common.py 94.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops, _legacy_C_ops
X
xiaoting 已提交
17
from paddle.fluid.layer_helper import LayerHelper
18
from paddle.fluid.layers.tensor import fill_constant
19 20 21
from paddle.framework import core, in_dynamic_mode
from paddle.static import Variable, default_main_program
from paddle.tensor.creation import full
22 23 24 25

from ...fluid.data_feeder import (
    check_dtype,
    check_type,
26
    check_variable_and_dtype,
27 28 29 30 31 32
)
from ...fluid.framework import (
    _in_legacy_dygraph,
    _non_static_mode,
    in_dygraph_mode,
)
33 34
from ...tensor import clip, concat, sqrt, sum
from ...tensor.creation import zeros
Z
zhiboniu 已提交
35

36 37
# TODO: define the common functions to build a neural network
from ...tensor.manipulation import squeeze, unsqueeze
38

39 40
__all__ = []

X
xiaoting 已提交
41

42 43 44
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    r"""

45
    Return a col buffer of sliding local blocks of input x, also known
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter sliding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1

        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]

        Lout &= hout \times wout


    Parameters:
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
                                  data type can be float32 or float64
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
73
        strides(int|list, optional):        The strides, should be [stride_h, stride_w]
74 75
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
76
        paddings(int|list, optional):       The paddings of each dimension, should be
77 78 79 80 81 82
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
83
        dilations(int|list, optional):      the dilations of convolution kernel, should be
84 85 86 87 88 89 90 91
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
92
        Tensor, The tensor corresponding to the sliding local blocks.
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
        The data type of output is the same as the input :math:`x`

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'unfold')

113
    assert len(x.shape) == 4, "input should be the format of [N, C, H, W]"
114 115 116 117

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
118 119 120
        assert isinstance(kernel_sizes, list) and (
            len(kernel_sizes) == 2
        ), "kernel_sizes should either be an integer or a list of two integers"
121 122 123 124

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
125 126 127
        assert isinstance(strides, list) and (
            len(strides) == 2
        ), "strides should either be an integer or a list of two integers"
128 129 130 131

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
132 133 134
        assert isinstance(dilations, list) and (
            len(dilations) == 2
        ), "dilations should either be an integer or a list of two integers"
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
150 151
            "of 2 or 4 integers"
        )
152 153

    if in_dygraph_mode():
154
        return _C_ops.unfold(x, kernel_sizes, strides, paddings, dilations)
155 156

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
157 158 159 160 161 162 163 164 165 166 167
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations,
        },
    )
168 169 170
    return out


171 172 173 174 175 176 177 178 179 180
def interpolate(
    x,
    size=None,
    scale_factor=None,
    mode='nearest',
    align_corners=False,
    align_mode=0,
    data_format='NCHW',
    name=None,
):
X
xiaoting 已提交
181
    """
S
swtkiwi 已提交
182

183
    This API resizes a batch of images.
184

185 186
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
X
xiaoting 已提交
187
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
188 189
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
190
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
191

X
xiaoting 已提交
192
    Supporting resample methods:
193 194 195 196 197 198 199

    - 'linear' : Linear interpolation
    - 'bilinear' : Bilinear interpolation
    - 'trilinear' : Trilinear interpolation
    - 'nearest' : Nearest neighbor interpolation
    - 'bicubic' : Bicubic interpolation
    - 'area': Area interpolation
200

201 202 203
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
218
    align_corners and align_mode are optional parameters,the calculation method
X
xiaoting 已提交
219 220 221 222 223 224 225
    of interpolation can be selected by them.

    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.

226 227
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
228 229
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
230 231
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
232 233 234 235
    Example:

    .. code-block:: text

236
        # For scale_factor:
X
xiaoting 已提交
237 238 239 240 241
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

242
        # Linear interpolation:
243 244 245 246 247 248 249 250 251
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
252

253
        # Nearest neighbor interpolation:
X
xiaoting 已提交
254

X
xiaoting 已提交
255 256 257 258 259
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
260

261
        # Bilinear interpolation:
X
xiaoting 已提交
262 263 264 265 266 267 268 269 270 271 272 273
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

274
        # Bicubic interpolation:
X
xiaoting 已提交
275 276 277 278 279 280 281 282 283 284 285 286
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

287
        # Trilinear interpolation:
X
xiaoting 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

302 303
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
304

X
xiaoting 已提交
305 306
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
307

X
xiaoting 已提交
308 309
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
310

X
xiaoting 已提交
311 312
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
313

X
xiaoting 已提交
314 315
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
316

X
xiaoting 已提交
317
    Parameters:
X
xiaoting 已提交
318
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
X
xiaoting 已提交
319
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
320
        size (list|tuple|Tensor|None): Output shape of image resize
321 322
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
323
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
324
             If a Tensor, its dimensions size should be a 1.
325 326 327
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
328
             Default: None.
329
        mode (str): The resample method. It supports 'linear', 'area', 'nearest', 'bilinear',
330
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
X
xiaoting 已提交
331 332
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
X
xiaoting 已提交
333
                               corner pixels.This only has an effect when 'linear', 'bilinear', 'bicubic' or 'trilinear'.
334 335 336 337
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
X
xiaoting 已提交
338
        data_format (str, optional): Specify the data format of the input, and the data format of the output
339
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`,  `"NCHW"`, `"NHWC"`, `"NCDHW"`,
X
xiaoting 已提交
340 341 342
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
343 344 345
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
X
xiaoting 已提交
346
    Returns:
347
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
X
xiaoting 已提交
348 349
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
350

351

X
xiaoting 已提交
352 353 354
    Examples:
        .. code-block:: python

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
            import paddle
            import paddle.nn.functional as F

            input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
            output_1 = F.interpolate(x=input_data, size=[12,12])
            print(output_1.shape)
            # [2L, 3L, 12L, 12L]

            # given scale
            output_2 = F.interpolate(x=input_data, scale_factor=[2,1])
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]

            # bilinear interp
            output_3 = F.interpolate(x=input_data, scale_factor=[2,1], mode="bilinear")
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]
X
xiaoting 已提交
372
    """
373 374 375 376 377 378 379 380 381 382
    data_format = data_format.upper()
    resample = mode.upper()
    resample_type = mode.lower()

    resample_methods = [
        'LINEAR',
        'BILINEAR',
        'TRILINEAR',
        'NEAREST',
        'BICUBIC',
383
        'AREA',
384
    ]
X
xiaoting 已提交
385 386
    if resample not in resample_methods:
        raise ValueError(
387
            "The 'resample' of image_resize can only be 'area', 'linear', 'bilinear', 'trilinear', "
388 389
            " 'bicubic' or 'nearest' currently."
        )
X
xiaoting 已提交
390

X
xiaoting 已提交
391
    if resample in ['LINEAR'] and len(x.shape) != 3:
392
        raise ValueError("'linear' only support 3-D tensor.")
393

394 395 396 397 398
    if resample in ['NEAREST'] and len(x.shape) != 4 and len(x.shape) != 5:
        raise ValueError("'NEAREST' only support 4-D  or 5-D tensor.")

    if resample in ['BILINEAR', 'BICUBIC'] and len(x.shape) != 4:
        raise ValueError("'bilinear' and 'bicubic' only support 4-D tensor.")
X
xiaoting 已提交
399
    if resample == 'TRILINEAR' and len(x.shape) != 5:
400 401 402 403
        raise ValueError("'trilinear'only support 5-D tensor.")

    if size is None and scale_factor is None:
        raise ValueError("One of size and scale_factor must not be None.")
X
xiaoting 已提交
404 405 406

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
407

X
xiaoting 已提交
408 409
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")
X
xiaoting 已提交
410 411 412 413
    if align_corners != 0 and resample == 'NEAREST':
        raise ValueError(
            "align_corners option can only be set with the interpolating modes: linear | bilinear | bicubic | trilinear"
        )
414

X
xiaoting 已提交
415
    if resample == 'AREA':
416 417 418 419 420
        if (
            isinstance(size, list)
            or isinstance(size, tuple)
            or isinstance(size, Variable)
        ):
X
xiaoting 已提交
421 422 423 424 425 426 427 428
            if len(size) == 0:
                raise ValueError("output size can not be empty")
        if len(x.shape) == 3:
            return paddle.nn.functional.adaptive_avg_pool1d(x, size)
        elif len(x.shape) == 4:
            return paddle.nn.functional.adaptive_avg_pool2d(x, size)
        elif len(x.shape) == 5:
            return paddle.nn.functional.adaptive_avg_pool3d(x, size)
429

X
xiaoting 已提交
430
    helper = LayerHelper('{}_interp_v2'.format(resample_type), **locals())
431
    dtype = helper.input_dtype(input_param_name='x')
X
xiaoting 已提交
432
    if len(x.shape) == 3 and data_format not in ['NCW', 'NWC']:
433
        raise ValueError(
434 435 436 437
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCW` or `NWC` supported for 3-D input."
        )
X
xiaoting 已提交
438
    elif len(x.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
X
xiaoting 已提交
439
        raise ValueError(
440 441 442 443
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCHW` or `NHWC` supported for 4-D input."
        )
X
xiaoting 已提交
444
    elif len(x.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
X
xiaoting 已提交
445
        raise ValueError(
446 447 448 449
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCDHW` or `NDHWC` supported for 5-D input."
        )
X
xiaoting 已提交
450 451

    def _is_list_or_turple_(data):
452
        return isinstance(data, list) or isinstance(data, tuple)
X
xiaoting 已提交
453

454
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
X
xiaoting 已提交
455
        data_layout = 'NCHW'
456
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
X
xiaoting 已提交
457 458
        data_layout = 'NHWC'

X
xiaoting 已提交
459 460 461 462
    if resample == 'NEAREST':
        align_corners = False

    inputs = {"X": x}
X
xiaoting 已提交
463 464 465 466 467 468 469
    attrs = {
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode,
470
        "data_layout": data_layout,
X
xiaoting 已提交
471 472
    }

473 474
    out_shape = size
    scale = scale_factor
475 476
    if out_shape is not None and scale is not None:
        raise ValueError("Only one of size or scale_factor should be defined.")
X
xiaoting 已提交
477
    if out_shape is not None:
Z
zhiboniu 已提交
478
        if isinstance(out_shape, Variable) and not in_dynamic_mode():
X
xiaoting 已提交
479 480 481
            out_shape.stop_gradient = True
            inputs['OutSize'] = out_shape
        else:
Z
zhiboniu 已提交
482
            if in_dynamic_mode():
483 484
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
X
xiaoting 已提交
485 486
                else:
                    out_shape = list(out_shape)
487 488 489
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
                        out_shape[i] = dim.numpy()[0]
X
xiaoting 已提交
490
            if not (_is_list_or_turple_(out_shape)):
491
                raise TypeError("size should be a list or tuple or Variable.")
X
xiaoting 已提交
492 493 494 495 496 497
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
498 499 500
                assert (
                    dim_size > 0
                ), "Each dimension size given in out_shape must be greater than 0."
X
xiaoting 已提交
501 502 503 504 505 506 507 508 509 510

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
511
                        assert isinstance(dim, int)
X
xiaoting 已提交
512
                        temp_out = helper.create_variable_for_type_inference(
513 514 515 516 517
                            'int32'
                        )
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out
                        )
X
xiaoting 已提交
518 519 520 521
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

X
xiaoting 已提交
522
            if len(x.shape) == 3:
523 524
                if len(out_shape) != 1:
                    raise ValueError(
525 526
                        "size length should be 2 for input 3-D tensor"
                    )
527 528 529 530 531
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
X
xiaoting 已提交
532
            if len(x.shape) == 4:
X
xiaoting 已提交
533
                if len(out_shape) != 2:
534 535 536
                    raise ValueError(
                        "size length should be 2 for " "input 4-D tensor."
                    )
X
xiaoting 已提交
537 538 539 540 541 542 543
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
X
xiaoting 已提交
544
            if len(x.shape) == 5:
X
xiaoting 已提交
545
                if len(out_shape) != 3:
546 547 548
                    raise ValueError(
                        "size length should be 3 for " "input 5-D tensor."
                    )
X
xiaoting 已提交
549 550 551 552 553 554 555 556 557 558 559
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]

    else:
Z
zhiboniu 已提交
560
        if in_dynamic_mode() and isinstance(scale, Variable):
561
            scale = list(scale.numpy())
X
xiaoting 已提交
562 563 564 565 566 567
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        elif isinstance(scale, float) or isinstance(scale, int):
            if scale <= 0:
                raise ValueError("Attr(scale) should be greater than zero.")
X
xiaoting 已提交
568 569 570 571
            scale_list = []
            for i in range(len(x.shape) - 2):
                scale_list.append(scale)
            attrs['scale'] = list(map(float, scale_list))
X
xiaoting 已提交
572
        elif isinstance(scale, list) or isinstance(scale, tuple):
X
xiaoting 已提交
573
            if len(scale) != len(x.shape) - 2:
574 575 576 577
                raise ValueError(
                    "scale_shape length should be {} for "
                    "input {}-D tensor.".format(len(x.shape) - 2, len(x.shape))
                )
X
xiaoting 已提交
578 579 580 581
            for value in scale:
                if value <= 0:
                    raise ValueError("Attr(scale) should be greater than zero.")
            attrs['scale'] = list(map(float, scale))
X
xiaoting 已提交
582 583
        else:
            raise TypeError(
584 585
                "Attr(scale)'s type should be float, int, list, tuple, or Tensor."
            )
X
xiaoting 已提交
586

Z
zhiboniu 已提交
587
    if in_dynamic_mode():
X
xiaoting 已提交
588 589 590 591 592 593 594
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
595
            if in_dygraph_mode():
596
                out = _C_ops.linear_interp(
597 598
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
599 600
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
601 602 603 604 605 606 607 608 609
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
610
            else:
611
                out = _legacy_C_ops.linear_interp_v2(x, *dy_attr)
612
        elif resample_type == "bilinear":
613
            if in_dygraph_mode():
614
                out = _C_ops.bilinear_interp(
615 616
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
617 618
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
619 620 621 622 623 624 625 626 627
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
628
            else:
629
                out = _legacy_C_ops.bilinear_interp_v2(x, *dy_attr)
630
        elif resample_type == "trilinear":
631
            if in_dygraph_mode():
632
                out = _C_ops.trilinear_interp(
633 634
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
635 636
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
637 638 639 640 641 642 643 644 645
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
646
            else:
647
                out = _legacy_C_ops.trilinear_interp_v2(x, *dy_attr)
648
        elif resample_type == "nearest":
649
            if in_dygraph_mode():
650
                out = _C_ops.nearest_interp(
651 652
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
653 654
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
655 656 657 658 659 660 661 662 663
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
664
            else:
665
                out = _legacy_C_ops.nearest_interp_v2(x, *dy_attr)
666
        elif resample_type == "bicubic":
667
            if in_dygraph_mode():
668
                out = _C_ops.bicubic_interp(
669 670
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
671 672
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
673 674 675 676 677 678 679 680 681
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
682
            else:
683
                out = _legacy_C_ops.bicubic_interp_v2(x, *dy_attr)
X
xiaoting 已提交
684
        return out
X
xiaoting 已提交
685
    out = helper.create_variable_for_type_inference(dtype)
686 687 688 689 690 691
    helper.append_op(
        type='{}_interp_v2'.format(resample_type),
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs,
    )
X
xiaoting 已提交
692
    return out
L
littletomatodonkey 已提交
693 694


695 696 697 698 699 700 701 702 703 704
def upsample(
    x,
    size=None,
    scale_factor=None,
    mode='nearest',
    align_corners=False,
    align_mode=0,
    data_format='NCHW',
    name=None,
):
X
xiaoting 已提交
705
    """
706

707
    This API resizes a batch of images.
708

X
xiaoting 已提交
709 710 711
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
712 713
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
714 715 716
    and the resizing only applies on the three dimensions(depth, height and width).

    Supporting resample methods:
717 718 719 720 721 722
    - 'linear' : Linear interpolation
    - 'bilinear' : Bilinear interpolation
    - 'trilinear' : Trilinear interpolation
    - 'nearest' : Nearest neighbor interpolation
    - 'bicubic' : Bicubic interpolation

723 724 725
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
726 727 728 729 730 731 732 733
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
734

X
xiaoting 已提交
735 736 737 738
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
739

X
xiaoting 已提交
740 741 742
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
743

X
xiaoting 已提交
744 745 746
    The linear interpolation is performed on three directions.
    align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.
747 748 749 750 751 752 753

    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
754
    Example:
755
        .. code-block:: text
756

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
            For scale_factor:
                if align_corners = True && out_size > 1 :
                scale_factor = (in_size-1.0)/(out_size-1.0)
                else:
                scale_factor = float(in_size/out_size)
            Linear interpolation:
                if:
                    align_corners = False , align_mode = 0
                    input : (N,C,W_in)
                    output: (N,C,W_out) where:
                    W_out = (W_{in}+0.5) * scale_{factor} - 0.5
                else:
                    input : (N,C,W_in)
                    output: (N,C,W_out) where:
                    W_out = W_{in} * scale_{factor}
            Nearest neighbor interpolation:
            if:
                align_corners = False
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = floor (H_{in} * scale_{factor})
                W_out = floor (W_{in} * scale_{factor})
X
xiaoting 已提交
779
            else:
780 781 782 783 784 785 786
                align_corners = True
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = round(H_{in} * scale_{factor})
                W_out = round(W_{in} * scale_{factor})

            Bilinear interpolation:
X
xiaoting 已提交
787 788
            if:
                align_corners = False , align_mode = 0
789 790 791
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
X
xiaoting 已提交
792 793
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = H_{in} * scale_{factor}
                W_out = W_{in} * scale_{factor}
            Bicubic interpolation:
            if:
                align_corners = False
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = H_{in} * scale_{factor}
                W_out = W_{in} * scale_{factor}
            Trilinear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,D_in,H_in,W_in)
                output: (N,C,D_out,H_out,W_out) where:
                D_out = (D_{in}+0.5) * scale_{factor} - 0.5
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,D_in,H_in,W_in)
                output: (N,C,D_out,H_out,W_out) where:
                D_out = D_{in} * scale_{factor}
                H_out = H_{in} * scale_{factor}
X
xiaoting 已提交
823
                W_out = W_{in} * scale_{factor}
824

X
xiaoting 已提交
825
    For details of linear interpolation, please refer to Wikipedia:
826
    https://en.wikipedia.org/wiki/Linear_interpolation.
827

X
xiaoting 已提交
828 829
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
830

X
xiaoting 已提交
831 832
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
833

X
xiaoting 已提交
834 835
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
836

X
xiaoting 已提交
837 838
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
839

X
xiaoting 已提交
840 841 842
    Parameters:
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
843
        size (list|tuple|Tensor|None, optional): Output shape of image resize
844 845
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
846
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
847
             If a Tensor , its dimensions size should be a 1.
848
        scale_factor (float|Tensor|list|tuple|None, optional): The multiplier for the input height or width. At
849
             least one of :attr:`size` or :attr:`scale_factor` must be set.
850
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if
851
             it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
852
             Default: None.
853
        mode (str, optional): The resample method. It supports 'linear', 'nearest', 'bilinear',
X
xiaoting 已提交
854
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
855
        align_corners(bool, optional) :  An optional bool, If True, the centers of the 4 corner pixels of the
X
xiaoting 已提交
856 857 858
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
                               Default: False
859
        align_mode(int, optional)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
X
xiaoting 已提交
860 861 862 863 864 865 866 867 868 869
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
870

X
xiaoting 已提交
871 872 873 874
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
875

876 877
    Examples:
        .. code-block:: python
878

879 880
            import paddle
            import paddle.nn as nn
X
xiaoting 已提交
881

882 883
            input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
            upsample_out = paddle.nn.Upsample(size=[12,12])
884

885 886 887
            output = upsample_out(x=input_data)
            print(output.shape)
            # [2L, 3L, 12L, 12L]
X
xiaoting 已提交
888 889

    """
890 891 892
    return interpolate(
        x, size, scale_factor, mode, align_corners, align_mode, data_format
    )
X
xiaoting 已提交
893 894


895 896 897 898
def bilinear(x1, x2, weight, bias=None, name=None):
    """

    This layer performs bilinear on two inputs.
899
    See :ref:`api_nn_Bilinear` for details and output shape.
900 901

    Parameters:
902 903 904 905 906 907
        x1 (Tensor): the first input tensor, it's data type should be float32, float64.
        x2 (Tensor): the second input tensor, it's data type should be float32, float64.
        weight (Parameter): The learnable weights of this layer, shape is [out_features, in1_features, in2_features].
        bias (Parameter, optional): The learnable bias(Bias) of this layer, shape is [1, out_features]. If it is set to None, no bias will be added to the output units. The default value is None.
        name (str, optional): The default value is None. Normally there is no need for user
            to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
908 909

    Returns:
910
        Tensor: A 2-D Tensor of shape [batch_size, out_features].
911 912

    Examples:
913
        .. code-block:: python
914

915 916
            import paddle
            import paddle.nn.functional as F
917

918 919 920 921
            x1 = paddle.randn((5, 5)).astype(paddle.float32)
            x2 = paddle.randn((5, 4)).astype(paddle.float32)
            w = paddle.randn((1000, 5, 4)).astype(paddle.float32)
            b = paddle.randn((1, 1000)).astype(paddle.float32)
922

923 924 925
            result = F.bilinear(x1, x2, w, b)
            print(result.shape)
            # [5, 1000]
926 927
    """

928
    if in_dygraph_mode():
W
wanghuancoder 已提交
929
        return _C_ops.bilinear_tensor_product(x1, x2, weight, bias)
930 931
    elif _non_static_mode():
        return _legacy_C_ops.bilinear_tensor_product(x1, x2, weight, bias)
932 933 934 935 936 937 938 939 940 941 942

    check_variable_and_dtype(x1, 'x1', ['float32', 'float64'], 'bilinear')
    check_variable_and_dtype(x2, 'x2', ['float32', 'float64'], 'bilinear')

    inputs = {"X": x1, "Y": x2, "Weight": weight}
    if bias is not None:
        inputs["Bias"] = bias

    helper = LayerHelper("bilinear", **locals())
    out = helper.create_variable_for_type_inference(dtype=x1.dtype)

943 944 945
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out}
    )
946 947 948 949

    return out


950 951 952
def dropout(
    x, p=0.5, axis=None, training=True, mode="upscale_in_train", name=None
):
953
    r"""
954 955 956 957 958 959 960
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training. The dropout operator randomly sets the
    outputs of some units to zero, while upscale others according to the given
    dropout probability.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
961 962 963
        p (float|int, optional): Probability of setting units to zero. Default: 0.5.
        axis (int|list|tuple, optional): The axis along which the dropout is performed. Default: None.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
964
        mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer'].
965

966
            1. upscale_in_train (default), upscale the output at training time
967

968 969
                - train: :math:`out = input \times \frac{mask}{(1.0 - dropout\_prob)}`
                - inference: :math:`out = input`
970

971
            2. downscale_in_infer, downscale the output at inference
972

973 974
                - train: :math:`out = input \times mask`
                - inference: :math:`out = input \times (1.0 - dropout\_prob)`
975

976
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
977 978 979 980

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x` .

981

982 983
    Examples:
        We use ``p=0.5`` in the following description for simplicity.
984

985
        1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.
986 987 988

        ..  code-block:: text

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
            Let's see a simple case when x is a 2d tensor with shape 2*3:
            [[1 2 3]
             [4 5 6]]
            we generate mask with the same shape as x, which is 2*3. The value of mask is
            sampled from a Bernoulli distribution randomly. For example, we may get such mask:
            [[0 1 0]
             [1 0 1]]
            So the output is obtained from elementwise multiply of x and mask:
            [[0 2 0]
             [4 0 6]]
            Using default setting, i.e. ``mode='upscale_in_train'`` ,
            if in training phase, the final upscale output is:
            [[0 4 0 ]
             [8 0 12]]
            if in test phase, the output is the same as input:
            [[1 2 3]
             [4 5 6]]
            we can also set ``mode='downscale_in_infer'`` , then
            if in training phase, the final output is:
            [[0 2 0]
             [4 0 6]]
            if in test phase, the scale output is:
            [[0.5 1.  1.5]
             [2.  2.5 3. ]]

1014 1015


1016
        2. When ``axis!=None`` , this is useful for dropping whole channels from an image or sequence.
1017 1018 1019

        ..  code-block:: text

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
            Let's see the simple case when x is a 2d tensor with shape 2*3 again:
            [[1 2 3]
             [4 5 6]]
            (1) If ``axis=0`` , this means the dropout is only performed in axis `0` .
                we generate mask with the shape 2*1. Only in axis `0` the value is randomly selected.
                For example, we may get such mask:
                [[1]
                 [0]]
                The output is obtained from elementwise multiply of x and mask. Doing that the mask will be
                broadcast from 2*1 to 2*3:
                [[1 1 1]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[1 2 3]
                 [0 0 0]]
                then we can do upscale or downscale according to the setting of other arguments.
            (2) If ``axis=1`` , this means the dropout is only performed in axis `1` .
                we generate mask with the shape 1*3. Only in axis `1` the value is randomly selected.
                For example, we may get such mask:
                [[1 0 1]]
                Doing elementwise multiply the mask will be broadcast from 1*3 to 2*3:
                [[1 0 1]
                 [1 0 1]]
                and the result after elementwise multiply is:
                [[1 0 3]
                 [4 0 6]]
            (3) What about ``axis=[0, 1]`` ? This means the dropout is performed in all axes of x,
                which is the same case as default setting ``axis=None`` .
1048
            (4) You may note that logically `axis=None` means the dropout is performed in none axis of x,
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
                We generate mask with the shape 1*1. Whole input is randomly selected or dropped.
                For example, we may get such mask:
                [[0]]
                Doing elementwise multiply the mask will be broadcast from 1*1 to 2*3:
                [[0 0 0]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[0 0 0]
                 [0 0 0]]
                Actually this is not what we want because all elements may set to zero~
1059

1060 1061
        When x is a 4d tensor with shape `NCHW`, where `N` is batch size, `C` is the number of channels, H and W are the height and width of the feature, we can set ``axis=[0,1]`` and the dropout will be performed in channel `N` and `C`, `H` and `W` is tied, i.e. paddle.nn.dropout(x, p, axis=[0,1]) . Please refer to ``paddle.nn.functional.dropout2d`` for more details.
        Similarly, when x is a 5d tensor with shape `NCDHW`, where `D` is the depth of the feature, we can set ``axis=[0,1]`` to perform dropout3d. Please refer to ``paddle.nn.functional.dropout3d`` for more details.
1062 1063

        .. code-block:: python
1064

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
            import paddle

            x = paddle.to_tensor([[1,2,3], [4,5,6]]).astype(paddle.float32)
            y_train = paddle.nn.functional.dropout(x, 0.5)
            y_test = paddle.nn.functional.dropout(x, 0.5, training=False)
            y_0 = paddle.nn.functional.dropout(x, axis=0)
            y_1 = paddle.nn.functional.dropout(x, axis=1)
            y_01 = paddle.nn.functional.dropout(x, axis=[0,1])
            print(x)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
            print(y_train)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[2. , 0. , 6. ],
            #         [8. , 0. , 12.]])
            print(y_test)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
            print(y_0)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0. , 0. , 0. ],
            #         [8. , 10., 12.]])
            print(y_1)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[2. , 0. , 6. ],
            #         [8. , 0. , 12.]])
            print(y_01)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0. , 0. , 0. ],
            #         [8. , 0. , 12.]])
1097 1098

    """
1099 1100 1101 1102 1103
    if not isinstance(p, (float, int, Variable)):
        raise TypeError("p argument should be a number or Variable")

    if isinstance(p, (int, float)):
        # fast return for p == 0
1104 1105
        if p == 0:
            return x
1106 1107
        elif p < 0 or p > 1:
            raise ValueError("p argument should between 0 and 1")
1108 1109
    if mode not in ('downscale_in_infer', 'upscale_in_train'):
        raise ValueError(
1110 1111
            "mode argument should be 'downscale_in_infer' or 'upscale_in_train'"
        )
1112
    if axis and not isinstance(axis, (int, list, tuple)):
1113 1114
        raise TypeError("datatype of axis argument should be int or list")

1115
    if axis is None:  # commonly used dropout
1116
        seed = None
1117 1118 1119
        mode = (
            'downgrade_in_infer' if mode == 'downscale_in_infer' else mode
        )  # semantic transfer
1120

H
hong 已提交
1121
        if _non_static_mode():
1122 1123
            if default_main_program().random_seed != 0:
                seed = default_main_program().random_seed
H
hong 已提交
1124 1125

            if in_dygraph_mode():
1126 1127 1128 1129 1130 1131 1132 1133 1134
                out, mask = _C_ops.dropout(
                    x,
                    None,
                    p,
                    not training,
                    mode,
                    seed if seed is not None else 0,
                    seed is not None,
                )
H
hong 已提交
1135 1136

                return out
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
            out, mask = _legacy_C_ops.dropout(
                x,
                'dropout_prob',
                p,
                'is_test',
                not training,
                'fix_seed',
                seed is not None,
                'seed',
                seed if seed is not None else 0,
                'dropout_implementation',
                mode,
            )
1150 1151 1152
            return out

        helper = LayerHelper('dropout', **locals())
1153 1154 1155
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'dropout'
        )
1156 1157 1158

        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        mask = helper.create_variable_for_type_inference(
1159 1160
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
        )
1161

1162 1163 1164
        def get_attrs(prog, dropout_prob, is_test, seed):
            if (seed is None or seed == 0) and prog.random_seed != 0:
                seed = prog.random_seed
1165

1166 1167 1168
            if isinstance(
                dropout_prob, Variable
            ) and not dropout_prob.shape != [1]:
1169
                raise TypeError(
1170 1171 1172 1173
                    "Required p.shape == [1] if type(p) is Variable, but received p.shape = {}".format(
                        p.shape
                    )
                )
1174 1175 1176 1177 1178 1179 1180 1181 1182
            attrs = {
                'dropout_prob': dropout_prob,
                'is_test': is_test,
                'fix_seed': seed is not None,
                'seed': seed if seed is not None else 0,
                'dropout_implementation': mode,
            }
            return attrs

1183 1184
        attrs = get_attrs(helper.main_program, p, not training, seed)

1185 1186 1187 1188 1189 1190
        helper.append_op(
            type='dropout',
            inputs={'X': [x]},
            outputs={'Out': [out], 'Mask': [mask]},
            attrs=attrs,
        )
1191
        return out
1192
    else:  # sometimes called dropout_nd #TODO: optimize with c++
Z
zhiboniu 已提交
1193
        if not in_dynamic_mode():
1194 1195 1196 1197
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'dropout')
        dtype = x.dtype
        keep_prob = 1 - p
        if training:
1198 1199
            if in_dynamic_mode() and p == 1.0:
                return paddle.scale(x, scale=0.0)
1200

1201 1202 1203 1204 1205
            scale_input = (
                paddle.scale(x, scale=1 / keep_prob)
                if mode == 'upscale_in_train'
                else x
            )
1206

1207
            # get mask shape
1208
            input_shape = x.shape
Z
zhiboniu 已提交
1209
            if not in_dynamic_mode():
1210
                input_shape_tensor = paddle.shape(x)
1211
            drop_axes = [axis] if isinstance(axis, int) else list(axis)
1212
            if min(drop_axes) < 0 or max(drop_axes) > len(input_shape) - 1:
1213 1214 1215 1216 1217
                raise ValueError(
                    "axis value should be greater than or equal to 0 and less than dimensions of x:{}, but get axis value:{} ".format(
                        len(input_shape), max(drop_axes)
                    )
                )
1218 1219
            if len(drop_axes) > len(input_shape):
                raise ValueError(
1220 1221 1222 1223
                    "length of axis should not be greater than dimensions of x:{}, but get length of axis: {}".format(
                        len(input_shape), len(drop_axes)
                    )
                )
1224
            mask_shape = [1] * len(input_shape)
Z
zhiboniu 已提交
1225
            if not in_dynamic_mode():
1226 1227 1228 1229 1230
                for i in drop_axes:
                    mask_shape[i] = input_shape_tensor[i]
            else:
                for i in drop_axes:
                    mask_shape[i] = input_shape[i]
1231

1232 1233 1234 1235
            # get mask
            random_tensor = paddle.uniform(
                mask_shape, dtype='float32', min=0.0, max=1.0
            )
Z
zhiboniu 已提交
1236
            p = full(shape=[1], fill_value=p, dtype='float32')
1237
            keep_mask = paddle.greater_equal(random_tensor, p)
1238

1239 1240
            scale_input = paddle.cast(scale_input, dtype)
            keep_mask = paddle.cast(keep_mask, dtype)
1241 1242 1243
            ret = paddle.multiply(scale_input, keep_mask, name=name)
            return ret
        else:  # test
1244 1245 1246 1247 1248
            ret = (
                paddle.scale(x, scale=keep_prob)
                if mode == 'downscale_in_infer'
                else x
            )
1249 1250 1251 1252 1253 1254 1255 1256 1257
            return ret


def dropout2d(x, p=0.5, training=True, data_format='NCHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

1258
    See :ref:`api_paddle_nn_functional_dropout` for more details.
1259 1260 1261 1262

    Args:
        x (Tensor):  The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C].
                     The data type is float32 or float64.
1263 1264 1265 1266
        p (float, optional): Probability of setting units to zero. Default: 0.5.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC` . When it is `NCHW` , the data is stored in the order of: [batch_size, input_channels, input_height, input_width]. Default: `NCHW` .
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
1267 1268 1269 1270

    Returns:
        A Tensor representing the dropout2d, has same shape and data type as `x` .

1271

1272 1273
    Examples:
        .. code-block:: python
1274

1275 1276
            import paddle

1277
            x = paddle.randn(shape=(2, 3, 4, 5)).astype(paddle.float32)
1278 1279 1280 1281
            y_train = paddle.nn.functional.dropout2d(x)  #train
            y_test = paddle.nn.functional.dropout2d(x, training=False) #test
            for i in range(2):
                for j in range(3):
1282 1283 1284 1285
                    print(x[i,j,:,:])
                    print(y_train[i,j,:,:]) # may all 0
                    print(y_test[i,j,:,:])

1286 1287 1288
    """
    input_shape = x.shape
    if len(input_shape) != 4:
1289 1290 1291 1292 1293
        raise ValueError(
            "dimensions of x should be 4, but received {} != 4".format(
                len(input_shape)
            )
        )
1294 1295 1296 1297

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1298 1299
            "Attr(data_format): %s." % str(data_format)
        )
1300

1301 1302 1303 1304 1305 1306 1307 1308
    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCHW' else [0, 3],
        training=training,
        mode="upscale_in_train",
        name=name,
    )
1309 1310 1311 1312 1313 1314 1315 1316


def dropout3d(x, p=0.5, training=True, data_format='NCDHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

1317
    See :ref:`api_paddle_nn_functional_dropout` for more details.
1318 1319 1320 1321

    Args:
        x (Tensor):  The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C].
                     The data type is float32 or float64.
1322 1323 1324 1325
        p (float, optional): Probability of setting units to zero. Default: 0.5.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from ``NCDHW`` or ``NDHWC``. When it is ``NCDHW`` , the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width]. Default: ``NCDHW`` .
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
1326 1327 1328 1329

    Returns:
        A Tensor representing the dropout3d, has same shape and data type with `x` .

1330

1331 1332
    Examples:
        .. code-block:: python
1333

1334
            import paddle
1335

1336 1337 1338 1339 1340 1341
            x = paddle.randn(shape=(2, 3, 4, 5, 6)).astype(paddle.float32)
            y_train = paddle.nn.functional.dropout3d(x)  #train
            y_test = paddle.nn.functional.dropout3d(x, training=False) #test
            print(x[0,0,:,:,:])
            print(y_train[0,0,:,:,:]) # may all 0
            print(y_test[0,0,:,:,:])
1342 1343 1344 1345 1346

    """

    input_shape = x.shape
    if len(input_shape) != 5:
1347 1348 1349 1350 1351
        raise ValueError(
            "dimensions of x should be 5, but received {} != 5".format(
                len(input_shape)
            )
        )
1352 1353 1354 1355

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1356 1357
            "Attr(data_format): %s." % str(data_format)
        )
1358

1359 1360 1361 1362 1363 1364 1365 1366
    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCDHW' else [0, 4],
        training=training,
        mode="upscale_in_train",
        name=name,
    )
1367 1368


1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
def alpha_dropout(x, p=0.5, training=True, name=None):
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property.
    For an input with zero mean and unit standard deviation, the output of Alpha Dropout
    maintains the original mean and standard deviation of the input.
    Alpha Dropout fits well to SELU activate function by randomly setting activations to the negative saturation value.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
        p (float | int): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x`.

    Examples:
        .. code-block:: python
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
            import paddle

            x = paddle.to_tensor([[-1, 1], [-1, 1]]).astype(paddle.float32)
            y_train = paddle.nn.functional.alpha_dropout(x, 0.5)
            y_test = paddle.nn.functional.alpha_dropout(x, 0.5, training=False)
            print(y_train)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-0.10721093, -0.77919382],
            #         [-0.10721093,  1.66559887]]) (randomly)
            print(y_test)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-1.,  1.],
            #         [-1.,  1.]])
1401 1402 1403 1404 1405 1406
    """
    if not isinstance(p, (float, int)):
        raise TypeError("p argument should be a float or int")
    if p < 0 or p > 1:
        raise ValueError("p argument should between 0 and 1")

Z
zhiboniu 已提交
1407
    if not in_dynamic_mode():
1408 1409 1410
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'alpha_dropout'
        )
1411 1412

    if training:
1413
        if p == 1:
1414 1415
            return paddle.scale(x, scale=0.0)
        # get transformation params
1416 1417 1418
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        alpha_p = -alpha * scale
1419
        a = ((1 - p) * (1 + p * alpha_p**2)) ** -0.5
1420 1421 1422 1423 1424
        b = -a * alpha_p * p

        dtype = x.dtype
        input_shape = x.shape

1425 1426 1427 1428
        # get mask
        random_tensor = paddle.uniform(
            input_shape, dtype='float32', min=0.0, max=1.0
        )
Z
zhiboniu 已提交
1429
        p = full(shape=[1], fill_value=p, dtype='float32')
1430 1431 1432
        keep_mask = paddle.greater_equal(random_tensor, p)
        keep_mask = paddle.cast(keep_mask, dtype)
        drop_mask = paddle.subtract(
1433 1434
            full(shape=input_shape, fill_value=1.0, dtype=dtype), keep_mask
        )
1435

1436
        # apply mask
Z
zhiboniu 已提交
1437
        b = full(shape=[1], fill_value=b, dtype=dtype)
1438 1439 1440 1441
        y = paddle.add(
            paddle.multiply(x, keep_mask),
            paddle.scale(drop_mask, scale=alpha_p),
        )
1442
        res = paddle.add(paddle.scale(y, scale=a), b, name=name)
1443 1444 1445 1446 1447
        return res
    else:  # test
        return x


1448
def pad(x, pad, mode='constant', value=0.0, data_format="NCHW", name=None):
L
littletomatodonkey 已提交
1449
    """
1450 1451
    Pad tensor according to ``'pad'`` and ``'mode'``.
    If mode is ``'constant'`` and length of pad is twice as length of x dimension,
L
littletomatodonkey 已提交
1452
    then the padding will be started from the first dimension and moved back onto x
1453 1454
    according to ``'pad'`` and ``'value'``.
    If mode is ``'reflect'``, pad[0] and pad[1] must be no greater
L
littletomatodonkey 已提交
1455 1456 1457 1458
    than width-1. The height and depth dimension has the same condition.

    Parameters:
        x (Tensor): The input tensor with data type float32/double/int32/int64_t.
1459
        pad (Tensor|list[int]|tuple[int]): The padding size with data type int.
1460
            If mode is ``'constant'`` and length of pad is twice as length of x dimension, then x will
1461 1462
            be padded from the first  dimension to the last dimension.
            Else: 1. If input dimension is 3, then the pad has the form (pad_left,
1463 1464
            pad_right). 2. If the input dimension is 4, then the pad has the form (pad_left, pad_right,
            pad_top, pad_bottom). 3. If the input dimension is 5, then the pad has the form
L
littletomatodonkey 已提交
1465
            (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
1466
        mode (str, optional): Four modes: ``'constant'`` (default), ``'reflect'``, ``'replicate'``, ``'circular'``. Default is ``'constant'``.
1467 1468 1469 1470 1471 1472

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

1473 1474 1475 1476
        value (float, optional): The value to fill the padded areas in 'constant' mode . Default is :math:`0.0`.
        data_format (str, optional): An string from: ``'NCL'``, ``'NLC'``, ``'NHWC'``, ``'NCHW'``, ``'NCDHW'``, ``'NDHWC'``. Specify the data format of
           the input data. Default: ``'NCHW'``.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: ``'None'``.
1477 1478

    Returns:
1479
        Tensor, a Tensor padded according to pad and mode and data type is same as input.
L
littletomatodonkey 已提交
1480

1481
    Example:
1482

L
littletomatodonkey 已提交
1483 1484 1485 1486 1487 1488
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]

            Case 0:
1489 1490 1491 1492 1493 1494 1495 1496 1497
                pad = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0., 0., 0.],
                          [1., 2., 3.],
                          [4., 5., 6.],
                          [0., 0., 0.]]]]]

            Case 1:
L
littletomatodonkey 已提交
1498 1499 1500 1501 1502 1503 1504 1505
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0. 0. 0. 0. 0. 0. 0.]
                          [0. 0. 1. 2. 3. 0. 0.]
                          [0. 0. 4. 5. 6. 0. 0.]
                          [0. 0. 0. 0. 0. 0. 0.]]]]]

1506
            Case 2:
L
littletomatodonkey 已提交
1507 1508 1509 1510 1511 1512 1513
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'reflect'
                Out = [[[[[6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]
                          [6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]]]]]

1514
            Case 3:
L
littletomatodonkey 已提交
1515 1516 1517 1518 1519 1520 1521
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'replicate'
                Out = [[[[[1. 1. 1. 2. 3. 3. 3.]
                          [1. 1. 1. 2. 3. 3. 3.]
                          [4. 4. 4. 5. 6. 6. 6.]
                          [4. 4. 4. 5. 6. 6. 6.]]]]]

1522
            Case 4:
L
littletomatodonkey 已提交
1523 1524 1525 1526 1527 1528 1529
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'circular'
                Out = [[[[[5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]
                          [5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]]]]]

1530
    Examples:
L
littletomatodonkey 已提交
1531
        .. code-block:: python
L
littletomatodonkey 已提交
1532

L
littletomatodonkey 已提交
1533 1534
            import paddle
            import paddle.nn.functional as F
1535

L
littletomatodonkey 已提交
1536 1537
            # example 1
            x_shape = (1, 1, 3)
1538
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1539
            y = F.pad(x, [0, 0, 0, 0, 2, 3], value=1, mode='constant', data_format="NCL")
L
littletomatodonkey 已提交
1540
            print(y)
L
littletomatodonkey 已提交
1541
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1542

L
littletomatodonkey 已提交
1543
            # example 2
1544
            x_shape = (1, 1, 3)
1545
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1546 1547 1548
            y = F.pad(x, [2, 3], value=1, mode='constant', data_format="NCL")
            print(y)
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1549

1550
            # example 3
L
littletomatodonkey 已提交
1551
            x_shape = (1, 1, 2, 3)
1552
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
L
littletomatodonkey 已提交
1553 1554
            y = F.pad(x, [1, 2, 1, 1], value=1, mode='circular')
            print(y)
L
littletomatodonkey 已提交
1555 1556 1557 1558 1559
            # [[[[6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]
            #    [6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]]]]
    """
1560 1561 1562 1563 1564 1565 1566 1567
    assert mode in [
        'reflect',
        'replicate',
        'constant',
        'circular',
    ], "mode should be one of constant, reflect, replicate, circular, but got {}.".format(
        mode
    )
L
littletomatodonkey 已提交
1568 1569

    data_format = data_format.upper()
1570 1571
    assert data_format in ["NCL", "NCHW", "NCDHW", "NLC", "NHWC", "NDHWC"], (
        "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], "
L
littletomatodonkey 已提交
1572
        "but got {}".format(data_format)
1573
    )
L
littletomatodonkey 已提交
1574 1575 1576

    x_dim = len(x.shape)

1577 1578 1579 1580 1581
    if (
        mode == "constant"
        and isinstance(pad, (list, tuple))
        and len(pad) == x_dim * 2
    ):
1582 1583
        paddings = pad
        pad_value = value
1584 1585

        if in_dygraph_mode():
1586
            out = _C_ops.pad(x, paddings, float(pad_value))
1587 1588
            return out

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            "pad",
        )
1603

1604 1605 1606 1607
        check_type(pad_value, 'pad_value', (float, int, Variable), 'pad')
        if isinstance(pad_value, int):
            pad_value = float(pad_value)

1608 1609 1610
        helper = LayerHelper('pad', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
1611 1612 1613 1614 1615 1616
        helper.append_op(
            type='pad',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'paddings': paddings, 'pad_value': pad_value},
        )
1617
        return out
L
littletomatodonkey 已提交
1618

1619
    assert x_dim in [
1620 1621 1622
        3,
        4,
        5,
1623 1624 1625 1626 1627 1628 1629
    ], "input tesor dimension must be in [3, 4, 5] but got {}".format(x_dim)

    supported_format_map = {
        3: ["NCL", "NLC"],
        4: ["NCHW", "NHWC"],
        5: ["NCDHW", "NDHWC"],
    }
1630 1631 1632 1633 1634
    assert (
        data_format in supported_format_map[x_dim]
    ), "input tensor dimension is {}, it's data format should be in {} but got {}".format(
        x_dim, supported_format_map[x_dim], data_format
    )
1635

L
littletomatodonkey 已提交
1636 1637 1638 1639 1640 1641
    unsqueezed_dim = []

    if isinstance(pad, Variable):
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
1642
                pad = concat([zeros((4,), dtype="int32"), pad], axis=0)
L
littletomatodonkey 已提交
1643
                unsqueezed_dim = [3, 4]
1644
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1645
            elif x_dim == 4:
1646
                pad = concat([pad, zeros((2,), dtype="int32")], axis=0)
L
littletomatodonkey 已提交
1647
                unsqueezed_dim = [2]
1648
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1649 1650 1651
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
1652
                pad = concat([zeros((4,), dtype="int32"), pad], axis=0)
L
littletomatodonkey 已提交
1653
                unsqueezed_dim = [2, 3]
1654
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1655
            elif x_dim == 4:
1656
                pad = concat([pad, zeros((2,), dtype="int32")], axis=0)
L
littletomatodonkey 已提交
1657
                unsqueezed_dim = [1]
1658
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1659
    else:
1660
        pad = list(pad)
L
littletomatodonkey 已提交
1661 1662 1663 1664 1665
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [3, 4]
1666
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1667 1668 1669
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [2]
1670
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1671 1672 1673 1674 1675
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [2, 3]
1676
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1677 1678 1679
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [1]
1680
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1681

J
Jiabin Yang 已提交
1682
    if in_dygraph_mode():
L
littletomatodonkey 已提交
1683
        if isinstance(pad, Variable):
J
Jiabin Yang 已提交
1684
            pad = pad.numpy().tolist()
1685
        out = _C_ops.pad3d(x, pad, mode, value, data_format)
J
Jiabin Yang 已提交
1686
    else:
1687
        if _in_legacy_dygraph():
J
Jiabin Yang 已提交
1688 1689
            if isinstance(pad, Variable):
                pad = pad.numpy().tolist()
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
            out = _legacy_C_ops.pad3d(
                x,
                "paddings",
                pad,
                "mode",
                mode,
                "value",
                value,
                "data_format",
                data_format,
                "name",
                name,
            )
1703
        else:
J
Jiabin Yang 已提交
1704 1705 1706 1707 1708 1709 1710
            attrs = {'mode': mode, 'value': value, 'data_format': data_format}
            inputs = {'X': [x]}
            if isinstance(pad, Variable):
                inputs['Paddings'] = [pad]
                attrs['paddings'] = []
            else:
                attrs['paddings'] = pad
L
littletomatodonkey 已提交
1711

J
Jiabin Yang 已提交
1712
            helper = LayerHelper('pad3d', **locals())
L
littletomatodonkey 已提交
1713

J
Jiabin Yang 已提交
1714 1715
            dtype = helper.input_dtype(input_param_name='input')
            out = helper.create_variable_for_type_inference(dtype)
1716 1717 1718
            helper.append_op(
                type='pad3d', inputs=inputs, outputs={"Out": out}, attrs=attrs
            )
L
littletomatodonkey 已提交
1719 1720

    if len(unsqueezed_dim) != 0:
1721
        out = squeeze(out, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1722 1723 1724 1725

    return out


1726 1727 1728 1729 1730 1731 1732 1733 1734
def zeropad2d(x, padding, data_format="NCHW", name=None):
    """
    Pads the input tensor boundaries with zero according to 'pad'.

    Args:
        x(Tensor): The input tensor with data type float16/float32/float64/int32/int64.
        padding(int | Tensor | List[int] | Tuple[int]): The padding size with data type int.
            The input dimension should be 4 and pad has the form (pad_left, pad_right,
            pad_top, pad_bottom).
1735
        data_format(str, optional): An string from: "NHWC", "NCHW". Specify the data format of
1736 1737 1738 1739
            the input data. Default: "NCHW".
        name(str, optional): The default value is None. Normally there is no need for user
            to set this property.

1740
    Returns:
1741
        Tensor, padded with 0 according to pad and data type is same as input.
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn.functional as F

            x_shape = (1, 1, 2, 3)
            x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
            y = F.zeropad2d(x, [1, 2, 1, 1])
            # [[[[0. 0. 0. 0. 0. 0.]
            #    [0. 1. 2. 3. 0. 0.]
            #    [0. 4. 5. 6. 0. 0.]
            #    [0. 0. 0. 0. 0. 0.]]]]
    """

1759 1760 1761 1762 1763 1764 1765 1766
    return pad(
        x,
        pad=padding,
        mode='constant',
        value=0,
        data_format=data_format,
        name=name,
    )
1767 1768


Y
Yang Zhang 已提交
1769
def cosine_similarity(x1, x2, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1770
    """
Y
Yang Zhang 已提交
1771
    Compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1772 1773 1774 1775

    Parameters:
        x1 (Tensor): First input. float32/double.
        x2 (Tensor): Second input. float32/double.
1776 1777
        axis (int, optional): Dimension of vectors to compute cosine similarity. Default is 1.
        eps(float, optional): Small value to avoid division by zero. Default is 1e-8.
1778 1779

    Returns:
1780
        Tensor, a Tensor representing cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1781 1782 1783

    Examples:
        .. code-block:: text
1784

L
littletomatodonkey 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793
            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
Y
Yang Zhang 已提交
1794
                axis = 1
L
littletomatodonkey 已提交
1795 1796 1797 1798 1799
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1800

L
littletomatodonkey 已提交
1801 1802 1803
            import paddle
            import paddle.nn as nn

1804 1805 1806 1807
            paddle.seed(1)
            x1 = paddle.randn(shape=[2, 3])
            x2 = paddle.randn(shape=[2, 3])

Y
Yang Zhang 已提交
1808
            result = paddle.nn.functional.cosine_similarity(x1, x2, axis=0)
L
littletomatodonkey 已提交
1809
            print(result)
1810
            # [0.97689527,  0.99996042, -0.55138415]
1811

L
littletomatodonkey 已提交
1812
    """
1813 1814 1815
    w12 = sum(paddle.multiply(x1, x2), axis=axis)
    w1 = sum(paddle.multiply(x1, x1), axis=axis)
    w2 = sum(paddle.multiply(x2, x2), axis=axis)
Y
Yang Zhang 已提交
1816
    n12 = sqrt(clip(w1 * w2, min=eps * eps))
L
littletomatodonkey 已提交
1817 1818
    cos_sim = w12 / n12
    return cos_sim
1819 1820 1821


def linear(x, weight, bias=None, name=None):
1822
    r"""
1823

1824 1825
    Fully-connected linear transformation operator. For each input :math:`X` ,
    the equation is:
1826 1827 1828

    .. math::

1829
        Out = XW + b
1830

1831
    where :math:`W` is the weight and :math:`b` is the bias.
1832

1833 1834 1835 1836
    If the weight is a 2-D tensor of shape :math:`[in\_features, out\_features]` ,
    input should be a multi-dimensional tensor of shape
    :math:`[batch\_size, *, in\_features]` , where :math:`*` means any number of
    additional dimensions. The linear operator multiplies input tensor with
1837
    weight and produces an output tensor of shape :math:`[batch\_size, *, out\_features]` ,
1838 1839
    If :math:`bias` is not None, the bias should be a 1-D tensor of shape
    :math:`[out\_features]` and will be added to the output.
1840

1841 1842 1843 1844 1845 1846 1847
    Parameters:
        x (Tensor): Input tensor. The data type should be float16, float32 or float64.
        weight (Tensor): Weight tensor. The data type should be float16, float32 or float64.
        bias (Tensor, optional): Bias tensor. The data type should be float16, float32 or float64.
                                 If it is set to None, no bias will be added to the output units.
        name (str, optional): Normally there is no need for user to set this parameter.
                              For detailed information, please refer to :ref:`api_guide_Name` .
1848 1849

    Returns:
1850 1851
        Tensor, the shape is :math:`[batch\_size, *, out\_features]` and the
        data type is the same with input :math:`x` .
1852 1853 1854

    Examples:
        .. code-block:: python
1855

1856
          import paddle
1857

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          weight = paddle.full(shape=[2, 4], fill_value="0.5", dtype="float32", name="weight")
          # weight: [[0.5 0.5 0.5 0.5]
          #          [0.5 0.5 0.5 0.5]]
          bias = paddle.ones(shape=[4], dtype="float32", name="bias")
          # bias: [1. 1. 1. 1.]
          y = paddle.nn.functional.linear(x, weight, bias)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
1871
    """
J
Jiabin Yang 已提交
1872
    if in_dygraph_mode():
1873
        # TODO(jiabin): using addmm for fast forward route
1874
        return _C_ops.linear(x, weight, bias)
1875
    else:
J
Jiabin Yang 已提交
1876
        if _in_legacy_dygraph():
1877 1878 1879
            pre_bias = _legacy_C_ops.matmul_v2(
                x, weight, 'trans_x', False, 'trans_y', False
            )
1880

J
Jiabin Yang 已提交
1881 1882
            if bias is None:
                return pre_bias
1883

1884
            return _legacy_C_ops.elementwise_add(pre_bias, bias)
1885
        else:
J
Jiabin Yang 已提交
1886 1887 1888
            helper = LayerHelper('linear', **locals())
            dtype = x.dtype

1889 1890 1891 1892 1893 1894
            check_variable_and_dtype(
                x, 'x', ['float16', 'float32', 'float64'], 'linear'
            )
            check_dtype(
                dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear'
            )
J
Jiabin Yang 已提交
1895 1896 1897 1898

            inputs = {'X': [x], 'Y': [weight]}
            attrs = {'trans_x': False, 'trans_y': False}
            tmp = helper.create_variable_for_type_inference(dtype)
1899 1900 1901 1902 1903 1904
            helper.append_op(
                type='matmul_v2',
                inputs=inputs,
                outputs={'Out': tmp},
                attrs=attrs,
            )
J
Jiabin Yang 已提交
1905 1906
            if bias is not None:
                res = helper.create_variable_for_type_inference(dtype)
1907 1908 1909 1910 1911 1912
                helper.append_op(
                    type='elementwise_add',
                    inputs={'X': [tmp], 'Y': [bias]},
                    outputs={'Out': [res]},
                    attrs={'axis': len(x.shape) - 1},
                )
J
Jiabin Yang 已提交
1913 1914 1915
            else:
                res = tmp
            return res
1916 1917 1918


def label_smooth(label, prior_dist=None, epsilon=0.1, name=None):
1919
    r"""
1920
    Label smoothing is a mechanism to regularize the classifier layer and is called
1921 1922 1923 1924
    label-smoothing regularization (LSR).Label smoothing is proposed to encourage
    the model to be less confident, since optimizing the log-likelihood of the
    correct label directly may cause overfitting and reduce the ability of the
    model to adapt.
1925

1926
    Label smoothing replaces the ground-truth label :math:`y` with the weighted sum
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Parameters:
        label(Tensor): The input variable containing the label data. The
                        label data should use one-hot representation. It's
                        a multidimensional tensor with a shape of
                        :math:`[N_1, ..., Depth]`, where Depth is class number. The dtype can be "float32" and "float64".
        prior_dist(Tensor, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is
                        0.1.
        name(str, optional): The default value is None. Normally there is no need for user
                        to set this property. For more information, please refer to
                        :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor containing the smoothed labels.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1964 1965 1966 1967

            x = paddle.to_tensor([[[0, 1, 0],
                                [ 1,  0, 1]]], dtype="float32", stop_gradient=False)

1968
            output = paddle.nn.functional.label_smooth(x)
1969
            print(output)
1970 1971 1972
            # Tensor(shape=[1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [[[0.03333334, 0.93333334, 0.03333334],
            #          [0.93333334, 0.03333334, 0.93333334]]])
1973
    """
1974
    if epsilon > 1.0 or epsilon < 0.0:
1975 1976
        raise ValueError("The value of epsilon must be between 0 and 1.")

1977
    if in_dygraph_mode():
1978
        return _C_ops.label_smooth(label, prior_dist, float(epsilon))
1979

1980
    elif paddle.in_dynamic_mode():
1981 1982 1983
        return _legacy_C_ops.label_smooth(
            label, prior_dist, 'epsilon', float(epsilon)
        )
1984

1985 1986 1987
    check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'label_smooth'
    )
1988 1989 1990 1991

    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_variable_for_type_inference(label.dtype)
1992 1993 1994 1995 1996 1997 1998 1999
    helper.append_op(
        type="label_smooth",
        inputs={"X": label, "PriorDist": prior_dist}
        if prior_dist
        else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)},
    )
2000
    return smooth_label
2001 2002


G
Guoxia Wang 已提交
2003
def class_center_sample(label, num_classes, num_samples, group=None):
2004 2005
    """
    Class center sample method is proposed from the paper PartialFC that only sample a subset of the class centers.
2006
    The process of sampling subset class centers is straightforward:
2007 2008 2009 2010

    1. First select the positive class centers;
    2. Then randomly sample negative class centers.

2011
    Specifically, given a label tensor, shape [batch_size], select all the positive class centers and randomly
2012 2013 2014 2015
    sample negative class centers, then remap the input label tensor using the sampled class centers.

    For more information, Partial FC: Training 10 Million Identities on a Single Machine
    arxiv: https://arxiv.org/abs/2010.05222
2016

2017
    .. hint::
2018
        If the number of the positive class centers is greater than the input num_samples, it keeps all the positive
2019
        class centers and the shape of sampled_class_center will be [num_positive_class_centers].
2020

2021 2022
        The API supports CPU, single GPU and multi GPU.

2023 2024 2025 2026
        For data parallel mode, set ``group=False``.

        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.

2027
    Args:
G
Guoxia Wang 已提交
2028 2029
        label (Tensor): 1-D tensor with shape [N], each label in [0, num_classes)
        num_classes (int): A positive integer to specify the number of classes at local rank.
2030
            Note that num_classes of each GPU can be different.
G
Guoxia Wang 已提交
2031
        num_samples (int): A positive integer to specify the number of class center to sample.
2032
        group (Group, optional): The group instance return by paddle.distributed.new_group
2033 2034
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
2035 2036 2037 2038 2039 2040 2041 2042

    Returns:
        Tuple of two ``Tensor`` : (remapped_label, sampled_class_center), remapped label using sampled class center,
        sampled class center from [0, num_classes).

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
2043
        :name: code-example1
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065

        # CPU or single GPU
        import paddle
        num_classes = 20
        batch_size = 10
        num_samples = 6
        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes, num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        # the output is
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [11, 5 , 1 , 3 , 12, 2 , 15, 19, 18, 19])
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [4, 3, 0, 2, 5, 1, 6, 8, 7, 8])
        #Tensor(shape=[9], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [1 , 2 , 3 , 5 , 11, 12, 15, 18, 19])

    .. code-block:: python
G
Guoxia Wang 已提交
2066
        :name: code-example2
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097

        # required: distributed
        # Multi GPU, test_class_center_sample.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        batch_size = 10
        num_samples = 6
        rank_id = dist.get_rank()
        # num_classes of each GPU can be different, e.g num_classes_list = [10, 8]
        num_classes_list = [10, 10]
        num_classes = paddle.sum(paddle.to_tensor(num_classes_list))
        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes_list[rank_id], num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        #python -m paddle.distributed.launch --gpus=0,1 test_class_center_sample.py
        # rank 0 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [0, 2, 4, 8, 9, 3])
2098

2099 2100 2101 2102 2103 2104 2105 2106
        # rank 1 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[7], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [0, 1, 2, 3, 5, 7, 8])
    """
2107
    if not (group is False or group is None or hasattr(group, 'is_member')):
2108 2109
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
2110 2111 2112 2113
             (got group: {})'.format(
                group
            )
        )
2114 2115 2116
        return

    if hasattr(group, 'is_member') and not group.is_member():
2117 2118
        return

2119
    ring_id = 0
2120 2121
    rank = 0
    nranks = 1
2122
    if group is not False:
2123 2124 2125
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
2126 2127 2128 2129 2130
            rank = (
                global_rank
                if group is None
                else group.get_group_rank(global_rank)
            )
2131
            nranks = parallel_env.world_size if group is None else group.nranks
2132 2133 2134

    if num_samples > num_classes:
        raise ValueError(
2135 2136 2137 2138
            'Expected num_samples less than or equal to {}, got num_samples {}'.format(
                num_classes, num_samples
            )
        )
2139

G
Guoxia Wang 已提交
2140 2141 2142
    label_size = 1
    for dim in list(label.shape):
        label_size *= dim
2143
    if label_size != -1 and label_size < 1:
2144 2145 2146 2147 2148 2149
        raise ValueError(
            'Expected label_size > 0 \
             (got label_size: {})'.format(
                label_size
            )
        )
G
Guoxia Wang 已提交
2150 2151 2152

    label_dims = len(list(label.shape))
    if label_dims != 1:
2153 2154 2155 2156 2157 2158
        raise ValueError(
            'Expected label_dims == 1 \
             (got label_dims: {})'.format(
                label_dims
            )
        )
G
Guoxia Wang 已提交
2159 2160

    seed = None
2161 2162 2163
    if (seed is None or seed == 0) and default_main_program().random_seed != 0:
        seed = default_main_program().random_seed

2164
    if in_dygraph_mode():
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
        return _C_ops.class_center_sample(
            label,
            num_classes,
            num_samples,
            ring_id,
            rank,
            nranks,
            seed is not None,
            seed if seed is not None else 0,
        )
2175
    elif paddle.in_dynamic_mode():
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
        (
            remapped_label,
            sampled_class_center,
        ) = _legacy_C_ops.class_center_sample(
            label,
            'num_classes',
            num_classes,
            'num_samples',
            num_samples,
            'ring_id',
            ring_id,
            'nranks',
            nranks,
            'rank',
            rank,
            'fix_seed',
            seed is not None,
            'seed',
            seed if seed is not None else 0,
        )
2196 2197
        return remapped_label, sampled_class_center

2198 2199 2200
    check_variable_and_dtype(
        label, 'label', ['int64', 'int32'], 'class_center_sample'
    )
2201 2202 2203
    op_type = 'class_center_sample'
    helper = LayerHelper(op_type, **locals())
    remapped_label = helper.create_variable_for_type_inference(
2204 2205
        dtype=label.dtype
    )
2206
    sampled_class_center = helper.create_variable_for_type_inference(
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
        dtype=label.dtype
    )
    helper.append_op(
        type=op_type,
        inputs={'Label': label},
        outputs={
            'RemappedLabel': remapped_label,
            'SampledLocalClassCenter': sampled_class_center,
        },
        attrs={
            'num_classes': num_classes,
            'num_samples': num_samples,
            'ring_id': ring_id,
            'nranks': nranks,
            'rank': rank,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
        },
    )
2226
    return remapped_label, sampled_class_center
X
xiaoting 已提交
2227 2228


2229 2230 2231
def fold(
    x, output_sizes, kernel_sizes, strides=1, paddings=0, dilations=1, name=None
):
X
xiaoting 已提交
2232
    r"""
2233

2234
    Combines an array of sliding local blocks into a large containing
2235 2236
    tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each
    combined value in the resulting large tensor by summing all values from all containing blocks.
X
xiaoting 已提交
2237 2238 2239 2240 2241 2242


    For each input :math:`x` with shape [N, C_in , L], the output shape [N, C_out, H_out, W_out]
    can be calculated as following.

    .. math::
2243

2244 2245 2246
        H_{out} &= output\_size[0] \\
        W_{out} &= output\_size[1] \\
        C_{out} &= \frac{C_{in}}{kernel\_sizes[0]\times kernel\_sizes[1]} \\
X
xiaoting 已提交
2247 2248 2249 2250

    Parameters:
        x(Tensor):                3-D Tensor, input tensor of format [N, C, L],
                                  data type can be float32 or float64
X
xiaoting 已提交
2251
        output_sizes(int|list|tuple):       The size of output size, should be [output_size_h, output_size_w]
X
xiaoting 已提交
2252
                                  or an interger o treated as [o, o].
X
xiaoting 已提交
2253
        kernel_sizes(int|list|tuple):   The size of convolution kernel, should be [k_h, k_w]
X
xiaoting 已提交
2254
                                  or an integer k treated as [k, k].
2255
        strides(int|list|tuple, optional):        The strides, should be [stride_h, stride_w]
X
xiaoting 已提交
2256 2257
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
2258
        paddings(int|list|tuple, optional):       The paddings of each dimension, should be
X
xiaoting 已提交
2259 2260 2261 2262 2263 2264
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
2265
        dilations(int|list|tuple, optional):      the dilations of convolution kernel, should be
X
xiaoting 已提交
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
        The tensor formed by combining a group of sliding local blocks
        The output shape is [N, Cout, H, W] as decriabled above.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

X
xiaoting 已提交
2284 2285 2286
            x = paddle.randn([2,3*2*2,12])
            y = F.fold(x, output_sizes=[4, 5], kernel_sizes=2)
            # y.shape = [2,3,4,5]
X
xiaoting 已提交
2287 2288 2289 2290 2291 2292 2293

    """

    helper = LayerHelper("fold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'fold')

2294
    assert len(x.shape) == 3, "input should be the format of [N, C, L]"
X
xiaoting 已提交
2295

X
xiaoting 已提交
2296
    def _is_list_or_turple_(data):
2297
        return isinstance(data, list) or isinstance(data, tuple)
X
xiaoting 已提交
2298

X
xiaoting 已提交
2299 2300 2301
    if isinstance(output_sizes, int):
        output_sizes = [output_sizes, output_sizes]
    else:
2302 2303 2304
        assert _is_list_or_turple_(output_sizes) and (
            len(output_sizes) == 2
        ), "output_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2305 2306 2307 2308

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
2309 2310 2311
        assert _is_list_or_turple_(kernel_sizes) and (
            len(kernel_sizes) == 2
        ), "kernel_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2312 2313 2314 2315

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
2316 2317 2318
        assert _is_list_or_turple_(strides) and (
            len(strides) == 2
        ), "strides should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2319 2320 2321 2322

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
2323 2324 2325
        assert _is_list_or_turple_(dilations) and (
            len(dilations) == 2
        ), "dilations should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
2341 2342
            "of 2 or 4 integers"
        )
X
xiaoting 已提交
2343

X
xiaoting 已提交
2344
    if in_dygraph_mode():
2345 2346 2347
        out = _C_ops.fold(
            x, output_sizes, kernel_sizes, strides, paddings, dilations
        )
X
xiaoting 已提交
2348
    elif in_dynamic_mode():
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
        out = _legacy_C_ops.fold(
            x,
            "output_sizes",
            output_sizes,
            "kernel_sizes",
            kernel_sizes,
            "strides",
            strides,
            "paddings",
            paddings,
            "dilations",
            dilations,
        )
X
xiaoting 已提交
2362 2363
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
        helper.append_op(
            type="fold",
            inputs={"X": x},
            outputs={"Y": out},
            attrs={
                "output_sizes": output_sizes,
                "kernel_sizes": kernel_sizes,
                "strides": strides,
                "paddings": paddings,
                "dilations": dilations,
            },
        )
X
xiaoting 已提交
2376
    return out