
xiaoting 已提交
756 757 758
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
759

X
xiaoting 已提交
760 761 762
    The linear interpolation is performed on three directions.
    align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.
763 764 765 766 767 768 769

    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
770
    Example:
771
        .. code-block:: text
772

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
            For scale_factor:
                if align_corners = True && out_size > 1 :
                scale_factor = (in_size-1.0)/(out_size-1.0)
                else:
                scale_factor = float(in_size/out_size)
            Linear interpolation:
                if:
                    align_corners = False , align_mode = 0
                    input : (N,C,W_in)
                    output: (N,C,W_out) where:
                    W_out = (W_{in}+0.5) * scale_{factor} - 0.5
                else:
                    input : (N,C,W_in)
                    output: (N,C,W_out) where:
                    W_out = W_{in} * scale_{factor}
            Nearest neighbor interpolation:
            if:
                align_corners = False
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = floor (H_{in} * scale_{factor})
                W_out = floor (W_{in} * scale_{factor})
X
xiaoting 已提交
795
            else:
796 797 798 799 800 801 802
                align_corners = True
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = round(H_{in} * scale_{factor})
                W_out = round(W_{in} * scale_{factor})

            Bilinear interpolation:
X
xiaoting 已提交
803 804
            if:
                align_corners = False , align_mode = 0
805 806 807
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
X
xiaoting 已提交
808 809
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = H_{in} * scale_{factor}
                W_out = W_{in} * scale_{factor}
            Bicubic interpolation:
            if:
                align_corners = False
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = H_{in} * scale_{factor}
                W_out = W_{in} * scale_{factor}
            Trilinear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,D_in,H_in,W_in)
                output: (N,C,D_out,H_out,W_out) where:
                D_out = (D_{in}+0.5) * scale_{factor} - 0.5
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,D_in,H_in,W_in)
                output: (N,C,D_out,H_out,W_out) where:
                D_out = D_{in} * scale_{factor}
                H_out = H_{in} * scale_{factor}
X
xiaoting 已提交
839
                W_out = W_{in} * scale_{factor}
840

X
xiaoting 已提交
841
    For details of linear interpolation, please refer to Wikipedia:
842
    https://en.wikipedia.org/wiki/Linear_interpolation.
843

X
xiaoting 已提交
844 845
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
846

X
xiaoting 已提交
847 848
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
849

X
xiaoting 已提交
850 851
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
852

X
xiaoting 已提交
853 854
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
855

X
xiaoting 已提交
856 857 858
    Parameters:
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
859
        size (list|tuple|Tensor|None, optional): Output shape of image resize
860 861
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
862
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1] or [].
X
xiaoting 已提交
863
             If a Tensor , its dimensions size should be a 1.
864
        scale_factor (float|Tensor|list|tuple|None, optional): The multiplier for the input height or width. At
865
             least one of :attr:`size` or :attr:`scale_factor` must be set.
866
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if
867
             it is either a list or a tuple or a Tensor. If a list/tuple, each element can be an integer or a Tensor of shape: [1] or [].
X
xiaoting 已提交
868
             Default: None.
869
        mode (str, optional): The resample method. It supports 'linear', 'nearest', 'bilinear',
X
xiaoting 已提交
870
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
871
        align_corners(bool, optional) :  An optional bool, If True, the centers of the 4 corner pixels of the
X
xiaoting 已提交
872 873 874
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
                               Default: False
875
        align_mode(int, optional)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
X
xiaoting 已提交
876 877 878 879 880 881 882 883 884 885
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
886

X
xiaoting 已提交
887 888 889 890
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
891

892 893
    Examples:
        .. code-block:: python
894

895 896
            import paddle
            import paddle.nn as nn
X
xiaoting 已提交
897

898 899
            input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
            upsample_out = paddle.nn.Upsample(size=[12,12])
900

901 902 903
            output = upsample_out(x=input_data)
            print(output.shape)
            # [2L, 3L, 12L, 12L]
X
xiaoting 已提交
904 905

    """
906 907 908
    return interpolate(
        x, size, scale_factor, mode, align_corners, align_mode, data_format
    )
X
xiaoting 已提交
909 910


911 912 913 914
def bilinear(x1, x2, weight, bias=None, name=None):
    """

    This layer performs bilinear on two inputs.
915
    See :ref:`api_nn_Bilinear` for details and output shape.
916 917

    Parameters:
918 919 920 921 922 923
        x1 (Tensor): the first input tensor, it's data type should be float32, float64.
        x2 (Tensor): the second input tensor, it's data type should be float32, float64.
        weight (Parameter): The learnable weights of this layer, shape is [out_features, in1_features, in2_features].
        bias (Parameter, optional): The learnable bias(Bias) of this layer, shape is [1, out_features]. If it is set to None, no bias will be added to the output units. The default value is None.
        name (str, optional): The default value is None. Normally there is no need for user
            to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
924 925

    Returns:
926
        Tensor: A 2-D Tensor of shape [batch_size, out_features].
927 928

    Examples:
929
        .. code-block:: python
930

931 932
            import paddle
            import paddle.nn.functional as F
933

934 935 936 937
            x1 = paddle.randn((5, 5)).astype(paddle.float32)
            x2 = paddle.randn((5, 4)).astype(paddle.float32)
            w = paddle.randn((1000, 5, 4)).astype(paddle.float32)
            b = paddle.randn((1, 1000)).astype(paddle.float32)
938

939 940 941
            result = F.bilinear(x1, x2, w, b)
            print(result.shape)
            # [5, 1000]
942 943
    """

944
    if in_dygraph_mode():
945
        return _C_ops.bilinear(x1, x2, weight, bias)
946 947 948
    else:
        check_variable_and_dtype(x1, 'x1', ['float32', 'float64'], 'bilinear')
        check_variable_and_dtype(x2, 'x2', ['float32', 'float64'], 'bilinear')
949

950 951 952
        inputs = {"X": x1, "Y": x2, "Weight": weight}
        if bias is not None:
            inputs["Bias"] = bias
953

954 955
        helper = LayerHelper("bilinear", **locals())
        out = helper.create_variable_for_type_inference(dtype=x1.dtype)
956

957 958 959
        helper.append_op(
            type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out}
        )
960

961
        return out
962 963


964 965 966
def dropout(
    x, p=0.5, axis=None, training=True, mode="upscale_in_train", name=None
):
967
    r"""
968 969 970 971 972 973
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training. The dropout operator randomly sets the
    outputs of some units to zero, while upscale others according to the given
    dropout probability.

    Args:
974
        x (Tensor): The input tensor. The data type is float16, float32 or float64.
975 976 977
        p (float|int, optional): Probability of setting units to zero. Default: 0.5.
        axis (int|list|tuple, optional): The axis along which the dropout is performed. Default: None.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
978
        mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer'].
979

980
            1. upscale_in_train (default), upscale the output at training time
981

982 983
                - train: :math:`out = input \times \frac{mask}{(1.0 - dropout\_prob)}`
                - inference: :math:`out = input`
984

985
            2. downscale_in_infer, downscale the output at inference
986

987 988
                - train: :math:`out = input \times mask`
                - inference: :math:`out = input \times (1.0 - dropout\_prob)`
989

990
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
991 992 993 994

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x` .

995

996 997
    Examples:
        We use ``p=0.5`` in the following description for simplicity.
998

999
        1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.
1000 1001 1002

        ..  code-block:: text

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
            Let's see a simple case when x is a 2d tensor with shape 2*3:
            [[1 2 3]
             [4 5 6]]
            we generate mask with the same shape as x, which is 2*3. The value of mask is
            sampled from a Bernoulli distribution randomly. For example, we may get such mask:
            [[0 1 0]
             [1 0 1]]
            So the output is obtained from elementwise multiply of x and mask:
            [[0 2 0]
             [4 0 6]]
            Using default setting, i.e. ``mode='upscale_in_train'`` ,
            if in training phase, the final upscale output is:
            [[0 4 0 ]
             [8 0 12]]
            if in test phase, the output is the same as input:
            [[1 2 3]
             [4 5 6]]
            we can also set ``mode='downscale_in_infer'`` , then
            if in training phase, the final output is:
            [[0 2 0]
             [4 0 6]]
            if in test phase, the scale output is:
            [[0.5 1.  1.5]
             [2.  2.5 3. ]]

1028 1029


1030
        2. When ``axis!=None`` , this is useful for dropping whole channels from an image or sequence.
1031 1032 1033

        ..  code-block:: text

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
            Let's see the simple case when x is a 2d tensor with shape 2*3 again:
            [[1 2 3]
             [4 5 6]]
            (1) If ``axis=0`` , this means the dropout is only performed in axis `0` .
                we generate mask with the shape 2*1. Only in axis `0` the value is randomly selected.
                For example, we may get such mask:
                [[1]
                 [0]]
                The output is obtained from elementwise multiply of x and mask. Doing that the mask will be
                broadcast from 2*1 to 2*3:
                [[1 1 1]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[1 2 3]
                 [0 0 0]]
                then we can do upscale or downscale according to the setting of other arguments.
            (2) If ``axis=1`` , this means the dropout is only performed in axis `1` .
                we generate mask with the shape 1*3. Only in axis `1` the value is randomly selected.
                For example, we may get such mask:
                [[1 0 1]]
                Doing elementwise multiply the mask will be broadcast from 1*3 to 2*3:
                [[1 0 1]
                 [1 0 1]]
                and the result after elementwise multiply is:
                [[1 0 3]
                 [4 0 6]]
            (3) What about ``axis=[0, 1]`` ? This means the dropout is performed in all axes of x,
                which is the same case as default setting ``axis=None`` .
1062
            (4) You may note that logically `axis=None` means the dropout is performed in none axis of x,
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
                We generate mask with the shape 1*1. Whole input is randomly selected or dropped.
                For example, we may get such mask:
                [[0]]
                Doing elementwise multiply the mask will be broadcast from 1*1 to 2*3:
                [[0 0 0]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[0 0 0]
                 [0 0 0]]
                Actually this is not what we want because all elements may set to zero~
1073

1074 1075
        When x is a 4d tensor with shape `NCHW`, where `N` is batch size, `C` is the number of channels, H and W are the height and width of the feature, we can set ``axis=[0,1]`` and the dropout will be performed in channel `N` and `C`, `H` and `W` is tied, i.e. paddle.nn.dropout(x, p, axis=[0,1]) . Please refer to ``paddle.nn.functional.dropout2d`` for more details.
        Similarly, when x is a 5d tensor with shape `NCDHW`, where `D` is the depth of the feature, we can set ``axis=[0,1]`` to perform dropout3d. Please refer to ``paddle.nn.functional.dropout3d`` for more details.
1076 1077

        .. code-block:: python
1078

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
            import paddle

            x = paddle.to_tensor([[1,2,3], [4,5,6]]).astype(paddle.float32)
            y_train = paddle.nn.functional.dropout(x, 0.5)
            y_test = paddle.nn.functional.dropout(x, 0.5, training=False)
            y_0 = paddle.nn.functional.dropout(x, axis=0)
            y_1 = paddle.nn.functional.dropout(x, axis=1)
            y_01 = paddle.nn.functional.dropout(x, axis=[0,1])
            print(x)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
            print(y_train)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[2. , 0. , 6. ],
            #         [8. , 0. , 12.]])
            print(y_test)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
            print(y_0)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0. , 0. , 0. ],
            #         [8. , 10., 12.]])
            print(y_1)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[2. , 0. , 6. ],
            #         [8. , 0. , 12.]])
            print(y_01)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0. , 0. , 0. ],
            #         [8. , 0. , 12.]])
1111 1112

    """
1113 1114 1115 1116 1117
    if not isinstance(p, (float, int, Variable)):
        raise TypeError("p argument should be a number or Variable")

    if isinstance(p, (int, float)):
        # fast return for p == 0
1118 1119
        if p == 0:
            return x
1120 1121
        elif p < 0 or p > 1:
            raise ValueError("p argument should between 0 and 1")
1122 1123
    if mode not in ('downscale_in_infer', 'upscale_in_train'):
        raise ValueError(
1124 1125
            "mode argument should be 'downscale_in_infer' or 'upscale_in_train'"
        )
1126
    if axis and not isinstance(axis, (int, list, tuple)):
1127 1128
        raise TypeError("datatype of axis argument should be int or list")

1129
    if axis is None:  # commonly used dropout
1130
        seed = None
1131 1132 1133
        mode = (
            'downgrade_in_infer' if mode == 'downscale_in_infer' else mode
        )  # semantic transfer
1134

1135
        if in_dygraph_mode():
1136 1137
            if default_main_program().random_seed != 0:
                seed = default_main_program().random_seed
H
hong 已提交
1138

1139
            out, mask = _C_ops.dropout(
1140
                x,
1141
                None,
1142 1143 1144
                p,
                not training,
                mode,
1145 1146
                seed if seed is not None else 0,
                seed is not None,
1147
            )
1148

1149 1150 1151 1152
            return out
        else:
            helper = LayerHelper('dropout', **locals())
            check_variable_and_dtype(
1153
                x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'dropout'
1154
            )
1155

1156 1157 1158 1159
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            mask = helper.create_variable_for_type_inference(
                dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
            )
1160

1161 1162 1163
            def get_attrs(prog, dropout_prob, is_test, seed):
                if (seed is None or seed == 0) and prog.random_seed != 0:
                    seed = prog.random_seed
1164

1165 1166 1167 1168 1169 1170 1171
                if isinstance(
                    dropout_prob, Variable
                ) and not dropout_prob.shape != [1]:
                    raise TypeError(
                        "Required p.shape == [1] if type(p) is Variable, but received p.shape = {}".format(
                            p.shape
                        )
1172
                    )
1173 1174 1175 1176 1177 1178 1179 1180
                attrs = {
                    'dropout_prob': dropout_prob,
                    'is_test': is_test,
                    'fix_seed': seed is not None,
                    'seed': seed if seed is not None else 0,
                    'dropout_implementation': mode,
                }
                return attrs
1181

1182
            attrs = get_attrs(helper.main_program, p, not training, seed)
1183

1184 1185 1186 1187 1188 1189 1190
            helper.append_op(
                type='dropout',
                inputs={'X': [x]},
                outputs={'Out': [out], 'Mask': [mask]},
                attrs=attrs,
            )
            return out
1191
    else:  # sometimes called dropout_nd #TODO: optimize with c++
Z
zhiboniu 已提交
1192
        if not in_dynamic_mode():
1193
            check_variable_and_dtype(
1194
                x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'dropout'
1195
            )
1196 1197 1198
        dtype = x.dtype
        keep_prob = 1 - p
        if training:
1199 1200
            if in_dynamic_mode() and p == 1.0:
                return paddle.scale(x, scale=0.0)
1201

1202 1203 1204 1205 1206
            scale_input = (
                paddle.scale(x, scale=1 / keep_prob)
                if mode == 'upscale_in_train'
                else x
            )
1207

1208
            # get mask shape
1209
            input_shape = x.shape
Z
zhiboniu 已提交
1210
            if not in_dynamic_mode():
1211
                input_shape_tensor = paddle.shape(x)
1212
            drop_axes = [axis] if isinstance(axis, int) else list(axis)
1213
            if min(drop_axes) < 0 or max(drop_axes) > len(input_shape) - 1:
1214 1215 1216 1217 1218
                raise ValueError(
                    "axis value should be greater than or equal to 0 and less than dimensions of x:{}, but get axis value:{} ".format(
                        len(input_shape), max(drop_axes)
                    )
                )
1219 1220
            if len(drop_axes) > len(input_shape):
                raise ValueError(
1221 1222 1223 1224
                    "length of axis should not be greater than dimensions of x:{}, but get length of axis: {}".format(
                        len(input_shape), len(drop_axes)
                    )
                )
1225
            mask_shape = [1] * len(input_shape)
Z
zhiboniu 已提交
1226
            if not in_dynamic_mode():
1227 1228 1229 1230 1231
                for i in drop_axes:
                    mask_shape[i] = input_shape_tensor[i]
            else:
                for i in drop_axes:
                    mask_shape[i] = input_shape[i]
1232

1233 1234 1235 1236
            # get mask
            random_tensor = paddle.uniform(
                mask_shape, dtype='float32', min=0.0, max=1.0
            )
Z
zhiboniu 已提交
1237
            p = full(shape=[1], fill_value=p, dtype='float32')
1238
            keep_mask = paddle.greater_equal(random_tensor, p)
1239

1240 1241
            scale_input = paddle.cast(scale_input, dtype)
            keep_mask = paddle.cast(keep_mask, dtype)
1242 1243 1244
            ret = paddle.multiply(scale_input, keep_mask, name=name)
            return ret
        else:  # test
1245 1246 1247 1248 1249
            ret = (
                paddle.scale(x, scale=keep_prob)
                if mode == 'downscale_in_infer'
                else x
            )
1250 1251 1252 1253 1254 1255 1256 1257 1258
            return ret


def dropout2d(x, p=0.5, training=True, data_format='NCHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

1259
    See :ref:`api_paddle_nn_functional_dropout` for more details.
1260 1261 1262

    Args:
        x (Tensor):  The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C].
1263
                     The data type is float16, float32 or float64.
1264 1265 1266 1267
        p (float, optional): Probability of setting units to zero. Default: 0.5.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC` . When it is `NCHW` , the data is stored in the order of: [batch_size, input_channels, input_height, input_width]. Default: `NCHW` .
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
1268 1269 1270 1271

    Returns:
        A Tensor representing the dropout2d, has same shape and data type as `x` .

1272

1273 1274
    Examples:
        .. code-block:: python
1275

1276 1277
            import paddle

1278
            x = paddle.randn(shape=(2, 3, 4, 5)).astype(paddle.float32)
1279 1280 1281 1282
            y_train = paddle.nn.functional.dropout2d(x)  #train
            y_test = paddle.nn.functional.dropout2d(x, training=False) #test
            for i in range(2):
                for j in range(3):
1283 1284 1285 1286
                    print(x[i,j,:,:])
                    print(y_train[i,j,:,:]) # may all 0
                    print(y_test[i,j,:,:])

1287 1288 1289
    """
    input_shape = x.shape
    if len(input_shape) != 4:
1290 1291 1292 1293 1294
        raise ValueError(
            "dimensions of x should be 4, but received {} != 4".format(
                len(input_shape)
            )
        )
1295 1296 1297 1298

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1299 1300
            "Attr(data_format): %s." % str(data_format)
        )
1301

1302 1303 1304 1305 1306 1307 1308 1309
    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCHW' else [0, 3],
        training=training,
        mode="upscale_in_train",
        name=name,
    )
1310 1311 1312 1313 1314 1315 1316 1317


def dropout3d(x, p=0.5, training=True, data_format='NCDHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

1318
    See :ref:`api_paddle_nn_functional_dropout` for more details.
1319 1320 1321 1322

    Args:
        x (Tensor):  The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C].
                     The data type is float32 or float64.
1323 1324 1325 1326
        p (float, optional): Probability of setting units to zero. Default: 0.5.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from ``NCDHW`` or ``NDHWC``. When it is ``NCDHW`` , the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width]. Default: ``NCDHW`` .
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
1327 1328 1329 1330

    Returns:
        A Tensor representing the dropout3d, has same shape and data type with `x` .

1331

1332 1333
    Examples:
        .. code-block:: python
1334

1335
            import paddle
1336

1337 1338 1339 1340 1341 1342
            x = paddle.randn(shape=(2, 3, 4, 5, 6)).astype(paddle.float32)
            y_train = paddle.nn.functional.dropout3d(x)  #train
            y_test = paddle.nn.functional.dropout3d(x, training=False) #test
            print(x[0,0,:,:,:])
            print(y_train[0,0,:,:,:]) # may all 0
            print(y_test[0,0,:,:,:])
1343 1344 1345 1346 1347

    """

    input_shape = x.shape
    if len(input_shape) != 5:
1348 1349 1350 1351 1352
        raise ValueError(
            "dimensions of x should be 5, but received {} != 5".format(
                len(input_shape)
            )
        )
1353 1354 1355 1356

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1357 1358
            "Attr(data_format): %s." % str(data_format)
        )
1359

1360 1361 1362 1363 1364 1365 1366 1367
    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCDHW' else [0, 4],
        training=training,
        mode="upscale_in_train",
        name=name,
    )
1368 1369


1370 1371 1372 1373 1374 1375 1376 1377
def alpha_dropout(x, p=0.5, training=True, name=None):
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property.
    For an input with zero mean and unit standard deviation, the output of Alpha Dropout
    maintains the original mean and standard deviation of the input.
    Alpha Dropout fits well to SELU activate function by randomly setting activations to the negative saturation value.

    Args:
1378
        x (Tensor): The input tensor. The data type is float16, float32 or float64.
1379 1380 1381 1382 1383 1384 1385 1386 1387
        p (float | int): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x`.

    Examples:
        .. code-block:: python
1388

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
            import paddle

            x = paddle.to_tensor([[-1, 1], [-1, 1]]).astype(paddle.float32)
            y_train = paddle.nn.functional.alpha_dropout(x, 0.5)
            y_test = paddle.nn.functional.alpha_dropout(x, 0.5, training=False)
            print(y_train)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-0.10721093, -0.77919382],
            #         [-0.10721093,  1.66559887]]) (randomly)
            print(y_test)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-1.,  1.],
            #         [-1.,  1.]])
1402 1403 1404 1405 1406 1407
    """
    if not isinstance(p, (float, int)):
        raise TypeError("p argument should be a float or int")
    if p < 0 or p > 1:
        raise ValueError("p argument should between 0 and 1")

Z
zhiboniu 已提交
1408
    if not in_dynamic_mode():
1409
        check_variable_and_dtype(
1410
            x, 'x', ['float16', 'uint16', 'float32', 'float64'], 'alpha_dropout'
1411
        )
1412 1413

    if training:
1414
        if p == 1:
1415 1416
            return paddle.scale(x, scale=0.0)
        # get transformation params
1417 1418 1419
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        alpha_p = -alpha * scale
1420
        a = ((1 - p) * (1 + p * alpha_p**2)) ** -0.5
1421 1422 1423 1424 1425
        b = -a * alpha_p * p

        dtype = x.dtype
        input_shape = x.shape

1426 1427 1428 1429
        # get mask
        random_tensor = paddle.uniform(
            input_shape, dtype='float32', min=0.0, max=1.0
        )
1430
        p = full(shape=input_shape, fill_value=p, dtype='float32')
1431 1432 1433
        keep_mask = paddle.greater_equal(random_tensor, p)
        keep_mask = paddle.cast(keep_mask, dtype)
        drop_mask = paddle.subtract(
1434 1435
            full(shape=input_shape, fill_value=1.0, dtype=dtype), keep_mask
        )
1436

1437
        # apply mask
1438
        b = full(shape=input_shape, fill_value=b, dtype=dtype)
1439 1440 1441 1442
        y = paddle.add(
            paddle.multiply(x, keep_mask),
            paddle.scale(drop_mask, scale=alpha_p),
        )
1443
        res = paddle.add(paddle.scale(y, scale=a), b, name=name)
1444 1445 1446 1447 1448
        return res
    else:  # test
        return x


1449
def pad(x, pad, mode='constant', value=0.0, data_format="NCHW", name=None):
L
littletomatodonkey 已提交
1450
    """
1451 1452
    Pad tensor according to ``'pad'`` and ``'mode'``.
    If mode is ``'constant'`` and length of pad is twice as length of x dimension,
L
littletomatodonkey 已提交
1453
    then the padding will be started from the first dimension and moved back onto x
1454 1455
    according to ``'pad'`` and ``'value'``.
    If mode is ``'reflect'``, pad[0] and pad[1] must be no greater
L
littletomatodonkey 已提交
1456 1457 1458 1459
    than width-1. The height and depth dimension has the same condition.

    Parameters:
        x (Tensor): The input tensor with data type float32/double/int32/int64_t.
1460
        pad (Tensor|list[int]|tuple[int]): The padding size with data type int.
1461
            If mode is ``'constant'`` and length of pad is twice as length of x dimension, then x will
1462 1463
            be padded from the first  dimension to the last dimension.
            Else: 1. If input dimension is 3, then the pad has the form (pad_left,
1464 1465
            pad_right). 2. If the input dimension is 4, then the pad has the form (pad_left, pad_right,
            pad_top, pad_bottom). 3. If the input dimension is 5, then the pad has the form
L
littletomatodonkey 已提交
1466
            (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
1467
        mode (str, optional): Four modes: ``'constant'`` (default), ``'reflect'``, ``'replicate'``, ``'circular'``. Default is ``'constant'``.
1468 1469 1470 1471 1472 1473

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

1474 1475 1476 1477
        value (float, optional): The value to fill the padded areas in 'constant' mode . Default is :math:`0.0`.
        data_format (str, optional): An string from: ``'NCL'``, ``'NLC'``, ``'NHWC'``, ``'NCHW'``, ``'NCDHW'``, ``'NDHWC'``. Specify the data format of
           the input data. Default: ``'NCHW'``.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: ``'None'``.
1478 1479

    Returns:
1480
        Tensor, a Tensor padded according to pad and mode and data type is same as input.
L
littletomatodonkey 已提交
1481

1482
    Example:
1483

L
littletomatodonkey 已提交
1484 1485 1486 1487 1488 1489
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]

            Case 0:
1490 1491 1492 1493 1494 1495 1496 1497 1498
                pad = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0., 0., 0.],
                          [1., 2., 3.],
                          [4., 5., 6.],
                          [0., 0., 0.]]]]]

            Case 1:
L
littletomatodonkey 已提交
1499 1500 1501 1502 1503 1504 1505 1506
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0. 0. 0. 0. 0. 0. 0.]
                          [0. 0. 1. 2. 3. 0. 0.]
                          [0. 0. 4. 5. 6. 0. 0.]
                          [0. 0. 0. 0. 0. 0. 0.]]]]]

1507
            Case 2:
L
littletomatodonkey 已提交
1508 1509 1510 1511 1512 1513 1514
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'reflect'
                Out = [[[[[6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]
                          [6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]]]]]

1515
            Case 3:
L
littletomatodonkey 已提交
1516 1517 1518 1519 1520 1521 1522
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'replicate'
                Out = [[[[[1. 1. 1. 2. 3. 3. 3.]
                          [1. 1. 1. 2. 3. 3. 3.]
                          [4. 4. 4. 5. 6. 6. 6.]
                          [4. 4. 4. 5. 6. 6. 6.]]]]]

1523
            Case 4:
L
littletomatodonkey 已提交
1524 1525 1526 1527 1528 1529 1530
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'circular'
                Out = [[[[[5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]
                          [5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]]]]]

1531
    Examples:
L
littletomatodonkey 已提交
1532
        .. code-block:: python
L
littletomatodonkey 已提交
1533

L
littletomatodonkey 已提交
1534 1535
            import paddle
            import paddle.nn.functional as F
1536

L
littletomatodonkey 已提交
1537 1538
            # example 1
            x_shape = (1, 1, 3)
1539
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1540
            y = F.pad(x, [0, 0, 0, 0, 2, 3], value=1, mode='constant', data_format="NCL")
L
littletomatodonkey 已提交
1541
            print(y)
L
littletomatodonkey 已提交
1542
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1543

L
littletomatodonkey 已提交
1544
            # example 2
1545
            x_shape = (1, 1, 3)
1546
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1547 1548 1549
            y = F.pad(x, [2, 3], value=1, mode='constant', data_format="NCL")
            print(y)
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1550

1551
            # example 3
L
littletomatodonkey 已提交
1552
            x_shape = (1, 1, 2, 3)
1553
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
L
littletomatodonkey 已提交
1554 1555
            y = F.pad(x, [1, 2, 1, 1], value=1, mode='circular')
            print(y)
L
littletomatodonkey 已提交
1556 1557 1558 1559 1560
            # [[[[6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]
            #    [6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]]]]
    """
1561 1562 1563 1564 1565 1566 1567 1568
    assert mode in [
        'reflect',
        'replicate',
        'constant',
        'circular',
    ], "mode should be one of constant, reflect, replicate, circular, but got {}.".format(
        mode
    )
L
littletomatodonkey 已提交
1569 1570

    data_format = data_format.upper()
1571 1572
    assert data_format in ["NCL", "NCHW", "NCDHW", "NLC", "NHWC", "NDHWC"], (
        "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], "
L
littletomatodonkey 已提交
1573
        "but got {}".format(data_format)
1574
    )
L
littletomatodonkey 已提交
1575 1576 1577

    x_dim = len(x.shape)

1578 1579 1580 1581 1582
    if (
        mode == "constant"
        and isinstance(pad, (list, tuple))
        and len(pad) == x_dim * 2
    ):
1583 1584
        paddings = pad
        pad_value = value
1585 1586

        if in_dygraph_mode():
1587
            out = _C_ops.pad(x, paddings, float(pad_value))
1588 1589
            return out

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
1601
                'uint16',
1602 1603 1604
            ],
            "pad",
        )
1605

1606 1607 1608 1609
        check_type(pad_value, 'pad_value', (float, int, Variable), 'pad')
        if isinstance(pad_value, int):
            pad_value = float(pad_value)

1610 1611 1612
        helper = LayerHelper('pad', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
1613 1614 1615 1616 1617 1618
        helper.append_op(
            type='pad',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'paddings': paddings, 'pad_value': pad_value},
        )
1619
        return out
L
littletomatodonkey 已提交
1620

1621
    assert x_dim in [
1622 1623 1624
        3,
        4,
        5,
1625
    ], f"input tesor dimension must be in [3, 4, 5] but got {x_dim}"
1626 1627 1628 1629 1630 1631

    supported_format_map = {
        3: ["NCL", "NLC"],
        4: ["NCHW", "NHWC"],
        5: ["NCDHW", "NDHWC"],
    }
1632 1633 1634 1635 1636
    assert (
        data_format in supported_format_map[x_dim]
    ), "input tensor dimension is {}, it's data format should be in {} but got {}".format(
        x_dim, supported_format_map[x_dim], data_format
    )
1637

L
littletomatodonkey 已提交
1638 1639 1640 1641 1642 1643
    unsqueezed_dim = []

    if isinstance(pad, Variable):
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
1644
                pad = concat([zeros((4,), dtype="int32"), pad], axis=0)
L
littletomatodonkey 已提交
1645
                unsqueezed_dim = [3, 4]
1646
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1647
            elif x_dim == 4:
1648
                pad = concat([pad, zeros((2,), dtype="int32")], axis=0)
L
littletomatodonkey 已提交
1649
                unsqueezed_dim = [2]
1650
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1651 1652 1653
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
1654
                pad = concat([zeros((4,), dtype="int32"), pad], axis=0)
L
littletomatodonkey 已提交
1655
                unsqueezed_dim = [2, 3]
1656
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1657
            elif x_dim == 4:
1658
                pad = concat([pad, zeros((2,), dtype="int32")], axis=0)
L
littletomatodonkey 已提交
1659
                unsqueezed_dim = [1]
1660
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1661
    else:
1662
        pad = list(pad)
L
littletomatodonkey 已提交
1663 1664 1665 1666 1667
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [3, 4]
1668
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1669 1670 1671
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [2]
1672
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1673 1674 1675 1676 1677
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [2, 3]
1678
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1679 1680 1681
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [1]
1682
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1683

J
Jiabin Yang 已提交
1684
    if in_dygraph_mode():
L
littletomatodonkey 已提交
1685
        if isinstance(pad, Variable):
1686
            pad = pad.tolist()
1687
        out = _C_ops.pad3d(x, pad, mode, value, data_format)
J
Jiabin Yang 已提交
1688
    else:
1689 1690 1691 1692 1693
        attrs = {'mode': mode, 'value': value, 'data_format': data_format}
        inputs = {'X': [x]}
        if isinstance(pad, Variable):
            inputs['Paddings'] = [pad]
            attrs['paddings'] = []
1694
        else:
1695
            attrs['paddings'] = pad
L
littletomatodonkey 已提交
1696

1697
        helper = LayerHelper('pad3d', **locals())
L
littletomatodonkey 已提交
1698

1699 1700 1701 1702 1703
        dtype = helper.input_dtype(input_param_name='input')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='pad3d', inputs=inputs, outputs={"Out": out}, attrs=attrs
        )
L
littletomatodonkey 已提交
1704 1705

    if len(unsqueezed_dim) != 0:
1706
        out = squeeze(out, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1707 1708 1709 1710

    return out


1711 1712 1713 1714 1715 1716 1717 1718 1719
def zeropad2d(x, padding, data_format="NCHW", name=None):
    """
    Pads the input tensor boundaries with zero according to 'pad'.

    Args:
        x(Tensor): The input tensor with data type float16/float32/float64/int32/int64.
        padding(int | Tensor | List[int] | Tuple[int]): The padding size with data type int.
            The input dimension should be 4 and pad has the form (pad_left, pad_right,
            pad_top, pad_bottom).
1720
        data_format(str, optional): An string from: "NHWC", "NCHW". Specify the data format of
1721 1722
            the input data. Default: "NCHW".
        name(str, optional): The default value is None. Normally there is no need for user
1723
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
1724

1725
    Returns:
1726
        Tensor, padded with 0 according to pad and data type is same as input.
1727 1728 1729 1730 1731 1732

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
1733 1734
            x_shape = paddle.to_tensor([1, 1, 2, 3])
            x = paddle.arange(paddle.prod(x_shape), dtype="float32").reshape(x_shape) + 1
1735
            y = F.zeropad2d(x, [1, 2, 1, 1])
1736
            print(y)
1737 1738 1739 1740 1741 1742
            # [[[[0. 0. 0. 0. 0. 0.]
            #    [0. 1. 2. 3. 0. 0.]
            #    [0. 4. 5. 6. 0. 0.]
            #    [0. 0. 0. 0. 0. 0.]]]]
    """

1743 1744 1745 1746 1747 1748 1749 1750
    return pad(
        x,
        pad=padding,
        mode='constant',
        value=0,
        data_format=data_format,
        name=name,
    )
1751 1752


Y
Yang Zhang 已提交
1753
def cosine_similarity(x1, x2, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1754
    """
Y
Yang Zhang 已提交
1755
    Compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1756 1757 1758 1759

    Parameters:
        x1 (Tensor): First input. float32/double.
        x2 (Tensor): Second input. float32/double.
1760 1761
        axis (int, optional): Dimension of vectors to compute cosine similarity. Default is 1.
        eps(float, optional): Small value to avoid division by zero. Default is 1e-8.
1762 1763

    Returns:
1764
        Tensor, a Tensor representing cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1765 1766 1767

    Examples:
        .. code-block:: text
1768

L
littletomatodonkey 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777
            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
Y
Yang Zhang 已提交
1778
                axis = 1
L
littletomatodonkey 已提交
1779 1780 1781 1782 1783
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1784

L
littletomatodonkey 已提交
1785 1786 1787
            import paddle
            import paddle.nn as nn

1788 1789 1790 1791
            paddle.seed(1)
            x1 = paddle.randn(shape=[2, 3])
            x2 = paddle.randn(shape=[2, 3])

Y
Yang Zhang 已提交
1792
            result = paddle.nn.functional.cosine_similarity(x1, x2, axis=0)
L
littletomatodonkey 已提交
1793
            print(result)
1794
            # [0.97689527,  0.99996042, -0.55138415]
1795

L
littletomatodonkey 已提交
1796
    """
1797 1798 1799
    w12 = sum(paddle.multiply(x1, x2), axis=axis)
    w1 = sum(paddle.multiply(x1, x1), axis=axis)
    w2 = sum(paddle.multiply(x2, x2), axis=axis)
Y
Yang Zhang 已提交
1800
    n12 = sqrt(clip(w1 * w2, min=eps * eps))
L
littletomatodonkey 已提交
1801 1802
    cos_sim = w12 / n12
    return cos_sim
1803 1804 1805


def linear(x, weight, bias=None, name=None):
1806
    r"""
1807

1808 1809
    Fully-connected linear transformation operator. For each input :math:`X` ,
    the equation is:
1810 1811 1812

    .. math::

1813
        Out = XW + b
1814

1815
    where :math:`W` is the weight and :math:`b` is the bias.
1816

1817 1818 1819 1820
    If the weight is a 2-D tensor of shape :math:`[in\_features, out\_features]` ,
    input should be a multi-dimensional tensor of shape
    :math:`[batch\_size, *, in\_features]` , where :math:`*` means any number of
    additional dimensions. The linear operator multiplies input tensor with
1821
    weight and produces an output tensor of shape :math:`[batch\_size, *, out\_features]` ,
1822 1823
    If :math:`bias` is not None, the bias should be a 1-D tensor of shape
    :math:`[out\_features]` and will be added to the output.
1824

1825
    Parameters:
1826
        x (Tensor): Input tensor. The data type should be bfloat16, float16, float32 or float64.
1827 1828 1829 1830 1831
        weight (Tensor): Weight tensor. The data type should be float16, float32 or float64.
        bias (Tensor, optional): Bias tensor. The data type should be float16, float32 or float64.
                                 If it is set to None, no bias will be added to the output units.
        name (str, optional): Normally there is no need for user to set this parameter.
                              For detailed information, please refer to :ref:`api_guide_Name` .
1832 1833

    Returns:
1834 1835
        Tensor, the shape is :math:`[batch\_size, *, out\_features]` and the
        data type is the same with input :math:`x` .
1836 1837 1838

    Examples:
        .. code-block:: python
1839

1840
          import paddle
1841

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          weight = paddle.full(shape=[2, 4], fill_value="0.5", dtype="float32", name="weight")
          # weight: [[0.5 0.5 0.5 0.5]
          #          [0.5 0.5 0.5 0.5]]
          bias = paddle.ones(shape=[4], dtype="float32", name="bias")
          # bias: [1. 1. 1. 1.]
          y = paddle.nn.functional.linear(x, weight, bias)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
1855
    """
J
Jiabin Yang 已提交
1856
    if in_dygraph_mode():
1857
        # TODO(jiabin): using addmm for fast forward route
1858
        return _C_ops.linear(x, weight, bias)
1859
    else:
1860 1861
        helper = LayerHelper('linear', **locals())
        dtype = x.dtype
J
Jiabin Yang 已提交
1862

1863
        check_variable_and_dtype(
1864 1865 1866 1867 1868 1869 1870
            x, 'x', ["uint16", 'float16', 'float32', 'float64'], 'linear'
        )
        check_dtype(
            dtype,
            'dtype',
            ["uint16", 'float16', 'float32', 'float64'],
            'linear',
1871
        )
J
Jiabin Yang 已提交
1872

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
        inputs = {'X': [x], 'Y': [weight]}
        attrs = {'trans_x': False, 'trans_y': False}
        tmp = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='matmul_v2',
            inputs=inputs,
            outputs={'Out': tmp},
            attrs=attrs,
        )
        if bias is not None:
            res = helper.create_variable_for_type_inference(dtype)
1884
            helper.append_op(
1885 1886 1887
                type='elementwise_add',
                inputs={'X': [tmp], 'Y': [bias]},
                outputs={'Out': [res]},
J
Jiabin Yang 已提交
1888
                attrs={'axis': -1},
1889
            )
1890 1891 1892
        else:
            res = tmp
        return res
1893 1894 1895


def label_smooth(label, prior_dist=None, epsilon=0.1, name=None):
1896
    r"""
1897
    Label smoothing is a mechanism to regularize the classifier layer and is called
1898 1899 1900 1901
    label-smoothing regularization (LSR).Label smoothing is proposed to encourage
    the model to be less confident, since optimizing the log-likelihood of the
    correct label directly may cause overfitting and reduce the ability of the
    model to adapt.
1902

1903
    Label smoothing replaces the ground-truth label :math:`y` with the weighted sum
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Parameters:
        label(Tensor): The input variable containing the label data. The
                        label data should use one-hot representation. It's
                        a multidimensional tensor with a shape of
1921
                        :math:`[N_1, ..., Depth]`, where Depth is class number. The dtype can be "float16" "float32" and "float64".
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
        prior_dist(Tensor, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is
                        0.1.
        name(str, optional): The default value is None. Normally there is no need for user
                        to set this property. For more information, please refer to
                        :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor containing the smoothed labels.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1941 1942 1943 1944

            x = paddle.to_tensor([[[0, 1, 0],
                                [ 1,  0, 1]]], dtype="float32", stop_gradient=False)

1945
            output = paddle.nn.functional.label_smooth(x)
1946
            print(output)
1947 1948 1949
            # Tensor(shape=[1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [[[0.03333334, 0.93333334, 0.03333334],
            #          [0.93333334, 0.03333334, 0.93333334]]])
1950
    """
1951
    if epsilon > 1.0 or epsilon < 0.0:
1952 1953
        raise ValueError("The value of epsilon must be between 0 and 1.")

1954
    if in_dygraph_mode():
1955
        return _C_ops.label_smooth(label, prior_dist, float(epsilon))
1956

1957
    elif paddle.in_dynamic_mode():
1958 1959 1960
        return _legacy_C_ops.label_smooth(
            label, prior_dist, 'epsilon', float(epsilon)
        )
1961

1962
    check_variable_and_dtype(
1963 1964 1965 1966
        label,
        'label',
        ['uint16', 'float16', 'float32', 'float64'],
        'label_smooth',
1967
    )
1968 1969 1970 1971

    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_variable_for_type_inference(label.dtype)
1972 1973 1974 1975 1976 1977 1978 1979
    helper.append_op(
        type="label_smooth",
        inputs={"X": label, "PriorDist": prior_dist}
        if prior_dist
        else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)},
    )
1980
    return smooth_label
1981 1982


G
Guoxia Wang 已提交
1983
def class_center_sample(label, num_classes, num_samples, group=None):
1984 1985
    """
    Class center sample method is proposed from the paper PartialFC that only sample a subset of the class centers.
1986
    The process of sampling subset class centers is straightforward:
1987 1988 1989 1990

    1. First select the positive class centers;
    2. Then randomly sample negative class centers.

1991
    Specifically, given a label tensor, shape [batch_size], select all the positive class centers and randomly
1992 1993 1994 1995
    sample negative class centers, then remap the input label tensor using the sampled class centers.

    For more information, Partial FC: Training 10 Million Identities on a Single Machine
    arxiv: https://arxiv.org/abs/2010.05222
1996

V
Vegetable dog 已提交
1997
    Note:
1998
        If the number of the positive class centers is greater than the input num_samples, it keeps all the positive
1999
        class centers and the shape of sampled_class_center will be [num_positive_class_centers].
2000

2001 2002
        The API supports CPU, single GPU and multi GPU.

2003 2004 2005 2006
        For data parallel mode, set ``group=False``.

        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.

2007
    Args:
G
Guoxia Wang 已提交
2008 2009
        label (Tensor): 1-D tensor with shape [N], each label in [0, num_classes)
        num_classes (int): A positive integer to specify the number of classes at local rank.
2010
            Note that num_classes of each GPU can be different.
G
Guoxia Wang 已提交
2011
        num_samples (int): A positive integer to specify the number of class center to sample.
2012
        group (Group, optional): The group instance return by paddle.distributed.new_group
2013 2014
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
2015 2016 2017 2018 2019 2020 2021 2022

    Returns:
        Tuple of two ``Tensor`` : (remapped_label, sampled_class_center), remapped label using sampled class center,
        sampled class center from [0, num_classes).

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
2023
        :name: code-example1
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

        # CPU or single GPU
        import paddle
        num_classes = 20
        batch_size = 10
        num_samples = 6
        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes, num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        # the output is
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [11, 5 , 1 , 3 , 12, 2 , 15, 19, 18, 19])
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [4, 3, 0, 2, 5, 1, 6, 8, 7, 8])
        #Tensor(shape=[9], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [1 , 2 , 3 , 5 , 11, 12, 15, 18, 19])

    .. code-block:: python
G
Guoxia Wang 已提交
2046
        :name: code-example2
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077

        # required: distributed
        # Multi GPU, test_class_center_sample.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        batch_size = 10
        num_samples = 6
        rank_id = dist.get_rank()
        # num_classes of each GPU can be different, e.g num_classes_list = [10, 8]
        num_classes_list = [10, 10]
        num_classes = paddle.sum(paddle.to_tensor(num_classes_list))
        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes_list[rank_id], num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        #python -m paddle.distributed.launch --gpus=0,1 test_class_center_sample.py
        # rank 0 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [0, 2, 4, 8, 9, 3])
2078

2079 2080 2081 2082 2083 2084 2085 2086
        # rank 1 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[7], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [0, 1, 2, 3, 5, 7, 8])
    """
2087
    if not (group is False or group is None or hasattr(group, 'is_member')):
2088 2089
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
2090 2091 2092 2093
             (got group: {})'.format(
                group
            )
        )
2094 2095 2096
        return

    if hasattr(group, 'is_member') and not group.is_member():
2097 2098
        return

2099
    ring_id = 0
2100 2101
    rank = 0
    nranks = 1
2102
    if group is not False:
2103 2104 2105
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
2106 2107 2108 2109 2110
            rank = (
                global_rank
                if group is None
                else group.get_group_rank(global_rank)
            )
2111
            nranks = parallel_env.world_size if group is None else group.nranks
2112 2113 2114

    if num_samples > num_classes:
        raise ValueError(
2115 2116 2117 2118
            'Expected num_samples less than or equal to {}, got num_samples {}'.format(
                num_classes, num_samples
            )
        )
2119

G
Guoxia Wang 已提交
2120 2121 2122
    label_size = 1
    for dim in list(label.shape):
        label_size *= dim
2123
    if label_size != -1 and label_size < 1:
2124 2125 2126 2127 2128 2129
        raise ValueError(
            'Expected label_size > 0 \
             (got label_size: {})'.format(
                label_size
            )
        )
G
Guoxia Wang 已提交
2130 2131 2132

    label_dims = len(list(label.shape))
    if label_dims != 1:
2133 2134 2135 2136 2137 2138
        raise ValueError(
            'Expected label_dims == 1 \
             (got label_dims: {})'.format(
                label_dims
            )
        )
G
Guoxia Wang 已提交
2139 2140

    seed = None
2141 2142 2143
    if (seed is None or seed == 0) and default_main_program().random_seed != 0:
        seed = default_main_program().random_seed

2144
    if in_dygraph_mode():
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
        return _C_ops.class_center_sample(
            label,
            num_classes,
            num_samples,
            ring_id,
            rank,
            nranks,
            seed is not None,
            seed if seed is not None else 0,
        )
2155
    elif paddle.in_dynamic_mode():
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
        (
            remapped_label,
            sampled_class_center,
        ) = _legacy_C_ops.class_center_sample(
            label,
            'num_classes',
            num_classes,
            'num_samples',
            num_samples,
            'ring_id',
            ring_id,
            'nranks',
            nranks,
            'rank',
            rank,
            'fix_seed',
            seed is not None,
            'seed',
            seed if seed is not None else 0,
        )
2176 2177
        return remapped_label, sampled_class_center

2178 2179 2180
    check_variable_and_dtype(
        label, 'label', ['int64', 'int32'], 'class_center_sample'
    )
2181 2182 2183
    op_type = 'class_center_sample'
    helper = LayerHelper(op_type, **locals())
    remapped_label = helper.create_variable_for_type_inference(
2184 2185
        dtype=label.dtype
    )
2186
    sampled_class_center = helper.create_variable_for_type_inference(
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
        dtype=label.dtype
    )
    helper.append_op(
        type=op_type,
        inputs={'Label': label},
        outputs={
            'RemappedLabel': remapped_label,
            'SampledLocalClassCenter': sampled_class_center,
        },
        attrs={
            'num_classes': num_classes,
            'num_samples': num_samples,
            'ring_id': ring_id,
            'nranks': nranks,
            'rank': rank,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
        },
    )
2206
    return remapped_label, sampled_class_center
X
xiaoting 已提交
2207 2208


2209 2210 2211
def fold(
    x, output_sizes, kernel_sizes, strides=1, paddings=0, dilations=1, name=None
):
X
xiaoting 已提交
2212
    r"""
2213

2214
    Combines an array of sliding local blocks into a large containing
2215 2216
    tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each
    combined value in the resulting large tensor by summing all values from all containing blocks.
X
xiaoting 已提交
2217 2218 2219 2220 2221 2222


    For each input :math:`x` with shape [N, C_in , L], the output shape [N, C_out, H_out, W_out]
    can be calculated as following.

    .. math::
2223

2224 2225 2226
        H_{out} &= output\_size[0] \\
        W_{out} &= output\_size[1] \\
        C_{out} &= \frac{C_{in}}{kernel\_sizes[0]\times kernel\_sizes[1]} \\
X
xiaoting 已提交
2227 2228 2229 2230

    Parameters:
        x(Tensor):                3-D Tensor, input tensor of format [N, C, L],
                                  data type can be float32 or float64
X
xiaoting 已提交
2231
        output_sizes(int|list|tuple):       The size of output size, should be [output_size_h, output_size_w]
X
xiaoting 已提交
2232
                                  or an interger o treated as [o, o].
X
xiaoting 已提交
2233
        kernel_sizes(int|list|tuple):   The size of convolution kernel, should be [k_h, k_w]
X
xiaoting 已提交
2234
                                  or an integer k treated as [k, k].
2235
        strides(int|list|tuple, optional):        The strides, should be [stride_h, stride_w]
X
xiaoting 已提交
2236 2237
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
2238
        paddings(int|list|tuple, optional):       The paddings of each dimension, should be
X
xiaoting 已提交
2239 2240 2241 2242 2243 2244
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
2245
        dilations(int|list|tuple, optional):      the dilations of convolution kernel, should be
X
xiaoting 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
        The tensor formed by combining a group of sliding local blocks
        The output shape is [N, Cout, H, W] as decriabled above.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

X
xiaoting 已提交
2264 2265 2266
            x = paddle.randn([2,3*2*2,12])
            y = F.fold(x, output_sizes=[4, 5], kernel_sizes=2)
            # y.shape = [2,3,4,5]
X
xiaoting 已提交
2267 2268

    """
2269 2270 2271 2272 2273

    helper = LayerHelper("fold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'fold')

2274
    assert len(x.shape) == 3, "input should be the format of [N, C, L]"
X
xiaoting 已提交
2275

X
xiaoting 已提交
2276
    def _is_list_or_turple_(data):
2277
        return isinstance(data, (list, tuple))
X
xiaoting 已提交
2278

X
xiaoting 已提交
2279 2280 2281
    if isinstance(output_sizes, int):
        output_sizes = [output_sizes, output_sizes]
    else:
2282 2283 2284
        assert _is_list_or_turple_(output_sizes) and (
            len(output_sizes) == 2
        ), "output_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2285 2286 2287 2288

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
2289 2290 2291
        assert _is_list_or_turple_(kernel_sizes) and (
            len(kernel_sizes) == 2
        ), "kernel_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2292 2293 2294 2295

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
2296 2297 2298
        assert _is_list_or_turple_(strides) and (
            len(strides) == 2
        ), "strides should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2299 2300 2301 2302

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
2303 2304 2305
        assert _is_list_or_turple_(dilations) and (
            len(dilations) == 2
        ), "dilations should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
2321 2322
            "of 2 or 4 integers"
        )
X
xiaoting 已提交
2323

X
xiaoting 已提交
2324
    if in_dygraph_mode():
2325 2326 2327
        out = _C_ops.fold(
            x, output_sizes, kernel_sizes, strides, paddings, dilations
        )
X
xiaoting 已提交
2328
    elif in_dynamic_mode():
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
        out = _legacy_C_ops.fold(
            x,
            "output_sizes",
            output_sizes,
            "kernel_sizes",
            kernel_sizes,
            "strides",
            strides,
            "paddings",
            paddings,
            "dilations",
            dilations,
        )
X
xiaoting 已提交
2342 2343
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
        helper.append_op(
            type="fold",
            inputs={"X": x},
            outputs={"Y": out},
            attrs={
                "output_sizes": output_sizes,
                "kernel_sizes": kernel_sizes,
                "strides": strides,
                "paddings": paddings,
                "dilations": dilations,
            },
        )
X
xiaoting 已提交
2356
    return out