common.py 94.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import numpy

17
import paddle
18
from paddle import _C_ops, _legacy_C_ops
19
from paddle.common_ops_import import Variable, default_main_program
X
xiaoting 已提交
20
from paddle.fluid.layer_helper import LayerHelper
21
from paddle.fluid.layers.tensor import fill_constant
22 23
from paddle.framework import core, in_dynamic_mode
from paddle.tensor.creation import full
24 25 26 27

from ...fluid.data_feeder import (
    check_dtype,
    check_type,
28
    check_variable_and_dtype,
29
)
30
from ...fluid.framework import in_dygraph_mode
31 32
from ...tensor import clip, concat, sqrt, sum
from ...tensor.creation import zeros
Z
zhiboniu 已提交
33

34 35
# TODO: define the common functions to build a neural network
from ...tensor.manipulation import squeeze, unsqueeze
36

37 38
__all__ = []

X
xiaoting 已提交
39

40 41 42
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    r"""

43
    Return a col buffer of sliding local blocks of input x, also known
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter sliding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1

        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]

        Lout &= hout \times wout


    Parameters:
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
                                  data type can be float32 or float64
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
71
        strides(int|list, optional):        The strides, should be [stride_h, stride_w]
72 73
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
74
        paddings(int|list, optional):       The paddings of each dimension, should be
75 76 77 78 79 80
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
81
        dilations(int|list, optional):      the dilations of convolution kernel, should be
82 83 84 85 86 87 88 89
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
90
        Tensor, The tensor corresponding to the sliding local blocks.
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
        The data type of output is the same as the input :math:`x`

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
    """

107 108 109 110
    helper = LayerHelper("unfold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'unfold')

111
    assert len(x.shape) == 4, "input should be the format of [N, C, H, W]"
112 113 114 115

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
116 117 118
        assert isinstance(kernel_sizes, list) and (
            len(kernel_sizes) == 2
        ), "kernel_sizes should either be an integer or a list of two integers"
119 120 121 122

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
123 124 125
        assert isinstance(strides, list) and (
            len(strides) == 2
        ), "strides should either be an integer or a list of two integers"
126 127 128 129

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
130 131 132
        assert isinstance(dilations, list) and (
            len(dilations) == 2
        ), "dilations should either be an integer or a list of two integers"
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
148 149
            "of 2 or 4 integers"
        )
150 151

    if in_dygraph_mode():
152
        return _C_ops.unfold(x, kernel_sizes, strides, paddings, dilations)
153 154

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
155 156 157 158 159 160 161 162 163 164 165
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations,
        },
    )
166 167 168
    return out


169 170 171 172 173 174 175 176 177 178
def interpolate(
    x,
    size=None,
    scale_factor=None,
    mode='nearest',
    align_corners=False,
    align_mode=0,
    data_format='NCHW',
    name=None,
):
X
xiaoting 已提交
179
    """
S
swtkiwi 已提交
180

181
    This API resizes a batch of images.
182

183 184
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
X
xiaoting 已提交
185
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
186 187
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
188
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
189

X
xiaoting 已提交
190
    Supporting resample methods:
191 192 193 194 195 196 197

    - 'linear' : Linear interpolation
    - 'bilinear' : Bilinear interpolation
    - 'trilinear' : Trilinear interpolation
    - 'nearest' : Nearest neighbor interpolation
    - 'bicubic' : Bicubic interpolation
    - 'area': Area interpolation
198

199 200 201
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
216
    align_corners and align_mode are optional parameters,the calculation method
X
xiaoting 已提交
217 218 219 220 221 222 223
    of interpolation can be selected by them.

    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.

224 225
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
226 227
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
228 229
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
230 231 232 233
    Example:

    .. code-block:: text

234
        # For scale_factor:
X
xiaoting 已提交
235 236 237 238 239
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

240
        # Linear interpolation:
241 242 243 244 245 246 247 248 249
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
250

251
        # Nearest neighbor interpolation:
X
xiaoting 已提交
252

X
xiaoting 已提交
253 254 255 256 257
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
258

259
        # Bilinear interpolation:
X
xiaoting 已提交
260 261 262 263 264 265 266 267 268 269 270 271
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

272
        # Bicubic interpolation:
X
xiaoting 已提交
273 274 275 276 277 278 279 280 281 282 283 284
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

285
        # Trilinear interpolation:
X
xiaoting 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

300 301
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
302

X
xiaoting 已提交
303 304
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
305

X
xiaoting 已提交
306 307
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
308

X
xiaoting 已提交
309 310
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
311

X
xiaoting 已提交
312 313
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
314

X
xiaoting 已提交
315
    Parameters:
X
xiaoting 已提交
316
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
X
xiaoting 已提交
317
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
318
        size (list|tuple|Tensor|None): Output shape of image resize
319 320
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
321
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1] or [].
X
xiaoting 已提交
322
             If a Tensor, its dimensions size should be a 1.
323 324
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
325
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if it is either a list or a tuple or a Tensor.If a list/tuple, each element can be an integer or a Tensor of shape: [1] or [].
X
xiaoting 已提交
326
             Default: None.
327
        mode (str): The resample method. It supports 'linear', 'area', 'nearest', 'bilinear',
328
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
X
xiaoting 已提交
329 330
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
X
xiaoting 已提交
331
                               corner pixels.This only has an effect when 'linear', 'bilinear', 'bicubic' or 'trilinear'.
332 333 334 335
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
X
xiaoting 已提交
336
        data_format (str, optional): Specify the data format of the input, and the data format of the output
337
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`,  `"NCHW"`, `"NHWC"`, `"NCDHW"`,
X
xiaoting 已提交
338 339 340
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
341 342 343
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
X
xiaoting 已提交
344
    Returns:
345
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
X
xiaoting 已提交
346 347
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
348

349

X
xiaoting 已提交
350 351 352
    Examples:
        .. code-block:: python

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
            import paddle
            import paddle.nn.functional as F

            input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
            output_1 = F.interpolate(x=input_data, size=[12,12])
            print(output_1.shape)
            # [2L, 3L, 12L, 12L]

            # given scale
            output_2 = F.interpolate(x=input_data, scale_factor=[2,1])
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]

            # bilinear interp
            output_3 = F.interpolate(x=input_data, scale_factor=[2,1], mode="bilinear")
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]
X
xiaoting 已提交
370
    """
371 372 373 374 375 376 377 378 379 380
    data_format = data_format.upper()
    resample = mode.upper()
    resample_type = mode.lower()

    resample_methods = [
        'LINEAR',
        'BILINEAR',
        'TRILINEAR',
        'NEAREST',
        'BICUBIC',
381
        'AREA',
382
    ]
X
xiaoting 已提交
383 384
    if resample not in resample_methods:
        raise ValueError(
385
            "The 'resample' of image_resize can only be 'area', 'linear', 'bilinear', 'trilinear', "
386 387
            " 'bicubic' or 'nearest' currently."
        )
X
xiaoting 已提交
388

X
xiaoting 已提交
389
    if resample in ['LINEAR'] and len(x.shape) != 3:
390
        raise ValueError("'linear' only support 3-D tensor.")
391

392 393 394 395 396
    if resample in ['NEAREST'] and len(x.shape) != 4 and len(x.shape) != 5:
        raise ValueError("'NEAREST' only support 4-D  or 5-D tensor.")

    if resample in ['BILINEAR', 'BICUBIC'] and len(x.shape) != 4:
        raise ValueError("'bilinear' and 'bicubic' only support 4-D tensor.")
X
xiaoting 已提交
397
    if resample == 'TRILINEAR' and len(x.shape) != 5:
398 399 400 401
        raise ValueError("'trilinear'only support 5-D tensor.")

    if size is None and scale_factor is None:
        raise ValueError("One of size and scale_factor must not be None.")
X
xiaoting 已提交
402

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
    if (isinstance(size, list) or isinstance(size, tuple)) and len(
        size
    ) != x.ndim - 2:
        raise ValueError(
            'The x and size should satisfy rank(x) - 2 == len(size).'
        )

    if isinstance(size, Variable):
        if size.ndim != 1:
            raise ValueError(
                f"If size is a tensor, it's rank must be 1, but received {size.ndim}."
            )
        if size.shape[0] != x.ndim - 2:
            raise ValueError(
                'The x and size should satisfy rank(x) - 2 == size.shape[0].'
            )

X
xiaoting 已提交
420 421
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
422

X
xiaoting 已提交
423 424
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")
X
xiaoting 已提交
425 426 427 428
    if align_corners != 0 and resample == 'NEAREST':
        raise ValueError(
            "align_corners option can only be set with the interpolating modes: linear | bilinear | bicubic | trilinear"
        )
429

X
xiaoting 已提交
430
    if resample == 'AREA':
431 432 433 434 435
        if (
            isinstance(size, list)
            or isinstance(size, tuple)
            or isinstance(size, Variable)
        ):
X
xiaoting 已提交
436 437
            if len(size) == 0:
                raise ValueError("output size can not be empty")
438 439
        if size is None:
            raise ValueError("output size can not be None in AREA mode")
X
xiaoting 已提交
440 441 442
        if len(x.shape) == 3:
            return paddle.nn.functional.adaptive_avg_pool1d(x, size)
        elif len(x.shape) == 4:
443
            print("size :", size)
X
xiaoting 已提交
444 445 446
            return paddle.nn.functional.adaptive_avg_pool2d(x, size)
        elif len(x.shape) == 5:
            return paddle.nn.functional.adaptive_avg_pool3d(x, size)
X
xiaoting 已提交
447 448
    helper = LayerHelper('{}_interp_v2'.format(resample_type), **locals())
    if len(x.shape) == 3 and data_format not in ['NCW', 'NWC']:
449
        raise ValueError(
450 451 452 453
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCW` or `NWC` supported for 3-D input."
        )
X
xiaoting 已提交
454
    elif len(x.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
X
xiaoting 已提交
455
        raise ValueError(
456 457 458 459
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCHW` or `NHWC` supported for 4-D input."
        )
X
xiaoting 已提交
460
    elif len(x.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
X
xiaoting 已提交
461
        raise ValueError(
462 463 464 465
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCDHW` or `NDHWC` supported for 5-D input."
        )
X
xiaoting 已提交
466 467

    def _is_list_or_turple_(data):
468
        return isinstance(data, list) or isinstance(data, tuple)
X
xiaoting 已提交
469

470
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
X
xiaoting 已提交
471
        data_layout = 'NCHW'
472
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
X
xiaoting 已提交
473 474
        data_layout = 'NHWC'

X
xiaoting 已提交
475 476 477 478
    if resample == 'NEAREST':
        align_corners = False

    inputs = {"X": x}
X
xiaoting 已提交
479 480 481 482 483 484 485
    attrs = {
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode,
486
        "data_layout": data_layout,
X
xiaoting 已提交
487 488
    }

489 490
    out_shape = size
    scale = scale_factor
491 492
    if out_shape is not None and scale is not None:
        raise ValueError("Only one of size or scale_factor should be defined.")
X
xiaoting 已提交
493
    if out_shape is not None:
Z
zhiboniu 已提交
494
        if isinstance(out_shape, Variable) and not in_dynamic_mode():
X
xiaoting 已提交
495 496 497
            out_shape.stop_gradient = True
            inputs['OutSize'] = out_shape
        else:
Z
zhiboniu 已提交
498
            if in_dynamic_mode():
499 500
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
X
xiaoting 已提交
501 502
                else:
                    out_shape = list(out_shape)
503

504 505
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
506
                        out_shape[i] = dim.numpy().item()
X
xiaoting 已提交
507
            if not (_is_list_or_turple_(out_shape)):
508
                raise TypeError("size should be a list or tuple or Variable.")
X
xiaoting 已提交
509 510 511 512 513 514
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
515 516 517
                assert (
                    dim_size > 0
                ), "Each dimension size given in out_shape must be greater than 0."
X
xiaoting 已提交
518 519 520 521 522 523 524 525 526 527

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
528
                        assert isinstance(dim, int)
X
xiaoting 已提交
529
                        temp_out = helper.create_variable_for_type_inference(
530 531 532 533 534
                            'int32'
                        )
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out
                        )
X
xiaoting 已提交
535 536 537 538
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

X
xiaoting 已提交
539
            if len(x.shape) == 3:
540 541
                if len(out_shape) != 1:
                    raise ValueError(
542 543
                        "size length should be 2 for input 3-D tensor"
                    )
544 545 546 547 548
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
X
xiaoting 已提交
549
            if len(x.shape) == 4:
X
xiaoting 已提交
550
                if len(out_shape) != 2:
551 552 553
                    raise ValueError(
                        "size length should be 2 for " "input 4-D tensor."
                    )
X
xiaoting 已提交
554 555 556 557 558 559 560
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
X
xiaoting 已提交
561
            if len(x.shape) == 5:
X
xiaoting 已提交
562
                if len(out_shape) != 3:
563 564 565
                    raise ValueError(
                        "size length should be 3 for " "input 5-D tensor."
                    )
X
xiaoting 已提交
566 567 568 569 570 571 572 573 574 575 576
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]

    else:
Z
zhiboniu 已提交
577
        if in_dynamic_mode() and isinstance(scale, Variable):
578 579 580 581
            if scale.shape == []:
                scale = float(scale)
            else:
                scale = list(scale.numpy())
X
xiaoting 已提交
582 583 584
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
585 586 587 588 589
        elif (
            isinstance(scale, float)
            or isinstance(scale, int)
            or isinstance(scale, numpy.ndarray)
        ):
X
xiaoting 已提交
590 591
            if scale <= 0:
                raise ValueError("Attr(scale) should be greater than zero.")
X
xiaoting 已提交
592 593 594 595
            scale_list = []
            for i in range(len(x.shape) - 2):
                scale_list.append(scale)
            attrs['scale'] = list(map(float, scale_list))
X
xiaoting 已提交
596
        elif isinstance(scale, list) or isinstance(scale, tuple):
X
xiaoting 已提交
597
            if len(scale) != len(x.shape) - 2:
598 599 600 601
                raise ValueError(
                    "scale_shape length should be {} for "
                    "input {}-D tensor.".format(len(x.shape) - 2, len(x.shape))
                )
X
xiaoting 已提交
602 603 604 605
            for value in scale:
                if value <= 0:
                    raise ValueError("Attr(scale) should be greater than zero.")
            attrs['scale'] = list(map(float, scale))
X
xiaoting 已提交
606 607
        else:
            raise TypeError(
608 609
                "Attr(scale)'s type should be float, int, list, tuple, or Tensor."
            )
X
xiaoting 已提交
610

Z
zhiboniu 已提交
611
    if in_dynamic_mode():
X
xiaoting 已提交
612 613 614 615 616 617 618
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
619
            if in_dygraph_mode():
620
                out = _C_ops.linear_interp(
621 622
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
623 624
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
625 626 627 628 629 630 631 632 633
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
634
            else:
635
                out = _legacy_C_ops.linear_interp_v2(x, *dy_attr)
636
        elif resample_type == "bilinear":
637
            if in_dygraph_mode():
638
                out = _C_ops.bilinear_interp(
639 640
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
641 642
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
643 644 645 646 647 648 649 650 651
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
652
            else:
653
                out = _legacy_C_ops.bilinear_interp_v2(x, *dy_attr)
654
        elif resample_type == "trilinear":
655
            if in_dygraph_mode():
656
                out = _C_ops.trilinear_interp(
657 658
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
659 660
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
661 662 663 664 665 666 667 668 669
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
670
            else:
671
                out = _legacy_C_ops.trilinear_interp_v2(x, *dy_attr)
672
        elif resample_type == "nearest":
673
            if in_dygraph_mode():
674
                out = _C_ops.nearest_interp(
675 676
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
677 678
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
679 680 681 682 683 684 685 686 687
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
688
            else:
689
                out = _legacy_C_ops.nearest_interp_v2(x, *dy_attr)
690
        elif resample_type == "bicubic":
691
            if in_dygraph_mode():
692
                out = _C_ops.bicubic_interp(
693 694
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
695 696
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
697 698 699 700 701 702 703 704 705
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
706
            else:
707
                out = _legacy_C_ops.bicubic_interp_v2(x, *dy_attr)
X
xiaoting 已提交
708
        return out
W
Weilong Wu 已提交
709 710 711

    dtype = helper.input_dtype(input_param_name='x')

X
xiaoting 已提交
712
    out = helper.create_variable_for_type_inference(dtype)
713 714 715 716 717 718
    helper.append_op(
        type='{}_interp_v2'.format(resample_type),
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs,
    )
X
xiaoting 已提交
719
    return out
L
littletomatodonkey 已提交
720 721


722 723 724 725 726 727 728 729 730 731
def upsample(
    x,
    size=None,
    scale_factor=None,
    mode='nearest',
    align_corners=False,
    align_mode=0,
    data_format='NCHW',
    name=None,
):
X
xiaoting 已提交
732
    """
733

734
    This API resizes a batch of images.
735

X
xiaoting 已提交
736 737 738
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
739 740
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
741 742 743
    and the resizing only applies on the three dimensions(depth, height and width).

    Supporting resample methods:
744 745 746 747 748 749
    - 'linear' : Linear interpolation
    - 'bilinear' : Bilinear interpolation
    - 'trilinear' : Trilinear interpolation
    - 'nearest' : Nearest neighbor interpolation
    - 'bicubic' : Bicubic interpolation

750 751 752
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
753 754 755 756 757 758 759 760
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
761

X
xiaoting 已提交
762 763 764 765
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
766

X
xiaoting 已提交
767 768 769
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
770

X
xiaoting 已提交
771 772 773
    The linear interpolation is performed on three directions.
    align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.
774 775 776 777 778 779 780

    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
781
    Example:
782
        .. code-block:: text
783

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
            For scale_factor:
                if align_corners = True && out_size > 1 :
                scale_factor = (in_size-1.0)/(out_size-1.0)
                else:
                scale_factor = float(in_size/out_size)
            Linear interpolation:
                if:
                    align_corners = False , align_mode = 0
                    input : (N,C,W_in)
                    output: (N,C,W_out) where:
                    W_out = (W_{in}+0.5) * scale_{factor} - 0.5
                else:
                    input : (N,C,W_in)
                    output: (N,C,W_out) where:
                    W_out = W_{in} * scale_{factor}
            Nearest neighbor interpolation:
            if:
                align_corners = False
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = floor (H_{in} * scale_{factor})
                W_out = floor (W_{in} * scale_{factor})
X
xiaoting 已提交
806
            else:
807 808 809 810 811 812 813
                align_corners = True
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = round(H_{in} * scale_{factor})
                W_out = round(W_{in} * scale_{factor})

            Bilinear interpolation:
X
xiaoting 已提交
814 815
            if:
                align_corners = False , align_mode = 0
816 817 818
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
X
xiaoting 已提交
819 820
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = H_{in} * scale_{factor}
                W_out = W_{in} * scale_{factor}
            Bicubic interpolation:
            if:
                align_corners = False
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = H_{in} * scale_{factor}
                W_out = W_{in} * scale_{factor}
            Trilinear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,D_in,H_in,W_in)
                output: (N,C,D_out,H_out,W_out) where:
                D_out = (D_{in}+0.5) * scale_{factor} - 0.5
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,D_in,H_in,W_in)
                output: (N,C,D_out,H_out,W_out) where:
                D_out = D_{in} * scale_{factor}
                H_out = H_{in} * scale_{factor}
X
xiaoting 已提交
850
                W_out = W_{in} * scale_{factor}
851

X
xiaoting 已提交
852
    For details of linear interpolation, please refer to Wikipedia:
853
    https://en.wikipedia.org/wiki/Linear_interpolation.
854

X
xiaoting 已提交
855 856
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
857

X
xiaoting 已提交
858 859
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
860

X
xiaoting 已提交
861 862
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
863

X
xiaoting 已提交
864 865
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
866

X
xiaoting 已提交
867 868 869
    Parameters:
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
870
        size (list|tuple|Tensor|None, optional): Output shape of image resize
871 872
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
873
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1] or [].
X
xiaoting 已提交
874
             If a Tensor , its dimensions size should be a 1.
875
        scale_factor (float|Tensor|list|tuple|None, optional): The multiplier for the input height or width. At
876
             least one of :attr:`size` or :attr:`scale_factor` must be set.
877
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if
878
             it is either a list or a tuple or a Tensor. If a list/tuple, each element can be an integer or a Tensor of shape: [1] or [].
X
xiaoting 已提交
879
             Default: None.
880
        mode (str, optional): The resample method. It supports 'linear', 'nearest', 'bilinear',
X
xiaoting 已提交
881
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
882
        align_corners(bool, optional) :  An optional bool, If True, the centers of the 4 corner pixels of the
X
xiaoting 已提交
883 884 885
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
                               Default: False
886
        align_mode(int, optional)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
X
xiaoting 已提交
887 888 889 890 891 892 893 894 895 896
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
897

X
xiaoting 已提交
898 899 900 901
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
902

903 904
    Examples:
        .. code-block:: python
905

906 907
            import paddle
            import paddle.nn as nn
X
xiaoting 已提交
908

909 910
            input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
            upsample_out = paddle.nn.Upsample(size=[12,12])
911

912 913 914
            output = upsample_out(x=input_data)
            print(output.shape)
            # [2L, 3L, 12L, 12L]
X
xiaoting 已提交
915 916

    """
917 918 919
    return interpolate(
        x, size, scale_factor, mode, align_corners, align_mode, data_format
    )
X
xiaoting 已提交
920 921


922 923 924 925
def bilinear(x1, x2, weight, bias=None, name=None):
    """

    This layer performs bilinear on two inputs.
926
    See :ref:`api_nn_Bilinear` for details and output shape.
927 928

    Parameters:
929 930 931 932 933 934
        x1 (Tensor): the first input tensor, it's data type should be float32, float64.
        x2 (Tensor): the second input tensor, it's data type should be float32, float64.
        weight (Parameter): The learnable weights of this layer, shape is [out_features, in1_features, in2_features].
        bias (Parameter, optional): The learnable bias(Bias) of this layer, shape is [1, out_features]. If it is set to None, no bias will be added to the output units. The default value is None.
        name (str, optional): The default value is None. Normally there is no need for user
            to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
935 936

    Returns:
937
        Tensor: A 2-D Tensor of shape [batch_size, out_features].
938 939

    Examples:
940
        .. code-block:: python
941

942 943
            import paddle
            import paddle.nn.functional as F
944

945 946 947 948
            x1 = paddle.randn((5, 5)).astype(paddle.float32)
            x2 = paddle.randn((5, 4)).astype(paddle.float32)
            w = paddle.randn((1000, 5, 4)).astype(paddle.float32)
            b = paddle.randn((1, 1000)).astype(paddle.float32)
949

950 951 952
            result = F.bilinear(x1, x2, w, b)
            print(result.shape)
            # [5, 1000]
953 954
    """

955
    if in_dygraph_mode():
W
wanghuancoder 已提交
956
        return _C_ops.bilinear_tensor_product(x1, x2, weight, bias)
957 958 959
    else:
        check_variable_and_dtype(x1, 'x1', ['float32', 'float64'], 'bilinear')
        check_variable_and_dtype(x2, 'x2', ['float32', 'float64'], 'bilinear')
960

961 962 963
        inputs = {"X": x1, "Y": x2, "Weight": weight}
        if bias is not None:
            inputs["Bias"] = bias
964

965 966
        helper = LayerHelper("bilinear", **locals())
        out = helper.create_variable_for_type_inference(dtype=x1.dtype)
967

968 969 970
        helper.append_op(
            type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out}
        )
971

972
        return out
973 974


975 976 977
def dropout(
    x, p=0.5, axis=None, training=True, mode="upscale_in_train", name=None
):
978
    r"""
979 980 981 982 983 984
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training. The dropout operator randomly sets the
    outputs of some units to zero, while upscale others according to the given
    dropout probability.

    Args:
985
        x (Tensor): The input tensor. The data type is float16, float32 or float64.
986 987 988
        p (float|int, optional): Probability of setting units to zero. Default: 0.5.
        axis (int|list|tuple, optional): The axis along which the dropout is performed. Default: None.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
989
        mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer'].
990

991
            1. upscale_in_train (default), upscale the output at training time
992

993 994
                - train: :math:`out = input \times \frac{mask}{(1.0 - dropout\_prob)}`
                - inference: :math:`out = input`
995

996
            2. downscale_in_infer, downscale the output at inference
997

998 999
                - train: :math:`out = input \times mask`
                - inference: :math:`out = input \times (1.0 - dropout\_prob)`
1000

1001
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
1002 1003 1004 1005

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x` .

1006

1007 1008
    Examples:
        We use ``p=0.5`` in the following description for simplicity.
1009

1010
        1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.
1011 1012 1013

        ..  code-block:: text

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
            Let's see a simple case when x is a 2d tensor with shape 2*3:
            [[1 2 3]
             [4 5 6]]
            we generate mask with the same shape as x, which is 2*3. The value of mask is
            sampled from a Bernoulli distribution randomly. For example, we may get such mask:
            [[0 1 0]
             [1 0 1]]
            So the output is obtained from elementwise multiply of x and mask:
            [[0 2 0]
             [4 0 6]]
            Using default setting, i.e. ``mode='upscale_in_train'`` ,
            if in training phase, the final upscale output is:
            [[0 4 0 ]
             [8 0 12]]
            if in test phase, the output is the same as input:
            [[1 2 3]
             [4 5 6]]
            we can also set ``mode='downscale_in_infer'`` , then
            if in training phase, the final output is:
            [[0 2 0]
             [4 0 6]]
            if in test phase, the scale output is:
            [[0.5 1.  1.5]
             [2.  2.5 3. ]]

1039 1040


1041
        2. When ``axis!=None`` , this is useful for dropping whole channels from an image or sequence.
1042 1043 1044

        ..  code-block:: text

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
            Let's see the simple case when x is a 2d tensor with shape 2*3 again:
            [[1 2 3]
             [4 5 6]]
            (1) If ``axis=0`` , this means the dropout is only performed in axis `0` .
                we generate mask with the shape 2*1. Only in axis `0` the value is randomly selected.
                For example, we may get such mask:
                [[1]
                 [0]]
                The output is obtained from elementwise multiply of x and mask. Doing that the mask will be
                broadcast from 2*1 to 2*3:
                [[1 1 1]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[1 2 3]
                 [0 0 0]]
                then we can do upscale or downscale according to the setting of other arguments.
            (2) If ``axis=1`` , this means the dropout is only performed in axis `1` .
                we generate mask with the shape 1*3. Only in axis `1` the value is randomly selected.
                For example, we may get such mask:
                [[1 0 1]]
                Doing elementwise multiply the mask will be broadcast from 1*3 to 2*3:
                [[1 0 1]
                 [1 0 1]]
                and the result after elementwise multiply is:
                [[1 0 3]
                 [4 0 6]]
            (3) What about ``axis=[0, 1]`` ? This means the dropout is performed in all axes of x,
                which is the same case as default setting ``axis=None`` .
1073
            (4) You may note that logically `axis=None` means the dropout is performed in none axis of x,
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
                We generate mask with the shape 1*1. Whole input is randomly selected or dropped.
                For example, we may get such mask:
                [[0]]
                Doing elementwise multiply the mask will be broadcast from 1*1 to 2*3:
                [[0 0 0]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[0 0 0]
                 [0 0 0]]
                Actually this is not what we want because all elements may set to zero~
1084

1085 1086
        When x is a 4d tensor with shape `NCHW`, where `N` is batch size, `C` is the number of channels, H and W are the height and width of the feature, we can set ``axis=[0,1]`` and the dropout will be performed in channel `N` and `C`, `H` and `W` is tied, i.e. paddle.nn.dropout(x, p, axis=[0,1]) . Please refer to ``paddle.nn.functional.dropout2d`` for more details.
        Similarly, when x is a 5d tensor with shape `NCDHW`, where `D` is the depth of the feature, we can set ``axis=[0,1]`` to perform dropout3d. Please refer to ``paddle.nn.functional.dropout3d`` for more details.
1087 1088

        .. code-block:: python
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
            import paddle

            x = paddle.to_tensor([[1,2,3], [4,5,6]]).astype(paddle.float32)
            y_train = paddle.nn.functional.dropout(x, 0.5)
            y_test = paddle.nn.functional.dropout(x, 0.5, training=False)
            y_0 = paddle.nn.functional.dropout(x, axis=0)
            y_1 = paddle.nn.functional.dropout(x, axis=1)
            y_01 = paddle.nn.functional.dropout(x, axis=[0,1])
            print(x)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
            print(y_train)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[2. , 0. , 6. ],
            #         [8. , 0. , 12.]])
            print(y_test)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
            print(y_0)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0. , 0. , 0. ],
            #         [8. , 10., 12.]])
            print(y_1)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[2. , 0. , 6. ],
            #         [8. , 0. , 12.]])
            print(y_01)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0. , 0. , 0. ],
            #         [8. , 0. , 12.]])
1122 1123

    """
1124 1125 1126 1127 1128
    if not isinstance(p, (float, int, Variable)):
        raise TypeError("p argument should be a number or Variable")

    if isinstance(p, (int, float)):
        # fast return for p == 0
1129 1130
        if p == 0:
            return x
1131 1132
        elif p < 0 or p > 1:
            raise ValueError("p argument should between 0 and 1")
1133 1134
    if mode not in ('downscale_in_infer', 'upscale_in_train'):
        raise ValueError(
1135 1136
            "mode argument should be 'downscale_in_infer' or 'upscale_in_train'"
        )
1137
    if axis and not isinstance(axis, (int, list, tuple)):
1138 1139
        raise TypeError("datatype of axis argument should be int or list")

1140
    if axis is None:  # commonly used dropout
1141
        seed = None
1142 1143 1144
        mode = (
            'downgrade_in_infer' if mode == 'downscale_in_infer' else mode
        )  # semantic transfer
1145

1146
        if in_dygraph_mode():
1147 1148
            if default_main_program().random_seed != 0:
                seed = default_main_program().random_seed
H
hong 已提交
1149

1150
            out, mask = _C_ops.dropout(
1151
                x,
1152
                None,
1153 1154 1155
                p,
                not training,
                mode,
1156 1157
                seed if seed is not None else 0,
                seed is not None,
1158
            )
1159

1160 1161 1162 1163 1164 1165
            return out
        else:
            helper = LayerHelper('dropout', **locals())
            check_variable_and_dtype(
                x, 'x', ['float16', 'float32', 'float64'], 'dropout'
            )
1166

1167 1168 1169 1170
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            mask = helper.create_variable_for_type_inference(
                dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
            )
1171

1172 1173 1174
            def get_attrs(prog, dropout_prob, is_test, seed):
                if (seed is None or seed == 0) and prog.random_seed != 0:
                    seed = prog.random_seed
1175

1176 1177 1178 1179 1180 1181 1182
                if isinstance(
                    dropout_prob, Variable
                ) and not dropout_prob.shape != [1]:
                    raise TypeError(
                        "Required p.shape == [1] if type(p) is Variable, but received p.shape = {}".format(
                            p.shape
                        )
1183
                    )
1184 1185 1186 1187 1188 1189 1190 1191
                attrs = {
                    'dropout_prob': dropout_prob,
                    'is_test': is_test,
                    'fix_seed': seed is not None,
                    'seed': seed if seed is not None else 0,
                    'dropout_implementation': mode,
                }
                return attrs
1192

1193
            attrs = get_attrs(helper.main_program, p, not training, seed)
1194

1195 1196 1197 1198 1199 1200 1201
            helper.append_op(
                type='dropout',
                inputs={'X': [x]},
                outputs={'Out': [out], 'Mask': [mask]},
                attrs=attrs,
            )
            return out
1202
    else:  # sometimes called dropout_nd #TODO: optimize with c++
Z
zhiboniu 已提交
1203
        if not in_dynamic_mode():
1204 1205 1206
            check_variable_and_dtype(
                x, 'x', ['float16', 'float32', 'float64'], 'dropout'
            )
1207 1208 1209
        dtype = x.dtype
        keep_prob = 1 - p
        if training:
1210 1211
            if in_dynamic_mode() and p == 1.0:
                return paddle.scale(x, scale=0.0)
1212

1213 1214 1215 1216 1217
            scale_input = (
                paddle.scale(x, scale=1 / keep_prob)
                if mode == 'upscale_in_train'
                else x
            )
1218

1219
            # get mask shape
1220
            input_shape = x.shape
Z
zhiboniu 已提交
1221
            if not in_dynamic_mode():
1222
                input_shape_tensor = paddle.shape(x)
1223
            drop_axes = [axis] if isinstance(axis, int) else list(axis)
1224
            if min(drop_axes) < 0 or max(drop_axes) > len(input_shape) - 1:
1225 1226 1227 1228 1229
                raise ValueError(
                    "axis value should be greater than or equal to 0 and less than dimensions of x:{}, but get axis value:{} ".format(
                        len(input_shape), max(drop_axes)
                    )
                )
1230 1231
            if len(drop_axes) > len(input_shape):
                raise ValueError(
1232 1233 1234 1235
                    "length of axis should not be greater than dimensions of x:{}, but get length of axis: {}".format(
                        len(input_shape), len(drop_axes)
                    )
                )
1236
            mask_shape = [1] * len(input_shape)
Z
zhiboniu 已提交
1237
            if not in_dynamic_mode():
1238 1239 1240 1241 1242
                for i in drop_axes:
                    mask_shape[i] = input_shape_tensor[i]
            else:
                for i in drop_axes:
                    mask_shape[i] = input_shape[i]
1243

1244 1245 1246 1247
            # get mask
            random_tensor = paddle.uniform(
                mask_shape, dtype='float32', min=0.0, max=1.0
            )
Z
zhiboniu 已提交
1248
            p = full(shape=[1], fill_value=p, dtype='float32')
1249
            keep_mask = paddle.greater_equal(random_tensor, p)
1250

1251 1252
            scale_input = paddle.cast(scale_input, dtype)
            keep_mask = paddle.cast(keep_mask, dtype)
1253 1254 1255
            ret = paddle.multiply(scale_input, keep_mask, name=name)
            return ret
        else:  # test
1256 1257 1258 1259 1260
            ret = (
                paddle.scale(x, scale=keep_prob)
                if mode == 'downscale_in_infer'
                else x
            )
1261 1262 1263 1264 1265 1266 1267 1268 1269
            return ret


def dropout2d(x, p=0.5, training=True, data_format='NCHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

1270
    See :ref:`api_paddle_nn_functional_dropout` for more details.
1271 1272 1273

    Args:
        x (Tensor):  The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C].
1274
                     The data type is float16, float32 or float64.
1275 1276 1277 1278
        p (float, optional): Probability of setting units to zero. Default: 0.5.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC` . When it is `NCHW` , the data is stored in the order of: [batch_size, input_channels, input_height, input_width]. Default: `NCHW` .
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
1279 1280 1281 1282

    Returns:
        A Tensor representing the dropout2d, has same shape and data type as `x` .

1283

1284 1285
    Examples:
        .. code-block:: python
1286

1287 1288
            import paddle

1289
            x = paddle.randn(shape=(2, 3, 4, 5)).astype(paddle.float32)
1290 1291 1292 1293
            y_train = paddle.nn.functional.dropout2d(x)  #train
            y_test = paddle.nn.functional.dropout2d(x, training=False) #test
            for i in range(2):
                for j in range(3):
1294 1295 1296 1297
                    print(x[i,j,:,:])
                    print(y_train[i,j,:,:]) # may all 0
                    print(y_test[i,j,:,:])

1298 1299 1300
    """
    input_shape = x.shape
    if len(input_shape) != 4:
1301 1302 1303 1304 1305
        raise ValueError(
            "dimensions of x should be 4, but received {} != 4".format(
                len(input_shape)
            )
        )
1306 1307 1308 1309

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1310 1311
            "Attr(data_format): %s." % str(data_format)
        )
1312

1313 1314 1315 1316 1317 1318 1319 1320
    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCHW' else [0, 3],
        training=training,
        mode="upscale_in_train",
        name=name,
    )
1321 1322 1323 1324 1325 1326 1327 1328


def dropout3d(x, p=0.5, training=True, data_format='NCDHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

1329
    See :ref:`api_paddle_nn_functional_dropout` for more details.
1330 1331 1332 1333

    Args:
        x (Tensor):  The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C].
                     The data type is float32 or float64.
1334 1335 1336 1337
        p (float, optional): Probability of setting units to zero. Default: 0.5.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from ``NCDHW`` or ``NDHWC``. When it is ``NCDHW`` , the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width]. Default: ``NCDHW`` .
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
1338 1339 1340 1341

    Returns:
        A Tensor representing the dropout3d, has same shape and data type with `x` .

1342

1343 1344
    Examples:
        .. code-block:: python
1345

1346
            import paddle
1347

1348 1349 1350 1351 1352 1353
            x = paddle.randn(shape=(2, 3, 4, 5, 6)).astype(paddle.float32)
            y_train = paddle.nn.functional.dropout3d(x)  #train
            y_test = paddle.nn.functional.dropout3d(x, training=False) #test
            print(x[0,0,:,:,:])
            print(y_train[0,0,:,:,:]) # may all 0
            print(y_test[0,0,:,:,:])
1354 1355 1356 1357 1358

    """

    input_shape = x.shape
    if len(input_shape) != 5:
1359 1360 1361 1362 1363
        raise ValueError(
            "dimensions of x should be 5, but received {} != 5".format(
                len(input_shape)
            )
        )
1364 1365 1366 1367

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1368 1369
            "Attr(data_format): %s." % str(data_format)
        )
1370

1371 1372 1373 1374 1375 1376 1377 1378
    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCDHW' else [0, 4],
        training=training,
        mode="upscale_in_train",
        name=name,
    )
1379 1380


1381 1382 1383 1384 1385 1386 1387 1388
def alpha_dropout(x, p=0.5, training=True, name=None):
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property.
    For an input with zero mean and unit standard deviation, the output of Alpha Dropout
    maintains the original mean and standard deviation of the input.
    Alpha Dropout fits well to SELU activate function by randomly setting activations to the negative saturation value.

    Args:
1389
        x (Tensor): The input tensor. The data type is float16, float32 or float64.
1390 1391 1392 1393 1394 1395 1396 1397 1398
        p (float | int): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x`.

    Examples:
        .. code-block:: python
1399

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
            import paddle

            x = paddle.to_tensor([[-1, 1], [-1, 1]]).astype(paddle.float32)
            y_train = paddle.nn.functional.alpha_dropout(x, 0.5)
            y_test = paddle.nn.functional.alpha_dropout(x, 0.5, training=False)
            print(y_train)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-0.10721093, -0.77919382],
            #         [-0.10721093,  1.66559887]]) (randomly)
            print(y_test)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-1.,  1.],
            #         [-1.,  1.]])
1413 1414 1415 1416 1417 1418
    """
    if not isinstance(p, (float, int)):
        raise TypeError("p argument should be a float or int")
    if p < 0 or p > 1:
        raise ValueError("p argument should between 0 and 1")

Z
zhiboniu 已提交
1419
    if not in_dynamic_mode():
1420
        check_variable_and_dtype(
1421
            x, 'x', ['float16', 'float32', 'float64'], 'alpha_dropout'
1422
        )
1423 1424

    if training:
1425
        if p == 1:
1426 1427
            return paddle.scale(x, scale=0.0)
        # get transformation params
1428 1429 1430
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        alpha_p = -alpha * scale
1431
        a = ((1 - p) * (1 + p * alpha_p**2)) ** -0.5
1432 1433 1434 1435 1436
        b = -a * alpha_p * p

        dtype = x.dtype
        input_shape = x.shape

1437 1438 1439 1440
        # get mask
        random_tensor = paddle.uniform(
            input_shape, dtype='float32', min=0.0, max=1.0
        )
1441
        p = full(shape=input_shape, fill_value=p, dtype='float32')
1442 1443 1444
        keep_mask = paddle.greater_equal(random_tensor, p)
        keep_mask = paddle.cast(keep_mask, dtype)
        drop_mask = paddle.subtract(
1445 1446
            full(shape=input_shape, fill_value=1.0, dtype=dtype), keep_mask
        )
1447

1448
        # apply mask
1449
        b = full(shape=input_shape, fill_value=b, dtype=dtype)
1450 1451 1452 1453
        y = paddle.add(
            paddle.multiply(x, keep_mask),
            paddle.scale(drop_mask, scale=alpha_p),
        )
1454
        res = paddle.add(paddle.scale(y, scale=a), b, name=name)
1455 1456 1457 1458 1459
        return res
    else:  # test
        return x


1460
def pad(x, pad, mode='constant', value=0.0, data_format="NCHW", name=None):
L
littletomatodonkey 已提交
1461
    """
1462 1463
    Pad tensor according to ``'pad'`` and ``'mode'``.
    If mode is ``'constant'`` and length of pad is twice as length of x dimension,
L
littletomatodonkey 已提交
1464
    then the padding will be started from the first dimension and moved back onto x
1465 1466
    according to ``'pad'`` and ``'value'``.
    If mode is ``'reflect'``, pad[0] and pad[1] must be no greater
L
littletomatodonkey 已提交
1467 1468 1469 1470
    than width-1. The height and depth dimension has the same condition.

    Parameters:
        x (Tensor): The input tensor with data type float32/double/int32/int64_t.
1471
        pad (Tensor|list[int]|tuple[int]): The padding size with data type int.
1472
            If mode is ``'constant'`` and length of pad is twice as length of x dimension, then x will
1473 1474
            be padded from the first  dimension to the last dimension.
            Else: 1. If input dimension is 3, then the pad has the form (pad_left,
1475 1476
            pad_right). 2. If the input dimension is 4, then the pad has the form (pad_left, pad_right,
            pad_top, pad_bottom). 3. If the input dimension is 5, then the pad has the form
L
littletomatodonkey 已提交
1477
            (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
1478
        mode (str, optional): Four modes: ``'constant'`` (default), ``'reflect'``, ``'replicate'``, ``'circular'``. Default is ``'constant'``.
1479 1480 1481 1482 1483 1484

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

1485 1486 1487 1488
        value (float, optional): The value to fill the padded areas in 'constant' mode . Default is :math:`0.0`.
        data_format (str, optional): An string from: ``'NCL'``, ``'NLC'``, ``'NHWC'``, ``'NCHW'``, ``'NCDHW'``, ``'NDHWC'``. Specify the data format of
           the input data. Default: ``'NCHW'``.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: ``'None'``.
1489 1490

    Returns:
1491
        Tensor, a Tensor padded according to pad and mode and data type is same as input.
L
littletomatodonkey 已提交
1492

1493
    Example:
1494

L
littletomatodonkey 已提交
1495 1496 1497 1498 1499 1500
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]

            Case 0:
1501 1502 1503 1504 1505 1506 1507 1508 1509
                pad = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0., 0., 0.],
                          [1., 2., 3.],
                          [4., 5., 6.],
                          [0., 0., 0.]]]]]

            Case 1:
L
littletomatodonkey 已提交
1510 1511 1512 1513 1514 1515 1516 1517
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0. 0. 0. 0. 0. 0. 0.]
                          [0. 0. 1. 2. 3. 0. 0.]
                          [0. 0. 4. 5. 6. 0. 0.]
                          [0. 0. 0. 0. 0. 0. 0.]]]]]

1518
            Case 2:
L
littletomatodonkey 已提交
1519 1520 1521 1522 1523 1524 1525
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'reflect'
                Out = [[[[[6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]
                          [6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]]]]]

1526
            Case 3:
L
littletomatodonkey 已提交
1527 1528 1529 1530 1531 1532 1533
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'replicate'
                Out = [[[[[1. 1. 1. 2. 3. 3. 3.]
                          [1. 1. 1. 2. 3. 3. 3.]
                          [4. 4. 4. 5. 6. 6. 6.]
                          [4. 4. 4. 5. 6. 6. 6.]]]]]

1534
            Case 4:
L
littletomatodonkey 已提交
1535 1536 1537 1538 1539 1540 1541
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'circular'
                Out = [[[[[5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]
                          [5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]]]]]

1542
    Examples:
L
littletomatodonkey 已提交
1543
        .. code-block:: python
L
littletomatodonkey 已提交
1544

L
littletomatodonkey 已提交
1545 1546
            import paddle
            import paddle.nn.functional as F
1547

L
littletomatodonkey 已提交
1548 1549
            # example 1
            x_shape = (1, 1, 3)
1550
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1551
            y = F.pad(x, [0, 0, 0, 0, 2, 3], value=1, mode='constant', data_format="NCL")
L
littletomatodonkey 已提交
1552
            print(y)
L
littletomatodonkey 已提交
1553
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1554

L
littletomatodonkey 已提交
1555
            # example 2
1556
            x_shape = (1, 1, 3)
1557
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1558 1559 1560
            y = F.pad(x, [2, 3], value=1, mode='constant', data_format="NCL")
            print(y)
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1561

1562
            # example 3
L
littletomatodonkey 已提交
1563
            x_shape = (1, 1, 2, 3)
1564
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
L
littletomatodonkey 已提交
1565 1566
            y = F.pad(x, [1, 2, 1, 1], value=1, mode='circular')
            print(y)
L
littletomatodonkey 已提交
1567 1568 1569 1570 1571
            # [[[[6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]
            #    [6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]]]]
    """
1572 1573 1574 1575 1576 1577 1578 1579
    assert mode in [
        'reflect',
        'replicate',
        'constant',
        'circular',
    ], "mode should be one of constant, reflect, replicate, circular, but got {}.".format(
        mode
    )
L
littletomatodonkey 已提交
1580 1581

    data_format = data_format.upper()
1582 1583
    assert data_format in ["NCL", "NCHW", "NCDHW", "NLC", "NHWC", "NDHWC"], (
        "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], "
L
littletomatodonkey 已提交
1584
        "but got {}".format(data_format)
1585
    )
L
littletomatodonkey 已提交
1586 1587 1588

    x_dim = len(x.shape)

1589 1590 1591 1592 1593
    if (
        mode == "constant"
        and isinstance(pad, (list, tuple))
        and len(pad) == x_dim * 2
    ):
1594 1595
        paddings = pad
        pad_value = value
1596 1597

        if in_dygraph_mode():
1598
            out = _C_ops.pad(x, paddings, float(pad_value))
1599 1600
            return out

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            "pad",
        )
1615

1616 1617 1618 1619
        check_type(pad_value, 'pad_value', (float, int, Variable), 'pad')
        if isinstance(pad_value, int):
            pad_value = float(pad_value)

1620 1621 1622
        helper = LayerHelper('pad', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
1623 1624 1625 1626 1627 1628
        helper.append_op(
            type='pad',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'paddings': paddings, 'pad_value': pad_value},
        )
1629
        return out
L
littletomatodonkey 已提交
1630

1631
    assert x_dim in [
1632 1633 1634
        3,
        4,
        5,
1635 1636 1637 1638 1639 1640 1641
    ], "input tesor dimension must be in [3, 4, 5] but got {}".format(x_dim)

    supported_format_map = {
        3: ["NCL", "NLC"],
        4: ["NCHW", "NHWC"],
        5: ["NCDHW", "NDHWC"],
    }
1642 1643 1644 1645 1646
    assert (
        data_format in supported_format_map[x_dim]
    ), "input tensor dimension is {}, it's data format should be in {} but got {}".format(
        x_dim, supported_format_map[x_dim], data_format
    )
1647

L
littletomatodonkey 已提交
1648 1649 1650 1651 1652 1653
    unsqueezed_dim = []

    if isinstance(pad, Variable):
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
1654
                pad = concat([zeros((4,), dtype="int32"), pad], axis=0)
L
littletomatodonkey 已提交
1655
                unsqueezed_dim = [3, 4]
1656
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1657
            elif x_dim == 4:
1658
                pad = concat([pad, zeros((2,), dtype="int32")], axis=0)
L
littletomatodonkey 已提交
1659
                unsqueezed_dim = [2]
1660
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1661 1662 1663
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
1664
                pad = concat([zeros((4,), dtype="int32"), pad], axis=0)
L
littletomatodonkey 已提交
1665
                unsqueezed_dim = [2, 3]
1666
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1667
            elif x_dim == 4:
1668
                pad = concat([pad, zeros((2,), dtype="int32")], axis=0)
L
littletomatodonkey 已提交
1669
                unsqueezed_dim = [1]
1670
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1671
    else:
1672
        pad = list(pad)
L
littletomatodonkey 已提交
1673 1674 1675 1676 1677
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [3, 4]
1678
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1679 1680 1681
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [2]
1682
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1683 1684 1685 1686 1687
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [2, 3]
1688
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1689 1690 1691
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [1]
1692
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1693

J
Jiabin Yang 已提交
1694
    if in_dygraph_mode():
L
littletomatodonkey 已提交
1695
        if isinstance(pad, Variable):
J
Jiabin Yang 已提交
1696
            pad = pad.numpy().tolist()
1697
        out = _C_ops.pad3d(x, pad, mode, value, data_format)
J
Jiabin Yang 已提交
1698
    else:
1699 1700 1701 1702 1703
        attrs = {'mode': mode, 'value': value, 'data_format': data_format}
        inputs = {'X': [x]}
        if isinstance(pad, Variable):
            inputs['Paddings'] = [pad]
            attrs['paddings'] = []
1704
        else:
1705
            attrs['paddings'] = pad
L
littletomatodonkey 已提交
1706

1707
        helper = LayerHelper('pad3d', **locals())
L
littletomatodonkey 已提交
1708

1709 1710 1711 1712 1713
        dtype = helper.input_dtype(input_param_name='input')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='pad3d', inputs=inputs, outputs={"Out": out}, attrs=attrs
        )
L
littletomatodonkey 已提交
1714 1715

    if len(unsqueezed_dim) != 0:
1716
        out = squeeze(out, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1717 1718 1719 1720

    return out


1721 1722 1723 1724 1725 1726 1727 1728 1729
def zeropad2d(x, padding, data_format="NCHW", name=None):
    """
    Pads the input tensor boundaries with zero according to 'pad'.

    Args:
        x(Tensor): The input tensor with data type float16/float32/float64/int32/int64.
        padding(int | Tensor | List[int] | Tuple[int]): The padding size with data type int.
            The input dimension should be 4 and pad has the form (pad_left, pad_right,
            pad_top, pad_bottom).
1730
        data_format(str, optional): An string from: "NHWC", "NCHW". Specify the data format of
1731 1732
            the input data. Default: "NCHW".
        name(str, optional): The default value is None. Normally there is no need for user
1733
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
1734

1735
    Returns:
1736
        Tensor, padded with 0 according to pad and data type is same as input.
1737 1738 1739 1740 1741 1742

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
1743 1744
            x_shape = paddle.to_tensor([1, 1, 2, 3])
            x = paddle.arange(paddle.prod(x_shape), dtype="float32").reshape(x_shape) + 1
1745
            y = F.zeropad2d(x, [1, 2, 1, 1])
1746
            print(y)
1747 1748 1749 1750 1751 1752
            # [[[[0. 0. 0. 0. 0. 0.]
            #    [0. 1. 2. 3. 0. 0.]
            #    [0. 4. 5. 6. 0. 0.]
            #    [0. 0. 0. 0. 0. 0.]]]]
    """

1753 1754 1755 1756 1757 1758 1759 1760
    return pad(
        x,
        pad=padding,
        mode='constant',
        value=0,
        data_format=data_format,
        name=name,
    )
1761 1762


Y
Yang Zhang 已提交
1763
def cosine_similarity(x1, x2, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1764
    """
Y
Yang Zhang 已提交
1765
    Compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1766 1767 1768 1769

    Parameters:
        x1 (Tensor): First input. float32/double.
        x2 (Tensor): Second input. float32/double.
1770 1771
        axis (int, optional): Dimension of vectors to compute cosine similarity. Default is 1.
        eps(float, optional): Small value to avoid division by zero. Default is 1e-8.
1772 1773

    Returns:
1774
        Tensor, a Tensor representing cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1775 1776 1777

    Examples:
        .. code-block:: text
1778

L
littletomatodonkey 已提交
1779 1780 1781 1782 1783 1784 1785 1786 1787
            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
Y
Yang Zhang 已提交
1788
                axis = 1
L
littletomatodonkey 已提交
1789 1790 1791 1792 1793
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1794

L
littletomatodonkey 已提交
1795 1796 1797
            import paddle
            import paddle.nn as nn

1798 1799 1800 1801
            paddle.seed(1)
            x1 = paddle.randn(shape=[2, 3])
            x2 = paddle.randn(shape=[2, 3])

Y
Yang Zhang 已提交
1802
            result = paddle.nn.functional.cosine_similarity(x1, x2, axis=0)
L
littletomatodonkey 已提交
1803
            print(result)
1804
            # [0.97689527,  0.99996042, -0.55138415]
1805

L
littletomatodonkey 已提交
1806
    """
1807 1808 1809
    w12 = sum(paddle.multiply(x1, x2), axis=axis)
    w1 = sum(paddle.multiply(x1, x1), axis=axis)
    w2 = sum(paddle.multiply(x2, x2), axis=axis)
Y
Yang Zhang 已提交
1810
    n12 = sqrt(clip(w1 * w2, min=eps * eps))
L
littletomatodonkey 已提交
1811 1812
    cos_sim = w12 / n12
    return cos_sim
1813 1814 1815


def linear(x, weight, bias=None, name=None):
1816
    r"""
1817

1818 1819
    Fully-connected linear transformation operator. For each input :math:`X` ,
    the equation is:
1820 1821 1822

    .. math::

1823
        Out = XW + b
1824

1825
    where :math:`W` is the weight and :math:`b` is the bias.
1826

1827 1828 1829 1830
    If the weight is a 2-D tensor of shape :math:`[in\_features, out\_features]` ,
    input should be a multi-dimensional tensor of shape
    :math:`[batch\_size, *, in\_features]` , where :math:`*` means any number of
    additional dimensions. The linear operator multiplies input tensor with
1831
    weight and produces an output tensor of shape :math:`[batch\_size, *, out\_features]` ,
1832 1833
    If :math:`bias` is not None, the bias should be a 1-D tensor of shape
    :math:`[out\_features]` and will be added to the output.
1834

1835 1836 1837 1838 1839 1840 1841
    Parameters:
        x (Tensor): Input tensor. The data type should be float16, float32 or float64.
        weight (Tensor): Weight tensor. The data type should be float16, float32 or float64.
        bias (Tensor, optional): Bias tensor. The data type should be float16, float32 or float64.
                                 If it is set to None, no bias will be added to the output units.
        name (str, optional): Normally there is no need for user to set this parameter.
                              For detailed information, please refer to :ref:`api_guide_Name` .
1842 1843

    Returns:
1844 1845
        Tensor, the shape is :math:`[batch\_size, *, out\_features]` and the
        data type is the same with input :math:`x` .
1846 1847 1848

    Examples:
        .. code-block:: python
1849

1850
          import paddle
1851

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          weight = paddle.full(shape=[2, 4], fill_value="0.5", dtype="float32", name="weight")
          # weight: [[0.5 0.5 0.5 0.5]
          #          [0.5 0.5 0.5 0.5]]
          bias = paddle.ones(shape=[4], dtype="float32", name="bias")
          # bias: [1. 1. 1. 1.]
          y = paddle.nn.functional.linear(x, weight, bias)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
1865
    """
J
Jiabin Yang 已提交
1866
    if in_dygraph_mode():
1867
        # TODO(jiabin): using addmm for fast forward route
1868
        return _C_ops.linear(x, weight, bias)
1869
    else:
1870 1871
        helper = LayerHelper('linear', **locals())
        dtype = x.dtype
J
Jiabin Yang 已提交
1872

1873 1874 1875 1876
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'linear'
        )
        check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear')
J
Jiabin Yang 已提交
1877

1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
        inputs = {'X': [x], 'Y': [weight]}
        attrs = {'trans_x': False, 'trans_y': False}
        tmp = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='matmul_v2',
            inputs=inputs,
            outputs={'Out': tmp},
            attrs=attrs,
        )
        if bias is not None:
            res = helper.create_variable_for_type_inference(dtype)
1889
            helper.append_op(
1890 1891 1892
                type='elementwise_add',
                inputs={'X': [tmp], 'Y': [bias]},
                outputs={'Out': [res]},
J
Jiabin Yang 已提交
1893
                attrs={'axis': -1},
1894
            )
1895 1896 1897
        else:
            res = tmp
        return res
1898 1899 1900


def label_smooth(label, prior_dist=None, epsilon=0.1, name=None):
1901
    r"""
1902
    Label smoothing is a mechanism to regularize the classifier layer and is called
1903 1904 1905 1906
    label-smoothing regularization (LSR).Label smoothing is proposed to encourage
    the model to be less confident, since optimizing the log-likelihood of the
    correct label directly may cause overfitting and reduce the ability of the
    model to adapt.
1907

1908
    Label smoothing replaces the ground-truth label :math:`y` with the weighted sum
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Parameters:
        label(Tensor): The input variable containing the label data. The
                        label data should use one-hot representation. It's
                        a multidimensional tensor with a shape of
1926
                        :math:`[N_1, ..., Depth]`, where Depth is class number. The dtype can be "float16" "float32" and "float64".
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
        prior_dist(Tensor, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is
                        0.1.
        name(str, optional): The default value is None. Normally there is no need for user
                        to set this property. For more information, please refer to
                        :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor containing the smoothed labels.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1946 1947 1948 1949

            x = paddle.to_tensor([[[0, 1, 0],
                                [ 1,  0, 1]]], dtype="float32", stop_gradient=False)

1950
            output = paddle.nn.functional.label_smooth(x)
1951
            print(output)
1952 1953 1954
            # Tensor(shape=[1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [[[0.03333334, 0.93333334, 0.03333334],
            #          [0.93333334, 0.03333334, 0.93333334]]])
1955
    """
1956
    if epsilon > 1.0 or epsilon < 0.0:
1957 1958
        raise ValueError("The value of epsilon must be between 0 and 1.")

1959
    if in_dygraph_mode():
1960
        return _C_ops.label_smooth(label, prior_dist, float(epsilon))
1961

1962
    elif paddle.in_dynamic_mode():
1963 1964 1965
        return _legacy_C_ops.label_smooth(
            label, prior_dist, 'epsilon', float(epsilon)
        )
1966

1967
    check_variable_and_dtype(
1968
        label, 'label', ['float16', 'float32', 'float64'], 'label_smooth'
1969
    )
1970 1971 1972 1973

    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_variable_for_type_inference(label.dtype)
1974 1975 1976 1977 1978 1979 1980 1981
    helper.append_op(
        type="label_smooth",
        inputs={"X": label, "PriorDist": prior_dist}
        if prior_dist
        else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)},
    )
1982
    return smooth_label
1983 1984


G
Guoxia Wang 已提交
1985
def class_center_sample(label, num_classes, num_samples, group=None):
1986 1987
    """
    Class center sample method is proposed from the paper PartialFC that only sample a subset of the class centers.
1988
    The process of sampling subset class centers is straightforward:
1989 1990 1991 1992

    1. First select the positive class centers;
    2. Then randomly sample negative class centers.

1993
    Specifically, given a label tensor, shape [batch_size], select all the positive class centers and randomly
1994 1995 1996 1997
    sample negative class centers, then remap the input label tensor using the sampled class centers.

    For more information, Partial FC: Training 10 Million Identities on a Single Machine
    arxiv: https://arxiv.org/abs/2010.05222
1998

V
Vegetable dog 已提交
1999
    Note:
2000
        If the number of the positive class centers is greater than the input num_samples, it keeps all the positive
2001
        class centers and the shape of sampled_class_center will be [num_positive_class_centers].
2002

2003 2004
        The API supports CPU, single GPU and multi GPU.

2005 2006 2007 2008
        For data parallel mode, set ``group=False``.

        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.

2009
    Args:
G
Guoxia Wang 已提交
2010 2011
        label (Tensor): 1-D tensor with shape [N], each label in [0, num_classes)
        num_classes (int): A positive integer to specify the number of classes at local rank.
2012
            Note that num_classes of each GPU can be different.
G
Guoxia Wang 已提交
2013
        num_samples (int): A positive integer to specify the number of class center to sample.
2014
        group (Group, optional): The group instance return by paddle.distributed.new_group
2015 2016
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
2017 2018 2019 2020 2021 2022 2023 2024

    Returns:
        Tuple of two ``Tensor`` : (remapped_label, sampled_class_center), remapped label using sampled class center,
        sampled class center from [0, num_classes).

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
2025
        :name: code-example1
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

        # CPU or single GPU
        import paddle
        num_classes = 20
        batch_size = 10
        num_samples = 6
        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes, num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        # the output is
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [11, 5 , 1 , 3 , 12, 2 , 15, 19, 18, 19])
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [4, 3, 0, 2, 5, 1, 6, 8, 7, 8])
        #Tensor(shape=[9], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [1 , 2 , 3 , 5 , 11, 12, 15, 18, 19])

    .. code-block:: python
G
Guoxia Wang 已提交
2048
        :name: code-example2
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

        # required: distributed
        # Multi GPU, test_class_center_sample.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        batch_size = 10
        num_samples = 6
        rank_id = dist.get_rank()
        # num_classes of each GPU can be different, e.g num_classes_list = [10, 8]
        num_classes_list = [10, 10]
        num_classes = paddle.sum(paddle.to_tensor(num_classes_list))
        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes_list[rank_id], num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        #python -m paddle.distributed.launch --gpus=0,1 test_class_center_sample.py
        # rank 0 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [0, 2, 4, 8, 9, 3])
2080

2081 2082 2083 2084 2085 2086 2087 2088
        # rank 1 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[7], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [0, 1, 2, 3, 5, 7, 8])
    """
2089
    if not (group is False or group is None or hasattr(group, 'is_member')):
2090 2091
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
2092 2093 2094 2095
             (got group: {})'.format(
                group
            )
        )
2096 2097 2098
        return

    if hasattr(group, 'is_member') and not group.is_member():
2099 2100
        return

2101
    ring_id = 0
2102 2103
    rank = 0
    nranks = 1
2104
    if group is not False:
2105 2106 2107
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
2108 2109 2110 2111 2112
            rank = (
                global_rank
                if group is None
                else group.get_group_rank(global_rank)
            )
2113
            nranks = parallel_env.world_size if group is None else group.nranks
2114 2115 2116

    if num_samples > num_classes:
        raise ValueError(
2117 2118 2119 2120
            'Expected num_samples less than or equal to {}, got num_samples {}'.format(
                num_classes, num_samples
            )
        )
2121

G
Guoxia Wang 已提交
2122 2123 2124
    label_size = 1
    for dim in list(label.shape):
        label_size *= dim
2125
    if label_size != -1 and label_size < 1:
2126 2127 2128 2129 2130 2131
        raise ValueError(
            'Expected label_size > 0 \
             (got label_size: {})'.format(
                label_size
            )
        )
G
Guoxia Wang 已提交
2132 2133 2134

    label_dims = len(list(label.shape))
    if label_dims != 1:
2135 2136 2137 2138 2139 2140
        raise ValueError(
            'Expected label_dims == 1 \
             (got label_dims: {})'.format(
                label_dims
            )
        )
G
Guoxia Wang 已提交
2141 2142

    seed = None
2143 2144 2145
    if (seed is None or seed == 0) and default_main_program().random_seed != 0:
        seed = default_main_program().random_seed

2146
    if in_dygraph_mode():
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
        return _C_ops.class_center_sample(
            label,
            num_classes,
            num_samples,
            ring_id,
            rank,
            nranks,
            seed is not None,
            seed if seed is not None else 0,
        )
2157
    elif paddle.in_dynamic_mode():
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
        (
            remapped_label,
            sampled_class_center,
        ) = _legacy_C_ops.class_center_sample(
            label,
            'num_classes',
            num_classes,
            'num_samples',
            num_samples,
            'ring_id',
            ring_id,
            'nranks',
            nranks,
            'rank',
            rank,
            'fix_seed',
            seed is not None,
            'seed',
            seed if seed is not None else 0,
        )
2178 2179
        return remapped_label, sampled_class_center

2180 2181 2182
    check_variable_and_dtype(
        label, 'label', ['int64', 'int32'], 'class_center_sample'
    )
2183 2184 2185
    op_type = 'class_center_sample'
    helper = LayerHelper(op_type, **locals())
    remapped_label = helper.create_variable_for_type_inference(
2186 2187
        dtype=label.dtype
    )
2188
    sampled_class_center = helper.create_variable_for_type_inference(
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
        dtype=label.dtype
    )
    helper.append_op(
        type=op_type,
        inputs={'Label': label},
        outputs={
            'RemappedLabel': remapped_label,
            'SampledLocalClassCenter': sampled_class_center,
        },
        attrs={
            'num_classes': num_classes,
            'num_samples': num_samples,
            'ring_id': ring_id,
            'nranks': nranks,
            'rank': rank,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
        },
    )
2208
    return remapped_label, sampled_class_center
X
xiaoting 已提交
2209 2210


2211 2212 2213
def fold(
    x, output_sizes, kernel_sizes, strides=1, paddings=0, dilations=1, name=None
):
X
xiaoting 已提交
2214
    r"""
2215

2216
    Combines an array of sliding local blocks into a large containing
2217 2218
    tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each
    combined value in the resulting large tensor by summing all values from all containing blocks.
X
xiaoting 已提交
2219 2220 2221 2222 2223 2224


    For each input :math:`x` with shape [N, C_in , L], the output shape [N, C_out, H_out, W_out]
    can be calculated as following.

    .. math::
2225

2226 2227 2228
        H_{out} &= output\_size[0] \\
        W_{out} &= output\_size[1] \\
        C_{out} &= \frac{C_{in}}{kernel\_sizes[0]\times kernel\_sizes[1]} \\
X
xiaoting 已提交
2229 2230 2231 2232

    Parameters:
        x(Tensor):                3-D Tensor, input tensor of format [N, C, L],
                                  data type can be float32 or float64
X
xiaoting 已提交
2233
        output_sizes(int|list|tuple):       The size of output size, should be [output_size_h, output_size_w]
X
xiaoting 已提交
2234
                                  or an interger o treated as [o, o].
X
xiaoting 已提交
2235
        kernel_sizes(int|list|tuple):   The size of convolution kernel, should be [k_h, k_w]
X
xiaoting 已提交
2236
                                  or an integer k treated as [k, k].
2237
        strides(int|list|tuple, optional):        The strides, should be [stride_h, stride_w]
X
xiaoting 已提交
2238 2239
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
2240
        paddings(int|list|tuple, optional):       The paddings of each dimension, should be
X
xiaoting 已提交
2241 2242 2243 2244 2245 2246
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
2247
        dilations(int|list|tuple, optional):      the dilations of convolution kernel, should be
X
xiaoting 已提交
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
        The tensor formed by combining a group of sliding local blocks
        The output shape is [N, Cout, H, W] as decriabled above.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

X
xiaoting 已提交
2266 2267 2268
            x = paddle.randn([2,3*2*2,12])
            y = F.fold(x, output_sizes=[4, 5], kernel_sizes=2)
            # y.shape = [2,3,4,5]
X
xiaoting 已提交
2269 2270

    """
2271 2272 2273 2274 2275

    helper = LayerHelper("fold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'fold')

2276
    assert len(x.shape) == 3, "input should be the format of [N, C, L]"
X
xiaoting 已提交
2277

X
xiaoting 已提交
2278
    def _is_list_or_turple_(data):
2279
        return isinstance(data, list) or isinstance(data, tuple)
X
xiaoting 已提交
2280

X
xiaoting 已提交
2281 2282 2283
    if isinstance(output_sizes, int):
        output_sizes = [output_sizes, output_sizes]
    else:
2284 2285 2286
        assert _is_list_or_turple_(output_sizes) and (
            len(output_sizes) == 2
        ), "output_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2287 2288 2289 2290

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
2291 2292 2293
        assert _is_list_or_turple_(kernel_sizes) and (
            len(kernel_sizes) == 2
        ), "kernel_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2294 2295 2296 2297

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
2298 2299 2300
        assert _is_list_or_turple_(strides) and (
            len(strides) == 2
        ), "strides should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2301 2302 2303 2304

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
2305 2306 2307
        assert _is_list_or_turple_(dilations) and (
            len(dilations) == 2
        ), "dilations should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
2323 2324
            "of 2 or 4 integers"
        )
X
xiaoting 已提交
2325

X
xiaoting 已提交
2326
    if in_dygraph_mode():
2327 2328 2329
        out = _C_ops.fold(
            x, output_sizes, kernel_sizes, strides, paddings, dilations
        )
X
xiaoting 已提交
2330
    elif in_dynamic_mode():
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
        out = _legacy_C_ops.fold(
            x,
            "output_sizes",
            output_sizes,
            "kernel_sizes",
            kernel_sizes,
            "strides",
            strides,
            "paddings",
            paddings,
            "dilations",
            dilations,
        )
X
xiaoting 已提交
2344 2345
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
        helper.append_op(
            type="fold",
            inputs={"X": x},
            outputs={"Y": out},
            attrs={
                "output_sizes": output_sizes,
                "kernel_sizes": kernel_sizes,
                "strides": strides,
                "paddings": paddings,
                "dilations": dilations,
            },
        )
X
xiaoting 已提交
2358
    return out