未验证 提交 422a1620 编写于 作者: W wanghuancoder 提交者: GitHub

api2.0 paddle.nn.Bilinear and paddle.nn.functional.bilinear (#26399)

* api2.0 paddle.nn.Bilinear and paddle.nn.functional.bilinear, test=develop

* api2.0 fix code examples, test=develop

* modify test_bilinear_api, about place,to_tensor , test=develop

* re pass pre-commit, test=develop

* Update common.py

* fix BilinearTensorProduct ci error, test=develop
上级 c8e18360
......@@ -41,6 +41,7 @@ std::map<std::string, std::set<std::string>> op_ins_map = {
{"fake_quantize_dequantize_moving_average_abs_max",
{"X", "InScale", "InAccum", "InState"}},
{"nll_loss", {"X", "Label", "Weight"}},
{"bilinear_tensor_product", {"X", "Y", "Weight", "Bias"}},
{"gather", {"X", "Index", "Axis"}},
};
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import numpy as np
class TestBilinearAPI(unittest.TestCase):
def test_api(self):
with fluid.program_guard(fluid.default_startup_program(),
fluid.default_main_program()):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = fluid.Executor(place)
data1 = fluid.data(name='X1', shape=[5, 5], dtype='float32')
data2 = fluid.data(name='X2', shape=[5, 4], dtype='float32')
layer1 = np.random.random((5, 5)).astype('float32')
layer2 = np.random.random((5, 4)).astype('float32')
bilinear = paddle.nn.Bilinear(
in1_features=5, in2_features=4, out_features=1000)
ret = bilinear(data1, data2)
exe.run(fluid.default_startup_program())
ret_fetch = exe.run(feed={'X1': layer1,
'X2': layer2},
fetch_list=[ret.name])
self.assertEqual(ret_fetch[0].shape, (5, 1000))
class TestBilinearAPIDygraph(unittest.TestCase):
def test_api(self):
paddle.disable_static()
layer1 = np.random.random((5, 5)).astype('float32')
layer2 = np.random.random((5, 4)).astype('float32')
bilinear = paddle.nn.Bilinear(
in1_features=5, in2_features=4, out_features=1000)
ret = bilinear(paddle.to_tensor(layer1), paddle.to_tensor(layer2))
self.assertEqual(ret.shape, [5, 1000])
if __name__ == "__main__":
unittest.main()
......@@ -88,6 +88,7 @@ from .layer.common import Embedding #DEFINE_ALIAS
from .layer.common import Linear #DEFINE_ALIAS
from .layer.common import Flatten #DEFINE_ALIAS
from .layer.common import UpSample #DEFINE_ALIAS
from .layer.common import Bilinear #DEFINE_ALIAS
from .layer.common import Dropout #DEFINE_ALIAS
from .layer.common import Dropout2D #DEFINE_ALIAS
from .layer.common import Dropout3D #DEFINE_ALIAS
......
......@@ -72,6 +72,7 @@ from .common import unfold #DEFINE_ALIAS
# from .common import bilinear_tensor_product #DEFINE_ALIAS
from .common import assign #DEFINE_ALIAS
from .common import interpolate #DEFINE_ALIAS
from .common import bilinear #DEFINE_ALIAS
from .conv import conv1d #DEFINE_ALIAS
from .conv import conv_transpose1d #DEFINE_ALIAS
from .conv import conv2d #DEFINE_ALIAS
......
......@@ -33,6 +33,8 @@ from ...tensor import sqrt
#from ...fluid.layers import fc #DEFINE_ALIAS
from ...fluid.layers import pad_constant_like #DEFINE_ALIAS
from ...fluid.framework import in_dygraph_mode
from ...fluid import core, dygraph_utils
from ...fluid import core, layers
from ...fluid.data_feeder import check_variable_and_dtype
......@@ -52,6 +54,7 @@ __all__ = [
# 'bilinear_tensor_product',
'assign',
'interpolate',
'bilinear',
'cosine_similarity',
]
......@@ -460,6 +463,70 @@ def interpolate(input,
return out
def bilinear(x1, x2, weight, bias=None, name=None):
"""
This layer performs bilinear on two inputs.
.. math::
out_{i} = x1 * W_{i} * {x2^\mathrm{T}}, i=0,1,...,size-1
out = out + b
In this formula:
- :math:`x1`: the first input contains in1_features elements, shape is [batch_size, in1_features].
- :math:`x2`: the second input contains in2_features elements, shape is [batch_size, in2_features].
- :math:`W_{i}`: the i-th learned weight, shape is [in1_features, in2_features], and learned weight's shape is [out_features, in1_features, in2_features].
- :math:`out_{i}`: the i-th element of out, shape is [batch_size, out_features].
- :math:`b`: the learned bias, shape is [1, out_features].
- :math:`x2^\mathrm{T}`: the transpose of :math:`x2`.
Parameters:
x1 (Tensor): the first input tensor, it's data type should be float32, float64.
x2 (Tensor): the second input tensor, it's data type should be float32, float64.
weight (Parameter): The learnable weights of this layer, shape is [out_features, in1_features, in2_features].
bias (Parameter, optional): The learnable bias(Bias) of this layer, shape is [1, out_features]. If it is set to None, no bias will be added to the output units. The default value is None.
name (str, optional): The default value is None. Normally there is no need for user
to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
Returns:
Variable: A 2-D Tensor of shape [batch_size, out_features].
Examples:
.. code-block:: python
import paddle
import numpy
import paddle.nn.functional as F
paddle.disable_static()
x1 = numpy.random.random((5, 5)).astype('float32')
x2 = numpy.random.random((5, 4)).astype('float32')
w = numpy.random.random((1000, 5, 4)).astype('float32')
b = numpy.random.random((1, 1000)).astype('float32')
result = F.bilinear(paddle.to_tensor(x1), paddle.to_tensor(x2), paddle.to_tensor(w), paddle.to_tensor(b)) # result shape [5, 1000]
"""
if in_dygraph_mode():
return core.ops.bilinear_tensor_product(x1, x2, weight, bias)
check_variable_and_dtype(x1, 'x1', ['float32', 'float64'], 'bilinear')
check_variable_and_dtype(x2, 'x2', ['float32', 'float64'], 'bilinear')
inputs = {"X": x1, "Y": x2, "Weight": weight}
if bias is not None:
inputs["Bias"] = bias
helper = LayerHelper("bilinear", **locals())
out = helper.create_variable_for_type_inference(dtype=x1.dtype)
helper.append_op(
type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})
return out
def dropout(x,
p=0.5,
axis=None,
......
......@@ -23,11 +23,27 @@ from .. import functional as F
from ...fluid.framework import _dygraph_tracer
__all__ = [
'BilinearTensorProduct', 'Pool2D', 'Embedding', 'Linear', 'UpSample',
'Pad2D', 'ReflectionPad1d', 'ReplicationPad1d', 'ConstantPad1d',
'ReflectionPad2d', 'ReplicationPad2d', 'ConstantPad2d', 'ZeroPad2d',
'ConstantPad3d', 'ReplicationPad3d', 'CosineSimilarity', 'Dropout',
'Dropout2D', 'Dropout3D', 'AlphaDropout'
'BilinearTensorProduct',
'Pool2D',
'Embedding',
'Linear',
'UpSample',
'Pad2D',
'ReflectionPad1d',
'ReplicationPad1d',
'ConstantPad1d',
'ReflectionPad2d',
'ReplicationPad2d',
'ConstantPad2d',
'ZeroPad2d',
'ConstantPad3d',
'ReplicationPad3d',
'CosineSimilarity',
'Dropout',
'Dropout2D',
'Dropout3D',
'Bilinear',
'AlphaDropout',
]
......@@ -338,6 +354,94 @@ class Pad2D(layers.Layer):
data_format=self._data_format)
class Bilinear(layers.Layer):
"""
This layer performs bilinear on two inputs.
.. math::
out_{i} = x1 * W_{i} * {x2^\mathrm{T}}, i=0,1,...,size-1
out = out + b
In this formula:
- :math:`x1`: the first input contains in1_features elements, shape is [batch_size, in1_features].
- :math:`x2`: the second input contains in2_features elements, shape is [batch_size, in2_features].
- :math:`W_{i}`: the i-th learned weight, shape is [in1_features, in2_features], and learned weight's shape is [out_features, in1_features, in2_features].
- :math:`out_{i}`: the i-th element of out, shape is [batch_size, out_features].
- :math:`b`: the learned bias, shape is [1, out_features].
- :math:`x2^\mathrm{T}`: the transpose of :math:`x2`.
Parameters:
in1_features (int): The dimension of each first input(`x1`).
in2_features (int): The dimension of each second input(`x2`).
out_features (int): The dimension of output of this layer.
weight_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of
this layer. The default value is None.
bias_attr (ParamAttr, optional): The parameter attribute for the bias
of this layer. If it is set to False, no bias will be added to the output units.
If it is set to None, the bias is initialized zero. The default value is None.
name (str, optional): The default value is None. Normally there is no need for user
to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
Attribute:
**weight** (Parameter): the learnable weights of this layer.
**bias** (Parameter): the learnable bias of this layer.
Returns:
Variable: A 2-D Tensor of shape [batch_size, out_features].
Examples:
.. code-block:: python
import paddle
import numpy
paddle.disable_static()
layer1 = numpy.random.random((5, 5)).astype('float32')
layer2 = numpy.random.random((5, 4)).astype('float32')
bilinear = paddle.nn.Bilinear(
in1_features=5, in2_features=4, out_features=1000)
result = bilinear(paddle.to_tensor(layer1),
paddle.to_tensor(layer2)) # result shape [5, 1000]
"""
def __init__(self,
in1_features,
in2_features,
out_features,
weight_attr=None,
bias_attr=None,
name=None):
super(Bilinear, self).__init__()
self._weight_attr = weight_attr
self._bias_attr = bias_attr
self._name = name
self._in1_features = in1_features
self._in2_features = in2_features
self._out_features = out_features
self._dtype = self._helper.get_default_dtype()
weight_shape = [
self._out_features, self._in1_features, self._in2_features
]
self.weight = self.create_parameter(
attr=self._weight_attr,
shape=weight_shape,
dtype=self._dtype,
is_bias=False)
bias_shape = [1, self._out_features]
self.bias = self.create_parameter(
attr=self._bias_attr,
shape=bias_shape,
dtype=self._dtype,
is_bias=True)
def forward(self, x1, x2):
return F.bilinear(x1, x2, self.weight, self.bias, self._name)
class Dropout(layers.Layer):
"""
Dropout is a regularization technique for reducing overfitting by preventing
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册