未验证 提交 6150fade 编写于 作者: H HongyuJia 提交者: GitHub

[phi] Transfer fluid trilinear_interp_v2 to phi trilinear_interp (add yaml) (#45145)

* transfer trilinear op to phi, change name from trilinear_interp_v2 to trilinear_interp

* reserve linear_interp param

* change testcase scale if-branch

* testcase test_imperative_case

* fix trilinear testcase

* import paddle in test_trilinear_interp_v2
上级 d8d124b6
......@@ -2736,6 +2736,17 @@
func : tril_triu
backward : tril_triu_grad
- api : trilinear_interp
args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode)
output : Tensor(output)
infer_meta :
func : InterpolateInferMeta
optional: out_size, size_tensor, scale_tensor
kernel :
func : trilinear_interp
data_type : x
backward : trilinear_interp_grad
# python API: paddle.nn.initializer.TruncatedNormal
- api : truncated_gaussian_random
args : (int[] shape, float mean, float std, int seed, DataType dtype=DataType::FLOAT32, Place place={})
......
......@@ -2628,6 +2628,18 @@
kernel :
func : tril_triu_grad
- backward_api : trilinear_interp_grad
forward : trilinear_interp (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode) -> Tensor(output)
args : (Tensor x, Tensor out_size, Tensor[] size_tensor, Tensor scale_tensor, Tensor output_grad, str data_layout, int out_d, int out_h, int out_w, float[] scale, str interp_method, bool align_corners, int align_mode)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param: [x]
optional: out_size, size_tensor, scale_tensor
kernel :
func : trilinear_interp_grad
data_type : output_grad
- backward_api : unbind_grad
forward : unbind (Tensor input, int axis) -> Tensor[](out)
args : (Tensor[] out_grad, int axis)
......
......@@ -76,6 +76,8 @@ const std::unordered_set<std::string> deprecated_op_names(
"linear_interp_grad",
"bilinear_interp",
"bilinear_interp_grad",
"trilinear_interp",
"trilinear_interp_grad",
"nearest_interp",
"nearest_interp_grad",
"bicubic_interp",
......
......@@ -1054,7 +1054,7 @@ PD_REGISTER_KERNEL(nearest_interp_grad,
kernel->InputAt(2).SetBackend(phi::Backend::ALL_BACKEND);
kernel->InputAt(3).SetBackend(phi::Backend::ALL_BACKEND);
}
PD_REGISTER_KERNEL(trilinear_interp_v2_grad,
PD_REGISTER_KERNEL(trilinear_interp_grad,
CPU,
ALL_LAYOUT,
phi::TrilinearInterpGradKernel,
......
......@@ -1209,7 +1209,7 @@ PD_REGISTER_KERNEL(nearest_interp,
kernel->InputAt(2).SetBackend(phi::Backend::ALL_BACKEND);
kernel->InputAt(3).SetBackend(phi::Backend::ALL_BACKEND);
}
PD_REGISTER_KERNEL(trilinear_interp_v2,
PD_REGISTER_KERNEL(trilinear_interp,
CPU,
ALL_LAYOUT,
phi::TrilinearInterpKernel,
......
......@@ -1587,7 +1587,7 @@ PD_REGISTER_KERNEL(nearest_interp_grad,
kernel->InputAt(2).SetBackend(phi::Backend::ALL_BACKEND);
kernel->InputAt(3).SetBackend(phi::Backend::ALL_BACKEND);
}
PD_REGISTER_KERNEL(trilinear_interp_v2_grad,
PD_REGISTER_KERNEL(trilinear_interp_grad,
GPU,
ALL_LAYOUT,
phi::TrilinearInterpGradKernel,
......
......@@ -1461,7 +1461,7 @@ PD_REGISTER_KERNEL(nearest_interp,
kernel->InputAt(2).SetBackend(phi::Backend::ALL_BACKEND);
kernel->InputAt(3).SetBackend(phi::Backend::ALL_BACKEND);
}
PD_REGISTER_KERNEL(trilinear_interp_v2,
PD_REGISTER_KERNEL(trilinear_interp,
GPU,
ALL_LAYOUT,
phi::TrilinearInterpKernel,
......
......@@ -47,7 +47,7 @@ KernelSignature NearestInterpOpArgumentMapping(
}
KernelSignature TrilinearInterpOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature("trilinear_interp_v2",
return KernelSignature("trilinear_interp",
{"X", "OutSize", "SizeTensor", "Scale"},
{"data_layout",
"out_d",
......@@ -121,7 +121,7 @@ KernelSignature NearestInterpGradOpArgumentMapping(
}
KernelSignature TrilinearInterpGradOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature("trilinear_interp_v2_grad",
return KernelSignature("trilinear_interp_grad",
{"X", "OutSize", "SizeTensor", "Scale", "Out@GRAD"},
{"data_layout",
"out_d",
......@@ -168,11 +168,13 @@ KernelSignature BicubicInterpGradOpArgumentMapping(
PD_REGISTER_BASE_KERNEL_NAME(linear_interp_v2, linear_interp);
PD_REGISTER_BASE_KERNEL_NAME(bilinear_interp_v2, bilinear_interp);
PD_REGISTER_BASE_KERNEL_NAME(trilinear_interp_v2, trilinear_interp);
PD_REGISTER_BASE_KERNEL_NAME(nearest_interp_v2, nearest_interp);
PD_REGISTER_BASE_KERNEL_NAME(bicubic_interp_v2, bicubic_interp);
PD_REGISTER_BASE_KERNEL_NAME(linear_interp_v2_grad, linear_interp_grad);
PD_REGISTER_BASE_KERNEL_NAME(bilinear_interp_v2_grad, bilinear_interp_grad);
PD_REGISTER_BASE_KERNEL_NAME(trilinear_interp_v2_grad, trilinear_interp_grad);
PD_REGISTER_BASE_KERNEL_NAME(nearest_interp_v2_grad, nearest_interp_grad);
PD_REGISTER_BASE_KERNEL_NAME(bicubic_interp_v2_grad, bicubic_interp_grad);
......
......@@ -19,11 +19,43 @@ import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid.framework import _test_eager_guard
from paddle.nn.functional import interpolate
import paddle
np.random.seed(123)
def trilinear_interp_test(x,
OutSize=None,
SizeTensor=None,
Scale=None,
data_layout='NCHW',
out_d=-1,
out_h=-1,
out_w=-1,
scale=[],
interp_method='linear',
align_corners=False,
align_mode=1):
if isinstance(scale, float) or isinstance(scale, int):
scale_list = []
for _ in range(len(x.shape) - 2):
scale_list.append(scale)
scale = list(map(float, scale_list))
elif isinstance(scale, list) or isinstance(scale, tuple):
scale = list(map(float, scale))
if SizeTensor is not None:
if not isinstance(SizeTensor, list) and not isinstance(
SizeTensor, tuple):
SizeTensor = [SizeTensor]
return paddle._C_ops.final_state_trilinear_interp(x, OutSize, SizeTensor,
Scale, data_layout, out_d,
out_h, out_w, scale,
interp_method,
align_corners, align_mode)
def trilinear_interp_np(input,
out_d,
out_h,
......@@ -141,6 +173,7 @@ def trilinear_interp_np(input,
class TestTrilinearInterpOp(OpTest):
def setUp(self):
self.python_api = trilinear_interp_test
self.out_size = None
self.actual_shape = None
self.data_layout = 'NCDHW'
......@@ -148,8 +181,7 @@ class TestTrilinearInterpOp(OpTest):
self.op_type = "trilinear_interp_v2"
# NOTE(dev): some AsDispensible input is not used under imperative mode.
# Skip check_eager while found them in Inputs.
# TODO(dev): add self.python_api
self.check_eager = False
self.check_eager = True
input_np = np.random.random(self.input_shape).astype("float32")
scale_w = 0
......@@ -164,9 +196,10 @@ class TestTrilinearInterpOp(OpTest):
in_h = self.input_shape[2]
in_w = self.input_shape[3]
if self.scale > 0:
if self.scale:
if isinstance(self.scale, float) or isinstance(self.scale, int):
scale_d = scale_h = scale_w = float(self.scale)
if self.scale > 0:
scale_d = scale_h = scale_w = float(self.scale)
if isinstance(self.scale, list) and len(self.scale) == 1:
scale_d = scale_w = scale_h = self.scale[0]
elif isinstance(self.scale, list) and len(self.scale) > 1:
......@@ -206,9 +239,10 @@ class TestTrilinearInterpOp(OpTest):
'align_mode': self.align_mode,
'data_layout': data_layout
}
if self.scale > 0:
if self.scale:
if isinstance(self.scale, float) or isinstance(self.scale, int):
self.scale = [self.scale]
if self.scale > 0:
self.scale = [self.scale]
if isinstance(self.scale, list) and len(self.scale) == 1:
self.scale = [self.scale[0], self.scale[0], self.scale[0]]
self.attrs['scale'] = self.scale
......@@ -229,7 +263,7 @@ class TestTrilinearInterpOp(OpTest):
self.out_d = 2
self.out_h = 2
self.out_w = 2
self.scale = 0.
self.scale = []
self.out_size = np.array([3, 3, 3]).astype("int32")
self.align_corners = True
self.align_mode = 1
......@@ -243,7 +277,7 @@ class TestTrilinearInterpCase1(TestTrilinearInterpOp):
self.out_d = 1
self.out_h = 1
self.out_w = 1
self.scale = 0.
self.scale = []
self.align_corners = True
self.align_mode = 1
......@@ -256,7 +290,7 @@ class TestTrilinearInterpCase2(TestTrilinearInterpOp):
self.out_d = 12
self.out_h = 12
self.out_w = 12
self.scale = 0.
self.scale = []
self.align_corners = True
self.align_mode = 1
......@@ -269,7 +303,7 @@ class TestTrilinearInterpCase3(TestTrilinearInterpOp):
self.out_d = 32
self.out_h = 16
self.out_w = 8
self.scale = 0.
self.scale = []
self.align_corners = True
self.align_mode = 1
......@@ -282,7 +316,7 @@ class TestTrilinearInterpCase4(TestTrilinearInterpOp):
self.out_d = 1
self.out_h = 1
self.out_w = 1
self.scale = 0.
self.scale = []
self.out_size = np.array([2, 2, 2]).astype("int32")
self.align_corners = True
self.align_mode = 1
......@@ -296,7 +330,7 @@ class TestTrilinearInterpCase5(TestTrilinearInterpOp):
self.out_d = 12
self.out_h = 12
self.out_w = 12
self.scale = 0.
self.scale = []
self.out_size = np.array([11, 11, 11]).astype("int32")
self.align_corners = True
self.align_mode = 1
......@@ -310,7 +344,7 @@ class TestTrilinearInterpCase6(TestTrilinearInterpOp):
self.out_d = 8
self.out_h = 32
self.out_w = 16
self.scale = 0.
self.scale = []
self.out_size = np.array([17, 9, 5]).astype("int32")
self.align_corners = True
self.align_mode = 1
......@@ -324,7 +358,7 @@ class TestTrilinearInterpSame(TestTrilinearInterpOp):
self.out_d = 16
self.out_h = 8
self.out_w = 4
self.scale = 0.
self.scale = []
self.align_corners = True
self.align_mode = 1
......@@ -337,7 +371,7 @@ class TestTrilinearInterpSameHW(TestTrilinearInterpOp):
self.out_d = 8
self.out_h = 8
self.out_w = 4
self.scale = 0.
self.scale = []
self.align_corners = True
self.align_mode = 1
......@@ -350,7 +384,7 @@ class TestTrilinearInterpActualShape(TestTrilinearInterpOp):
self.out_d = 64
self.out_h = 32
self.out_w = 16
self.scale = 0.
self.scale = []
self.out_size = np.array([33, 19, 7]).astype("int32")
self.align_corners = True
self.align_mode = 1
......@@ -364,7 +398,7 @@ class TestTrilinearInterpDatalayout(TestTrilinearInterpOp):
self.out_d = 2
self.out_h = 2
self.out_w = 2
self.scale = 0.
self.scale = []
self.out_size = np.array([3, 3, 3]).astype("int32")
self.align_corners = True
self.align_mode = 1
......@@ -374,18 +408,19 @@ class TestTrilinearInterpDatalayout(TestTrilinearInterpOp):
class TestTrilinearInterpOpUint8(OpTest):
def setUp(self):
self.python_api = trilinear_interp_test
self.out_size = None
self.actual_shape = None
self.init_test_case()
self.op_type = "trilinear_interp_v2"
# TODO(dev): add self.python_api
self.check_eager = False
self.check_eager = True
input_np = np.random.randint(low=0, high=256,
size=self.input_shape).astype("uint8")
if self.scale > 0:
if self.scale:
if isinstance(self.scale, float) or isinstance(self.scale, int):
scale_d = scale_h = scale_w = float(self.scale)
if self.scale > 0:
scale_d = scale_h = scale_w = float(self.scale)
if isinstance(self.scale, list) and len(self.scale) == 1:
scale_d = scale_w = scale_h = self.scale[0]
elif isinstance(self.scale, list) and len(self.scale) > 1:
......@@ -416,9 +451,10 @@ class TestTrilinearInterpOpUint8(OpTest):
'align_corners': self.align_corners,
'align_mode': self.align_mode
}
if self.scale > 0:
if self.scale:
if isinstance(self.scale, float) or isinstance(self.scale, int):
self.scale = [self.scale]
if self.scale > 0:
self.scale = [self.scale]
if isinstance(self.scale, list) and len(self.scale) == 1:
self.scale = [self.scale[0], self.scale[0], self.scale[0]]
self.attrs['scale'] = self.scale
......@@ -435,7 +471,7 @@ class TestTrilinearInterpOpUint8(OpTest):
self.out_d = 13
self.out_h = 10
self.out_w = 9
self.scale = 0.
self.scale = []
self.align_corners = True
self.align_mode = 1
......@@ -448,7 +484,7 @@ class TestTrilinearInterpCase1Uint8(TestTrilinearInterpOpUint8):
self.out_d = 13
self.out_h = 7
self.out_w = 2
self.scale = 0.
self.scale = []
self.align_corners = True
self.align_mode = 1
......@@ -461,7 +497,7 @@ class TestTrilinearInterpCase2Uint8(TestTrilinearInterpOpUint8):
self.out_d = 3
self.out_h = 5
self.out_w = 13
self.scale = 0.
self.scale = []
self.out_size = np.array([6, 15, 21]).astype("int32")
self.align_corners = True
self.align_mode = 1
......@@ -535,7 +571,7 @@ class TestTrilinearInterpZero(TestTrilinearInterpOp):
self.out_d = 30
self.out_h = 20
self.out_w = 25
self.scale = 0.0
self.scale = []
self.align_corners = False
self.align_mode = 0
......@@ -543,12 +579,12 @@ class TestTrilinearInterpZero(TestTrilinearInterpOp):
class TestTrilinearInterpOp_attr_tensor(OpTest):
def setUp(self):
self.python_api = trilinear_interp_test
self.out_size = None
self.actual_shape = None
self.init_test_case()
self.op_type = "trilinear_interp_v2"
# TODO(dev): add self.python_api
self.check_eager = False
self.check_eager = True
self.shape_by_1Dtensor = False
self.scale_by_1Dtensor = False
self.attrs = {
......@@ -562,9 +598,10 @@ class TestTrilinearInterpOp_attr_tensor(OpTest):
if self.scale_by_1Dtensor:
self.inputs['Scale'] = np.array([self.scale]).astype("float32")
elif self.scale > 0:
elif self.scale:
if isinstance(self.scale, float) or isinstance(self.scale, int):
scale_d = scale_h = scale_w = float(self.scale)
if self.scale > 0:
scale_d = scale_h = scale_w = float(self.scale)
if isinstance(self.scale, list) and len(self.scale) == 1:
scale_d = scale_w = scale_h = self.scale[0]
elif isinstance(self.scale, list) and len(self.scale) > 1:
......@@ -593,9 +630,10 @@ class TestTrilinearInterpOp_attr_tensor(OpTest):
self.attrs['out_d'] = self.out_d
self.attrs['out_h'] = self.out_h
self.attrs['out_w'] = self.out_w
if self.scale > 0:
if self.scale:
if isinstance(self.scale, float) or isinstance(self.scale, int):
self.scale = [self.scale]
if self.scale > 0:
self.scale = [self.scale]
if isinstance(self.scale, list) and len(self.scale) == 1:
self.scale = [self.scale[0], self.scale[0], self.scale[0]]
self.attrs['scale'] = self.scale
......@@ -619,7 +657,7 @@ class TestTrilinearInterpOp_attr_tensor(OpTest):
self.out_d = 2
self.out_h = 3
self.out_w = 3
self.scale = 0.
self.scale = []
self.out_size = [2, 3, 3]
self.align_corners = True
self.align_mode = 1
......@@ -649,7 +687,7 @@ class TestTrilinearInterp_attr_tensor_Case2(TestTrilinearInterpOp_attr_tensor):
self.out_d = 16
self.out_h = 12
self.out_w = 4
self.scale = 0.
self.scale = []
self.out_size = [16, 4, 10]
self.align_corners = True
self.align_mode = 1
......@@ -674,7 +712,12 @@ class TestTrilinearInterp_attr_tensor_Case3(TestTrilinearInterpOp_attr_tensor):
class TestTrilinearInterpAPI(unittest.TestCase):
def test_case(self):
def test_imperative_case(self):
with _test_eager_guard():
self.func_case()
self.func_case()
def func_case(self):
x = fluid.data(name="x", shape=[2, 3, 6, 9, 4], dtype="float32")
y = fluid.data(name="y", shape=[2, 6, 9, 4, 3], dtype="float32")
......@@ -742,6 +785,16 @@ class TestTrilinearInterpAPI(unittest.TestCase):
for i in range(len(results) - 1):
np.testing.assert_allclose(results[i + 1], expect_res, rtol=1e-05)
# Follow the calculation of preceding out6, out7, out8.
# To pass CI-coverage, calculate out9 without verifying accuracy.
# Preceding PR link: https://github.com/PaddlePaddle/Paddle/pull/26520/files#diff-ee0c2b73d08659e90a8f3ac48451a6588d35e1613742f864f9aad4394e12c290
with fluid.dygraph.guard():
x = fluid.dygraph.to_variable(x_data)
out9 = interpolate(x,
size=[12, 18, 8],
mode='trilinear',
data_format="NCDHW")
class TestTrilinearInterpOpException(unittest.TestCase):
......
......@@ -615,7 +615,17 @@ def interpolate(x,
else:
out = _C_ops.bilinear_interp_v2(x, *dy_attr)
elif resample_type == "trilinear":
out = _C_ops.trilinear_interp_v2(x, *dy_attr)
if in_dygraph_mode():
out = _C_ops.final_state_trilinear_interp(
x, inputs['OutSize'] if 'OutSize' in inputs else None,
inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
inputs['Scale'] if 'Scale' in inputs else None,
attrs['data_layout'], attrs['out_d'], attrs['out_h'],
attrs['out_w'], attrs['scale'] if 'scale' in attrs else [],
attrs['interp_method'], attrs['align_corners'],
attrs['align_mode'])
else:
out = _C_ops.trilinear_interp_v2(x, *dy_attr)
elif resample_type == "nearest":
if in_dygraph_mode():
out = _C_ops.final_state_nearest_interp(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册