未验证 提交 8898dce1 编写于 作者: X xiaoting 提交者: GitHub

Add fold opereators (#38613)

* add fold opereators, test=develop

* add fold opereators, test=develop

* add fold opereators, test=develop

* update fold op error test, test=develop

* fix unitext, test=develop

* fix unitext, test=develop
上级 5a6a2d27
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/fold_op.h"
#include "paddle/fluid/operators/unfold_op.h"
namespace paddle {
namespace operators {
class FoldOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput("X"), true,
platform::errors::NotFound("Input(X) of FoldOp should not be null"));
PADDLE_ENFORCE_EQ(
ctx->HasOutput("Y"), true,
platform::errors::NotFound("Output(Y) of FoldOp should not be null"));
auto in_dims = ctx->GetInputDim("X");
std::vector<int> output_sizes =
ctx->Attrs().Get<std::vector<int>>("output_sizes");
std::vector<int> kernel_sizes =
ctx->Attrs().Get<std::vector<int>>("kernel_sizes");
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
std::vector<int> dilations =
ctx->Attrs().Get<std::vector<int>>("dilations");
PADDLE_ENFORCE_EQ(
output_sizes.size(), 2,
platform::errors::InvalidArgument(
"It is expected output_size equals to 2, but got size %d",
output_sizes.size()));
PADDLE_ENFORCE_EQ(
kernel_sizes.size(), 2,
platform::errors::InvalidArgument(
"It is expected kernel_size equals to 2, but got size %d",
kernel_sizes.size()));
PADDLE_ENFORCE_EQ(
strides.size(), 2,
platform::errors::InvalidArgument(
"It is expected strides_size equals to 2, but got size %d",
strides.size()));
PADDLE_ENFORCE_EQ(
paddings.size(), 4,
platform::errors::InvalidArgument(
"It is expected paddings_size equals to 4, but got size %d",
paddings.size()));
PADDLE_ENFORCE_EQ(
dilations.size(), 2,
platform::errors::InvalidArgument(
"It is expected dilations_size equals to 2, but got size %d",
dilations.size()));
int output_height = output_sizes[0];
int output_width = output_sizes[1];
int kernel_height = kernel_sizes[0];
int kernel_width = kernel_sizes[1];
int dilation_height = dilations[0];
int dilation_width = dilations[1];
int stride_height = strides[0];
int stride_width = strides[1];
// check kernel_sizes
PADDLE_ENFORCE_GT(kernel_height, 0,
platform::errors::InvalidArgument(
"The `kernel_sizes` should be greater than zero, "
"but recieved kernel_height: %d kernel_width: %d.",
kernel_sizes[0], kernel_sizes[1]));
PADDLE_ENFORCE_GT(kernel_width, 0,
platform::errors::InvalidArgument(
"The `kernel_sizes` should be greater than zero, "
"but recieved kernel_height: %d kernel_width: %d.",
kernel_sizes[0], kernel_sizes[1]));
// check strides
PADDLE_ENFORCE_GT(stride_height, 0,
platform::errors::InvalidArgument(
"The `strides` should be greater than zero, "
"but recieved strides_height: %d strides_width: %d.",
strides[0], strides[1]));
PADDLE_ENFORCE_GT(stride_width, 0,
platform::errors::InvalidArgument(
"The `strides` should be greater than zero, "
"but recieved strides_height: %d strides_width: %d.",
strides[0], strides[1]));
// check dilations
PADDLE_ENFORCE_GT(
dilation_height, 0,
platform::errors::InvalidArgument(
"The `dilations` should be greater than zero, "
"but recieved dilations_height: %d dilations_width: %d.",
dilations[0], dilations[1]));
PADDLE_ENFORCE_GT(
dilation_width, 0,
platform::errors::InvalidArgument(
"The `dilations` should be greater than zero, "
"but recieved dilations_height: %d dilations_width: %d.",
dilations[0], dilations[1]));
std::vector<int> out_dims;
// batch_size
out_dims.push_back(in_dims[0]);
// output_plane
int output_channels = in_dims[1] / (kernel_width * kernel_height);
out_dims.push_back(output_channels);
int blocks_height = (output_sizes[0] + 2 * paddings[0] -
(dilations[0] * (kernel_sizes[0] - 1) + 1)) /
strides[0] +
1;
int blocks_width = (output_sizes[1] + 2 * paddings[1] -
(dilations[1] * (kernel_sizes[1] - 1) + 1)) /
strides[1] +
1;
// check output height and width
PADDLE_ENFORCE_GT(
blocks_height, 0,
platform::errors::InvalidArgument(
"The sliding blocks calculated from input spatial size (%d, %d), "
"kernel_sizes (%d, %d), strides (%d, %d), dilations (%d, %d), "
"is (%d, %d), which should be a positive integer.",
in_dims[2], in_dims[3], kernel_sizes[0], kernel_sizes[1],
strides[0], strides[1], dilations[0], dilations[1], output_height,
output_width));
PADDLE_ENFORCE_GT(
blocks_width, 0,
platform::errors::InvalidArgument(
"The sliding blocks calculated from input spatial size (%d, %d), "
"kernel_sizes (%d, %d), strides (%d, %d), dilations (%d, %d), "
"is (%d, %d), which should be a positive integer.",
in_dims[2], in_dims[3], kernel_sizes[0], kernel_sizes[1],
strides[0], strides[1], dilations[0], dilations[1], output_height,
output_width));
PADDLE_ENFORCE_EQ(
blocks_height * blocks_width, in_dims[1],
platform::errors::InvalidArgument(
"Given input output_size (%d, %d), "
"kernel_sizes (%d, %d), strides (%d, %d), dilations (%d, %d), "
"which should be expected size of input's dimension "
"2 to match the calculated number of %d * %d = %d, but got %d",
output_height, output_width, kernel_sizes[0], kernel_sizes[1],
strides[0], strides[1], dilations[0], dilations[1], blocks_height,
blocks_width, blocks_height * blocks_width, in_dims[2]));
out_dims.push_back(output_height);
out_dims.push_back(output_width);
ctx->SetOutputDim("Y", framework::make_ddim(out_dims));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context());
}
};
class FoldOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"Tensor, "
"the input of fold op. "
"The format of X is [N, C_in, L], "
"where N is the batch size, C_in is the input channels, "
"L is the length");
AddOutput("Y",
"Tensor, "
"the output of unfold op. "
"The format of Y is [N, C_out, output_height, output_width], "
"where N is the batch size, "
"C_in is the output channels of Y, output_height and "
"output_width "
"is the calculated height and width of output feature map.");
AddAttr<std::vector<int>>(
"output_sizes",
"vector<int>, the output sizes of the convolution operator.");
AddAttr<std::vector<int>>(
"kernel_sizes",
"vector<int>, the kernel sizes of the convolution operator.");
AddAttr<std::vector<int>>(
"strides", "vector<int>, the strides of the convolution operator.");
AddAttr<std::vector<int>>(
"paddings",
"vector<int>, the paddings applied to pad the feature map.");
AddAttr<std::vector<int>>(
"dilations", "vector<int>, the dilations of the convolution operator.");
AddComment(R"DOC(
**Fold Operator**
This Operator is used to combines an array of sliding local blocks into a large containing
tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each
combined value in the resulting large tensor by summing all values from all containing blocks.
Unfold extracts the values in the local blocks by copying from the large tensor. So, if the
blocks overlap, they are not inverses of each other.
)DOC");
}
};
class FoldGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput(framework::GradVarName("Y")), true,
platform::errors::NotFound("The gradient of Y should not be null"));
PADDLE_ENFORCE_EQ(
ctx->HasInput("X"), true,
platform::errors::NotFound("The input X should not be null"));
PADDLE_ENFORCE_EQ(
ctx->HasOutput(framework::GradVarName("X")), true,
platform::errors::NotFound("The gradient of X should not be null"));
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Y")),
ctx.device_context());
}
};
template <typename T>
class FoldGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("fold_grad");
op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
op->SetInput("X", this->Input("X"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetAttrMap(this->Attrs());
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER(FoldGradOpNoNeedBufferVarsInferer, "X");
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(fold, ops::FoldOp, ops::FoldOpMaker,
ops::FoldGradMaker<paddle::framework::OpDesc>,
ops::FoldGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(fold_grad, ops::FoldGradOp,
ops::FoldGradOpNoNeedBufferVarsInferer);
REGISTER_OP_CPU_KERNEL(
fold, ops::FoldOpKernel<paddle::platform::CPUDeviceContext, float>,
ops::FoldOpKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
fold_grad, ops::FoldGradOpKernel<paddle::platform::CPUDeviceContext, float>,
ops::FoldGradOpKernel<paddle::platform::CPUDeviceContext, double>);
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fold_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
fold, ops::FoldOpKernel<paddle::platform::CUDADeviceContext, float>,
ops::FoldOpKernel<paddle::platform::CUDADeviceContext, double>);
REGISTER_OP_CUDA_KERNEL(
fold_grad,
ops::FoldGradOpKernel<paddle::platform::CUDADeviceContext, float>,
ops::FoldGradOpKernel<paddle::platform::CUDADeviceContext, double>);
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class FoldOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
const Tensor* input = ctx.Input<Tensor>("X");
const int batch_size = static_cast<int>(input->dims()[0]);
Tensor* output = ctx.Output<Tensor>("Y");
output->mutable_data<T>(ctx.GetPlace());
std::vector<int> output_sizes = ctx.Attr<std::vector<int>>("output_sizes");
std::vector<int> kernel_sizes = ctx.Attr<std::vector<int>>("kernel_sizes");
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;
auto& dev_ctx = ctx.template device_context<DeviceContext>();
auto input_dims = input->dims();
int output_height = (output_sizes[0] + 2 * paddings[0] -
(dilations[0] * (kernel_sizes[0] - 1) + 1)) /
strides[0] +
1;
int output_width = (output_sizes[1] + 2 * paddings[1] -
(dilations[1] * (kernel_sizes[1] - 1) + 1)) /
strides[1] +
1;
int n_input_plane = input_dims[1];
int n_output_plane = n_input_plane / (kernel_sizes[0] * kernel_sizes[1]);
framework::DDim output_shape(
{n_output_plane, output_sizes[0], output_sizes[1]});
framework::DDim input_matrix_shape({input_dims[0], kernel_sizes[0],
kernel_sizes[1], output_height,
output_width});
math::SetConstant<DeviceContext, T> set_zero;
set_zero(dev_ctx, output, static_cast<T>(0));
for (int i = 0; i < batch_size; i++) {
Tensor out_batch =
output->Slice(i, i + 1).Resize(output_shape); // im size=3
Tensor in_batch =
input->Slice(i, i + 1).Resize(input_matrix_shape); // col size=5
col2im(dev_ctx, in_batch, dilations, strides, paddings, &out_batch);
}
}
};
template <typename DeviceContext, typename T>
class FoldGradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
const Tensor* output_grad = ctx.Input<Tensor>(framework::GradVarName("Y"));
Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
input_grad->mutable_data<T>(ctx.GetPlace());
if ((!output_grad) || (!input_grad)) return;
std::vector<int> output_sizes = ctx.Attr<std::vector<int>>("output_sizes");
std::vector<int> kernel_sizes = ctx.Attr<std::vector<int>>("kernel_sizes");
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
const int batch_size = static_cast<int>(input_grad->dims()[0]);
auto input_dims = input_grad->dims();
int output_height = (output_sizes[0] + 2 * paddings[0] -
(dilations[0] * (kernel_sizes[0] - 1) + 1)) /
strides[0] +
1;
int output_width = (output_sizes[1] + 2 * paddings[1] -
(dilations[1] * (kernel_sizes[1] - 1) + 1)) /
strides[1] +
1;
int n_input_plane = input_dims[1];
int n_output_plane = n_input_plane / (kernel_sizes[0] * kernel_sizes[1]);
framework::DDim output_shape(
{n_output_plane, output_sizes[0], output_sizes[1]});
framework::DDim input_matrix_shape({input_dims[0], kernel_sizes[0],
kernel_sizes[1], output_height,
output_width});
math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
auto& dev_ctx = ctx.template device_context<DeviceContext>();
for (int i = 0; i < batch_size; i++) {
Tensor out_grad_batch = output_grad->Slice(i, i + 1).Resize(output_shape);
Tensor in_grad_batch =
input_grad->Slice(i, i + 1).Resize(input_matrix_shape);
im2col(dev_ctx, out_grad_batch, dilations, strides, paddings,
&in_grad_batch);
}
}
};
} // namespace operators
} // namespace paddle
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import math
import numpy as np
import unittest
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
paddle.enable_static()
class TestFoldOp(OpTest):
"""
This is for test on fold Op
"""
def init_data(self):
self.batch_size = 3
self.input_channels = 3 * 2 * 2
self.length = 12
self.kernel_sizes = [2, 2]
self.strides = [1, 1]
self.paddings = [0, 0, 0, 0]
self.dilations = [1, 1]
self.output_sizes = [4, 5]
input_shape = [self.batch_size, self.input_channels, self.length]
self.x = np.random.rand(*input_shape).astype(np.float64)
def calc_fold(self):
output_shape = [0] * 4
output_shape[0] = self.batch_size
output_shape[1] = int(self.input_channels /
(self.kernel_sizes[0] * self.kernel_sizes[1]))
output_shape[2] = self.output_sizes[0]
output_shape[3] = self.output_sizes[1]
dkernel_h = self.dilations[0] * (self.kernel_sizes[0] - 1) + 1
dkernel_w = self.dilations[1] * (self.kernel_sizes[1] - 1) + 1
col_height = int((self.output_sizes[0] + self.paddings[0] +
self.paddings[2] - dkernel_h) / self.strides[0]) + 1
col_width = int((self.output_sizes[1] + self.paddings[1] +
self.paddings[3] - dkernel_w) / self.strides[1]) + 1
output = np.zeros(output_shape).astype(np.float64)
############ calculate output ##############
for b in range(output_shape[0]):
for c in range(self.input_channels):
w_offset = int(c % self.kernel_sizes[1])
h_offset = int(
(c / self.kernel_sizes[1]) % self.kernel_sizes[0])
c_out = int(c / self.kernel_sizes[0] / self.kernel_sizes[1])
for h in range(col_height):
h_out = int(h * self.strides[0] - self.paddings[0] +
h_offset * self.dilations[0])
for w in range(col_width):
w_out = int(w * self.strides[1] - self.paddings[1] +
w_offset * self.dilations[1])
if (h_out >= 0 and h_out < self.output_sizes[0]) and (
w_out >= 0 and w_out < self.output_sizes[1]):
output[b, c_out, h_out, w_out] += self.x[
b, c, w + col_width * h]
self.outputs = output
def set_data(self):
self.init_data()
self.calc_fold()
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
self.attrs = {
'kernel_sizes': self.kernel_sizes,
'paddings': self.paddings,
'dilations': self.dilations,
'strides': self.strides,
'output_sizes': self.output_sizes
}
self.outputs = {'Y': self.outputs}
def setUp(self):
self.op_type = 'fold'
self.set_data()
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Y')
class TestFoldAPI(TestFoldOp):
#This is for test on paddle.nn.Fold
def setUp(self):
self.op_type = 'fold'
self.set_data()
self.places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(fluid.CUDAPlace(0))
def test_api(self):
for place in self.places:
with fluid.dygraph.guard(place):
input = paddle.to_tensor(self.x)
m = paddle.nn.Fold(**self.attrs)
m.eval()
result = m(input)
self.assertTrue(np.allclose(result.numpy(), self.outputs['Y']))
def test_info(self):
str(paddle.nn.Fold(**self.attrs))
class TestFoldOpError(unittest.TestCase):
def test_errors(self):
from paddle.nn.functional import fold
from paddle.fluid.framework import Program, program_guard
with program_guard(Program(), Program()):
def test_input_shape():
# input_shpae must be 3-D
x = paddle.randn(shape=[2, 3, 6, 7], dtype="float32")
out = fold(x, output_sizes=[2, 3], kernel_sizes=[2, 2])
def test_kernel_shape():
# kernel_size must be 2
x = paddle.randn(shape=[2, 6, 6], dtype="float32")
out = fold(x, output_sizes=[2, 3], kernel_sizes=[2, 2, 3])
def test_padding_shape():
# padding_size must be 2 or 4
x = paddle.randn(shape=[2, 6, 6], dtype="float32")
out = fold(
x,
output_sizes=[2, 3],
kernel_sizes=[2, 2],
paddings=[2, 2, 3])
def test_dilations_shape():
# dialtions_size must be 2
x = paddle.randn(shape=[2, 6, 6], dtype="float32")
out = fold(
x,
output_sizes=[2, 3],
kernel_sizes=[2, 2],
dilations=[2, 2, 3])
def test_strides_shape():
# strids_size must be 2
x = paddle.randn(shape=[2, 6, 6], dtype="float32")
out = fold(
x,
output_sizes=[2, 3],
kernel_sizes=[2, 2],
strides=[2, 2, 3])
def test_output_size():
# im_h * im_w must be L
x = paddle.randn(shape=[2, 6, 6], dtype="float32")
out = fold(
x, output_sizes=[6, 6], kernel_sizes=[2, 2],
strides=[1, 1])
def test_block_h_w():
# test_block_h_w GT 0
x = paddle.randn(shape=[2, 1, 1], dtype="float32")
out = fold(
x, output_sizes=[1, 1], kernel_sizes=[2, 2], strides=1)
def test_GT_0():
x = paddle.randn(shape=[2, 1, 1], dtype="float32")
out = fold(
x,
output_sizes=[0, 0],
kernel_sizes=[0, 0],
dilations=0,
paddings=[0, 0],
strides=0)
self.assertRaises(AssertionError, test_input_shape)
self.assertRaises(AssertionError, test_kernel_shape)
self.assertRaises(ValueError, test_padding_shape)
self.assertRaises(AssertionError, test_dilations_shape)
self.assertRaises(AssertionError, test_strides_shape)
self.assertRaises(ValueError, test_output_size)
self.assertRaises(ValueError, test_block_h_w)
self.assertRaises(ValueError, test_GT_0)
if __name__ == '__main__':
unittest.main()
......@@ -68,6 +68,7 @@ from .layer.common import Dropout2D # noqa: F401
from .layer.common import Dropout3D # noqa: F401
from .layer.common import AlphaDropout # noqa: F401
from .layer.common import Unfold # noqa: F401
from .layer.common import Fold # noqa: F401
from .layer.pooling import AvgPool1D # noqa: F401
from .layer.pooling import AvgPool2D # noqa: F401
......@@ -215,6 +216,7 @@ __all__ = [ #noqa
'Bilinear',
'AlphaDropout',
'Unfold',
'Fold',
'RNNCellBase',
'SimpleRNNCell',
'LSTMCell',
......
......@@ -55,6 +55,7 @@ from .common import pad # noqa: F401
from .common import zeropad2d # noqa: F401
from .common import cosine_similarity # noqa: F401
from .common import unfold # noqa: F401
from .common import fold
from .common import interpolate # noqa: F401
from .common import upsample # noqa: F401
from .common import bilinear # noqa: F401
......@@ -216,4 +217,5 @@ __all__ = [ #noqa
'instance_norm',
'class_center_sample',
'sparse_attention',
'fold',
]
......@@ -1794,3 +1794,130 @@ def class_center_sample(label, num_classes, num_samples, group=None):
'seed': seed if seed is not None else 0
})
return remapped_label, sampled_class_center
def fold(x,
output_sizes,
kernel_sizes,
strides=1,
paddings=0,
dilations=1,
name=None):
r"""
This Op is used to combines an array of sliding local blocks into a large containing
tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each
combined value in the resulting large tensor by summing all values from all containing blocks.
For each input :math:`x` with shape [N, C_in , L], the output shape [N, C_out, H_out, W_out]
can be calculated as following.
.. math::
H_out &= output_size[0]
W_out &= output_size[1]
C_out &= C_in / kernel\_sizes[0] / kernel\_sizes[1]
Parameters:
x(Tensor): 3-D Tensor, input tensor of format [N, C, L],
data type can be float32 or float64
output_sizes(list): The size of output size, should be [output_size_h, output_size_w]
or an interger o treated as [o, o].
kernel_sizes(int|list): The size of convolution kernel, should be [k_h, k_w]
or an integer k treated as [k, k].
strides(int|list): The strides, should be [stride_h, stride_w]
or an integer stride treated as [sride, stride].
For default, strides will be [1, 1].
paddings(int|list): The paddings of each dimension, should be
[padding_top, padding_left, padding_bottom, padding_right]
or [padding_h, padding_w] or an integer padding.
If [padding_h, padding_w] was given, it will expanded to
[padding_h, padding_w, padding_h, padding_w]. If an integer
padding was given, [padding, padding, padding, padding] will
be used. For default, paddings will be [0, 0, 0, 0]
dilations(int|list): the dilations of convolution kernel, should be
[dilation_h, dilation_w], or an integer dilation treated as
[dilation, dilation]. For default, it will be [1, 1].
name(str, optional): The default value is None.
Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`
Returns:
The tensor formed by combining a group of sliding local blocks
The output shape is [N, Cout, H, W] as decriabled above.
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
x = paddle.randn([2,12,9])
y = F.fold(x, output_sizes=(4, 4), kernel_sizes=2)
# y.shape = [2,3,4,4]
"""
helper = LayerHelper("fold", **locals())
check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'fold')
assert len(x.shape) == 3, \
"input should be the format of [N, C, L]"
if isinstance(output_sizes, int):
output_sizes = [output_sizes, output_sizes]
else:
assert isinstance(output_sizes, list) and (len(output_sizes) == 2), \
"output_sizes should either be an integer or a list of two integers"
if isinstance(kernel_sizes, int):
kernel_sizes = [kernel_sizes, kernel_sizes]
else:
assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
"kernel_sizes should either be an integer or a list of two integers"
if isinstance(strides, int):
strides = [strides, strides]
else:
assert isinstance(strides, list) and (len(strides) == 2), \
"strides should either be an integer or a list of two integers"
if isinstance(dilations, int):
dilations = [dilations, dilations]
else:
assert isinstance(dilations, list) and (len(dilations) == 2), \
"dilations should either be an integer or a list of two integers"
if isinstance(paddings, int):
paddings = [paddings] * 4
elif isinstance(paddings, list):
if len(paddings) == 2:
paddings = paddings * 2
elif len(paddings) == 4:
pass
else:
raise ValueError(
"paddings should either be an integer or a list of 2 or 4 integers"
)
else:
raise ValueError(
"Unexpected type of paddings, it should be either an integer or a list"
"of 2 or 4 integers")
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type="fold",
inputs={"X": x},
outputs={"Y": out},
attrs={
"output_sizes": output_sizes,
"kernel_sizes": kernel_sizes,
"strides": strides,
"paddings": paddings,
"dilations": dilations
})
return out
......@@ -44,6 +44,7 @@ from .common import AlphaDropout # noqa: F401
from .common import Upsample # noqa: F401
from .common import UpsamplingBilinear2D # noqa: F401
from .common import UpsamplingNearest2D # noqa: F401
from .common import Fold
from .pooling import AvgPool1D # noqa: F401
from .pooling import AvgPool2D # noqa: F401
from .pooling import AvgPool3D # noqa: F401
......
......@@ -1521,7 +1521,7 @@ class Unfold(Layer):
unfold = nn.Unfold(kernel_sizes=[3, 3])
result = unfold(x)
print(result)
"""
"""
def __init__(self,
kernel_sizes,
......@@ -1550,3 +1550,92 @@ class Unfold(Layer):
name_str = ', name={}'.format(self.name) if self.name else ''
return 'kernel_size={}, dilation={}, padding={}, stride={}{}'.\
format(self.kernel_sizes, self.dilations, self.paddings, self.strides, name_str)
class Fold(Layer):
"""
This Op is used to combines an array of sliding local blocks into a large containing
tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each
combined value in the resulting large tensor by summing all values from all containing blocks.
For each input :math:`x` with shape [N, C_in , L], the output shape [N, C_out, H_out, W_out]
can be calculated as following.
.. math::
H_out &= output_size[0]
W_out &= output_size[1]
C_out &= C_in / kernel\_sizes[0] / kernel\_sizes[1]
Parameters:
output_sizes(list): The size of output size, should be [output_size_h, output_size_w]
or an interger o treated as [o, o].
kernel_sizes(int|list): The size of convolution kernel, should be [k_h, k_w]
or an integer k treated as [k, k].
strides(int|list): The strides, should be [stride_h, stride_w]
or an integer stride treated as [sride, stride].
For default, strides will be [1, 1].
paddings(int|list): The paddings of each dimension, should be
[padding_top, padding_left, padding_bottom, padding_right]
or [padding_h, padding_w] or an integer padding.
If [padding_h, padding_w] was given, it will expanded to
[padding_h, padding_w, padding_h, padding_w]. If an integer
padding was given, [padding, padding, padding, padding] will
be used. For default, paddings will be [0, 0, 0, 0]
dilations(int|list): the dilations of convolution kernel, should be
[dilation_h, dilation_w], or an integer dilation treated as
[dilation, dilation]. For default, it will be [1, 1].
name(str, optional): The default value is None.
Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`
Returns:
The tensor formed by combining a group of sliding local blocks
The output shape is [N, Cout, H, W] as decriabled above.
Examples:
.. code-block:: python
import paddle
import paddle.nn as nn
x = paddle.randn([2,12,9])
fold = nn.Fold(output_sizes=(4, 4), kernel_sizes=2)
y = fold(x)
# y.shape = [2,3,4,4]
"""
def __init__(self,
output_sizes,
kernel_sizes,
dilations=1,
paddings=0,
strides=1,
name=None):
super(Fold, self).__init__()
self.output_sizes = output_sizes
self.kernel_sizes = kernel_sizes
self.dilations = dilations
self.paddings = paddings
self.strides = strides
self.name = name
def forward(self, input):
return F.fold(
input,
output_sizes=self.output_sizes,
kernel_sizes=self.kernel_sizes,
strides=self.strides,
paddings=self.paddings,
dilations=self.dilations,
name=self.name)
def extra_repr(self):
name_str = ', name={}'.format(self.name) if self.name else ''
return 'kernel_size={}, dilation={}, padding={}, stride={}{}'.\
format(self.kernel_sizes, self.dilations, self.paddings, self.strides, name_str)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册