common.py 94.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import numpy

17
import paddle
18
from paddle import _C_ops, _legacy_C_ops
19
from paddle.common_ops_import import Variable, default_main_program
X
xiaoting 已提交
20
from paddle.fluid.layer_helper import LayerHelper
21 22
from paddle.framework import core, in_dynamic_mode
from paddle.tensor.creation import full
23 24 25 26

from ...fluid.data_feeder import (
    check_dtype,
    check_type,
27
    check_variable_and_dtype,
28
)
29
from ...fluid.framework import in_dygraph_mode
30 31
from ...tensor import clip, concat, sqrt, sum
from ...tensor.creation import zeros
Z
zhiboniu 已提交
32

33 34
# TODO: define the common functions to build a neural network
from ...tensor.manipulation import squeeze, unsqueeze
35

36 37
__all__ = []

X
xiaoting 已提交
38

39 40 41
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    r"""

42
    Return a col buffer of sliding local blocks of input x, also known
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter sliding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1

        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]

        Lout &= hout \times wout


    Parameters:
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
                                  data type can be float32 or float64
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
70
        strides(int|list, optional):        The strides, should be [stride_h, stride_w]
71 72
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
73
        paddings(int|list, optional):       The paddings of each dimension, should be
74 75 76 77 78 79
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
80
        dilations(int|list, optional):      the dilations of convolution kernel, should be
81 82 83 84 85 86 87 88
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
89
        Tensor, The tensor corresponding to the sliding local blocks.
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
        The data type of output is the same as the input :math:`x`

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
    """

106 107 108 109
    helper = LayerHelper("unfold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'unfold')

110
    assert len(x.shape) == 4, "input should be the format of [N, C, H, W]"
111 112 113 114

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
115 116 117
        assert isinstance(kernel_sizes, list) and (
            len(kernel_sizes) == 2
        ), "kernel_sizes should either be an integer or a list of two integers"
118 119 120 121

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
122 123 124
        assert isinstance(strides, list) and (
            len(strides) == 2
        ), "strides should either be an integer or a list of two integers"
125 126 127 128

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
129 130 131
        assert isinstance(dilations, list) and (
            len(dilations) == 2
        ), "dilations should either be an integer or a list of two integers"
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
147 148
            "of 2 or 4 integers"
        )
149 150

    if in_dygraph_mode():
151
        return _C_ops.unfold(x, kernel_sizes, strides, paddings, dilations)
152 153

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
154 155 156 157 158 159 160 161 162 163 164
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations,
        },
    )
165 166 167
    return out


168 169 170 171 172 173 174 175 176 177
def interpolate(
    x,
    size=None,
    scale_factor=None,
    mode='nearest',
    align_corners=False,
    align_mode=0,
    data_format='NCHW',
    name=None,
):
X
xiaoting 已提交
178
    """
S
swtkiwi 已提交
179

180
    This API resizes a batch of images.
181

182 183
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
X
xiaoting 已提交
184
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
185 186
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
187
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
188

X
xiaoting 已提交
189
    Supporting resample methods:
190 191 192 193 194 195 196

    - 'linear' : Linear interpolation
    - 'bilinear' : Bilinear interpolation
    - 'trilinear' : Trilinear interpolation
    - 'nearest' : Nearest neighbor interpolation
    - 'bicubic' : Bicubic interpolation
    - 'area': Area interpolation
197

198 199 200
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
215
    align_corners and align_mode are optional parameters,the calculation method
X
xiaoting 已提交
216 217 218 219 220 221 222
    of interpolation can be selected by them.

    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.

223 224
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
225 226
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
227 228
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
229 230 231 232
    Example:

    .. code-block:: text

233
        # For scale_factor:
X
xiaoting 已提交
234 235 236 237 238
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

239
        # Linear interpolation:
240 241 242 243 244 245 246 247 248
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
249

250
        # Nearest neighbor interpolation:
X
xiaoting 已提交
251

X
xiaoting 已提交
252 253 254 255 256
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
257

258
        # Bilinear interpolation:
X
xiaoting 已提交
259 260 261 262 263 264 265 266 267 268 269 270
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

271
        # Bicubic interpolation:
X
xiaoting 已提交
272 273 274 275 276 277 278 279 280 281 282 283
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

284
        # Trilinear interpolation:
X
xiaoting 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

299 300
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
301

X
xiaoting 已提交
302 303
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
304

X
xiaoting 已提交
305 306
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
307

X
xiaoting 已提交
308 309
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
310

X
xiaoting 已提交
311 312
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
313

X
xiaoting 已提交
314
    Parameters:
X
xiaoting 已提交
315
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
X
xiaoting 已提交
316
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
317
        size (list|tuple|Tensor|None): Output shape of image resize
318 319
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
320
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1] or [].
X
xiaoting 已提交
321
             If a Tensor, its dimensions size should be a 1.
322 323
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
324
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if it is either a list or a tuple or a Tensor.If a list/tuple, each element can be an integer or a Tensor of shape: [1] or [].
X
xiaoting 已提交
325
             Default: None.
326
        mode (str): The resample method. It supports 'linear', 'area', 'nearest', 'bilinear',
327
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
X
xiaoting 已提交
328 329
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
X
xiaoting 已提交
330
                               corner pixels.This only has an effect when 'linear', 'bilinear', 'bicubic' or 'trilinear'.
331 332 333 334
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
X
xiaoting 已提交
335
        data_format (str, optional): Specify the data format of the input, and the data format of the output
336
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`,  `"NCHW"`, `"NHWC"`, `"NCDHW"`,
X
xiaoting 已提交
337 338 339
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
340 341 342
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
X
xiaoting 已提交
343
    Returns:
344
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
X
xiaoting 已提交
345 346
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
347

348

X
xiaoting 已提交
349 350 351
    Examples:
        .. code-block:: python

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
            import paddle
            import paddle.nn.functional as F

            input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
            output_1 = F.interpolate(x=input_data, size=[12,12])
            print(output_1.shape)
            # [2L, 3L, 12L, 12L]

            # given scale
            output_2 = F.interpolate(x=input_data, scale_factor=[2,1])
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]

            # bilinear interp
            output_3 = F.interpolate(x=input_data, scale_factor=[2,1], mode="bilinear")
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]
X
xiaoting 已提交
369
    """
370 371 372 373 374 375 376 377 378 379
    data_format = data_format.upper()
    resample = mode.upper()
    resample_type = mode.lower()

    resample_methods = [
        'LINEAR',
        'BILINEAR',
        'TRILINEAR',
        'NEAREST',
        'BICUBIC',
380
        'AREA',
381
    ]
X
xiaoting 已提交
382 383
    if resample not in resample_methods:
        raise ValueError(
384
            "The 'resample' of image_resize can only be 'area', 'linear', 'bilinear', 'trilinear', "
385 386
            " 'bicubic' or 'nearest' currently."
        )
X
xiaoting 已提交
387

X
xiaoting 已提交
388
    if resample in ['LINEAR'] and len(x.shape) != 3:
389
        raise ValueError("'linear' only support 3-D tensor.")
390

391 392 393 394 395
    if resample in ['NEAREST'] and len(x.shape) != 4 and len(x.shape) != 5:
        raise ValueError("'NEAREST' only support 4-D  or 5-D tensor.")

    if resample in ['BILINEAR', 'BICUBIC'] and len(x.shape) != 4:
        raise ValueError("'bilinear' and 'bicubic' only support 4-D tensor.")
X
xiaoting 已提交
396
    if resample == 'TRILINEAR' and len(x.shape) != 5:
397 398 399 400
        raise ValueError("'trilinear'only support 5-D tensor.")

    if size is None and scale_factor is None:
        raise ValueError("One of size and scale_factor must not be None.")
X
xiaoting 已提交
401

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
    if (isinstance(size, list) or isinstance(size, tuple)) and len(
        size
    ) != x.ndim - 2:
        raise ValueError(
            'The x and size should satisfy rank(x) - 2 == len(size).'
        )

    if isinstance(size, Variable):
        if size.ndim != 1:
            raise ValueError(
                f"If size is a tensor, it's rank must be 1, but received {size.ndim}."
            )
        if size.shape[0] != x.ndim - 2:
            raise ValueError(
                'The x and size should satisfy rank(x) - 2 == size.shape[0].'
            )

X
xiaoting 已提交
419 420
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
421

X
xiaoting 已提交
422 423
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")
X
xiaoting 已提交
424 425 426 427
    if align_corners != 0 and resample == 'NEAREST':
        raise ValueError(
            "align_corners option can only be set with the interpolating modes: linear | bilinear | bicubic | trilinear"
        )
428

X
xiaoting 已提交
429
    if resample == 'AREA':
430 431 432 433 434
        if (
            isinstance(size, list)
            or isinstance(size, tuple)
            or isinstance(size, Variable)
        ):
X
xiaoting 已提交
435 436
            if len(size) == 0:
                raise ValueError("output size can not be empty")
437 438
        if size is None:
            raise ValueError("output size can not be None in AREA mode")
X
xiaoting 已提交
439 440 441
        if len(x.shape) == 3:
            return paddle.nn.functional.adaptive_avg_pool1d(x, size)
        elif len(x.shape) == 4:
442
            print("size :", size)
X
xiaoting 已提交
443 444 445
            return paddle.nn.functional.adaptive_avg_pool2d(x, size)
        elif len(x.shape) == 5:
            return paddle.nn.functional.adaptive_avg_pool3d(x, size)
X
xiaoting 已提交
446 447
    helper = LayerHelper('{}_interp_v2'.format(resample_type), **locals())
    if len(x.shape) == 3 and data_format not in ['NCW', 'NWC']:
448
        raise ValueError(
449 450 451 452
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCW` or `NWC` supported for 3-D input."
        )
X
xiaoting 已提交
453
    elif len(x.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
X
xiaoting 已提交
454
        raise ValueError(
455 456 457 458
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCHW` or `NHWC` supported for 4-D input."
        )
X
xiaoting 已提交
459
    elif len(x.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
X
xiaoting 已提交
460
        raise ValueError(
461 462 463 464
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCDHW` or `NDHWC` supported for 5-D input."
        )
X
xiaoting 已提交
465 466

    def _is_list_or_turple_(data):
467
        return isinstance(data, list) or isinstance(data, tuple)
X
xiaoting 已提交
468

469
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
X
xiaoting 已提交
470
        data_layout = 'NCHW'
471
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
X
xiaoting 已提交
472 473
        data_layout = 'NHWC'

X
xiaoting 已提交
474 475 476 477
    if resample == 'NEAREST':
        align_corners = False

    inputs = {"X": x}
X
xiaoting 已提交
478 479 480 481 482 483 484
    attrs = {
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode,
485
        "data_layout": data_layout,
X
xiaoting 已提交
486 487
    }

488 489
    out_shape = size
    scale = scale_factor
490 491
    if out_shape is not None and scale is not None:
        raise ValueError("Only one of size or scale_factor should be defined.")
X
xiaoting 已提交
492
    if out_shape is not None:
Z
zhiboniu 已提交
493
        if isinstance(out_shape, Variable) and not in_dynamic_mode():
X
xiaoting 已提交
494 495 496
            out_shape.stop_gradient = True
            inputs['OutSize'] = out_shape
        else:
Z
zhiboniu 已提交
497
            if in_dynamic_mode():
498 499
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
X
xiaoting 已提交
500 501
                else:
                    out_shape = list(out_shape)
502

503 504
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
505
                        out_shape[i] = dim.item()
X
xiaoting 已提交
506
            if not (_is_list_or_turple_(out_shape)):
507
                raise TypeError("size should be a list or tuple or Variable.")
X
xiaoting 已提交
508 509 510 511 512 513
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
514 515 516
                assert (
                    dim_size > 0
                ), "Each dimension size given in out_shape must be greater than 0."
X
xiaoting 已提交
517 518 519 520 521 522 523 524 525 526

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
527
                        assert isinstance(dim, int)
X
xiaoting 已提交
528
                        temp_out = helper.create_variable_for_type_inference(
529 530
                            'int32'
                        )
531
                        paddle.tensor.fill_constant(
532 533
                            [1], 'int32', dim, force_cpu=True, out=temp_out
                        )
X
xiaoting 已提交
534 535 536 537
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

X
xiaoting 已提交
538
            if len(x.shape) == 3:
539 540
                if len(out_shape) != 1:
                    raise ValueError(
541 542
                        "size length should be 2 for input 3-D tensor"
                    )
543 544 545 546 547
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
X
xiaoting 已提交
548
            if len(x.shape) == 4:
X
xiaoting 已提交
549
                if len(out_shape) != 2:
550 551 552
                    raise ValueError(
                        "size length should be 2 for " "input 4-D tensor."
                    )
X
xiaoting 已提交
553 554 555 556 557 558 559
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
X
xiaoting 已提交
560
            if len(x.shape) == 5:
X
xiaoting 已提交
561
                if len(out_shape) != 3:
562 563 564
                    raise ValueError(
                        "size length should be 3 for " "input 5-D tensor."
                    )
X
xiaoting 已提交
565 566 567 568 569 570 571 572 573 574 575
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]

    else:
Z
zhiboniu 已提交
576
        if in_dynamic_mode() and isinstance(scale, Variable):
577 578 579 580
            if scale.shape == []:
                scale = float(scale)
            else:
                scale = list(scale.numpy())
X
xiaoting 已提交
581 582 583
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
584 585 586 587 588
        elif (
            isinstance(scale, float)
            or isinstance(scale, int)
            or isinstance(scale, numpy.ndarray)
        ):
X
xiaoting 已提交
589 590
            if scale <= 0:
                raise ValueError("Attr(scale) should be greater than zero.")
X
xiaoting 已提交
591 592 593 594
            scale_list = []
            for i in range(len(x.shape) - 2):
                scale_list.append(scale)
            attrs['scale'] = list(map(float, scale_list))
X
xiaoting 已提交
595
        elif isinstance(scale, list) or isinstance(scale, tuple):
X
xiaoting 已提交
596
            if len(scale) != len(x.shape) - 2:
597 598 599 600
                raise ValueError(
                    "scale_shape length should be {} for "
                    "input {}-D tensor.".format(len(x.shape) - 2, len(x.shape))
                )
X
xiaoting 已提交
601 602 603 604
            for value in scale:
                if value <= 0:
                    raise ValueError("Attr(scale) should be greater than zero.")
            attrs['scale'] = list(map(float, scale))
X
xiaoting 已提交
605 606
        else:
            raise TypeError(
607 608
                "Attr(scale)'s type should be float, int, list, tuple, or Tensor."
            )
X
xiaoting 已提交
609

Z
zhiboniu 已提交
610
    if in_dynamic_mode():
X
xiaoting 已提交
611 612 613 614 615 616 617
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
618
            if in_dygraph_mode():
619
                out = _C_ops.linear_interp(
620 621
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
622 623
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
624 625 626 627 628 629 630 631 632
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
633
            else:
634
                out = _legacy_C_ops.linear_interp_v2(x, *dy_attr)
635
        elif resample_type == "bilinear":
636
            if in_dygraph_mode():
637
                out = _C_ops.bilinear_interp(
638 639
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
640 641
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
642 643 644 645 646 647 648 649 650
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
651
            else:
652
                out = _legacy_C_ops.bilinear_interp_v2(x, *dy_attr)
653
        elif resample_type == "trilinear":
654
            if in_dygraph_mode():
655
                out = _C_ops.trilinear_interp(
656 657
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
658 659
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
660 661 662 663 664 665 666 667 668
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
669
            else:
670
                out = _legacy_C_ops.trilinear_interp_v2(x, *dy_attr)
671
        elif resample_type == "nearest":
672
            if in_dygraph_mode():
673
                out = _C_ops.nearest_interp(
674 675
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
676 677
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
678 679 680 681 682 683 684 685 686
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
687
            else:
688
                out = _legacy_C_ops.nearest_interp_v2(x, *dy_attr)
689
        elif resample_type == "bicubic":
690
            if in_dygraph_mode():
691
                out = _C_ops.bicubic_interp(
692 693
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
694 695
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
696 697 698 699 700 701 702 703 704
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
705
            else:
706
                out = _legacy_C_ops.bicubic_interp_v2(x, *dy_attr)
X
xiaoting 已提交
707
        return out
W
Weilong Wu 已提交
708 709 710

    dtype = helper.input_dtype(input_param_name='x')

X
xiaoting 已提交
711
    out = helper.create_variable_for_type_inference(dtype)
712 713 714 715 716 717
    helper.append_op(
        type='{}_interp_v2'.format(resample_type),
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs,
    )
X
xiaoting 已提交
718
    return out
L
littletomatodonkey 已提交
719 720


721 722 723 724 725 726 727 728 729 730
def upsample(
    x,
    size=None,
    scale_factor=None,
    mode='nearest',
    align_corners=False,
    align_mode=0,
    data_format='NCHW',
    name=None,
):
X
xiaoting 已提交
731
    """
732

733
    This API resizes a batch of images.
734

X
xiaoting 已提交
735 736 737
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
738 739
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
740 741 742
    and the resizing only applies on the three dimensions(depth, height and width).

    Supporting resample methods:
743 744 745 746 747 748
    - 'linear' : Linear interpolation
    - 'bilinear' : Bilinear interpolation
    - 'trilinear' : Trilinear interpolation
    - 'nearest' : Nearest neighbor interpolation
    - 'bicubic' : Bicubic interpolation

749 750 751
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
752 753 754 755 756 757 758 759
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
760

X
xiaoting 已提交
761 762 763 764
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
765

X
xiaoting 已提交
766 767 768
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
769

X
xiaoting 已提交
770 771 772
    The linear interpolation is performed on three directions.
    align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.
773 774 775 776 777 778 779

    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
780
    Example:
781
        .. code-block:: text
782

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
            For scale_factor:
                if align_corners = True && out_size > 1 :
                scale_factor = (in_size-1.0)/(out_size-1.0)
                else:
                scale_factor = float(in_size/out_size)
            Linear interpolation:
                if:
                    align_corners = False , align_mode = 0
                    input : (N,C,W_in)
                    output: (N,C,W_out) where:
                    W_out = (W_{in}+0.5) * scale_{factor} - 0.5
                else:
                    input : (N,C,W_in)
                    output: (N,C,W_out) where:
                    W_out = W_{in} * scale_{factor}
            Nearest neighbor interpolation:
            if:
                align_corners = False
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = floor (H_{in} * scale_{factor})
                W_out = floor (W_{in} * scale_{factor})
X
xiaoting 已提交
805
            else:
806 807 808 809 810 811 812
                align_corners = True
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = round(H_{in} * scale_{factor})
                W_out = round(W_{in} * scale_{factor})

            Bilinear interpolation:
X
xiaoting 已提交
813 814
            if:
                align_corners = False , align_mode = 0
815 816 817
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
X
xiaoting 已提交
818 819
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = H_{in} * scale_{factor}
                W_out = W_{in} * scale_{factor}
            Bicubic interpolation:
            if:
                align_corners = False
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,H_in,W_in)
                output: (N,C,H_out,W_out) where:
                H_out = H_{in} * scale_{factor}
                W_out = W_{in} * scale_{factor}
            Trilinear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,D_in,H_in,W_in)
                output: (N,C,D_out,H_out,W_out) where:
                D_out = (D_{in}+0.5) * scale_{factor} - 0.5
                H_out = (H_{in}+0.5) * scale_{factor} - 0.5
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,D_in,H_in,W_in)
                output: (N,C,D_out,H_out,W_out) where:
                D_out = D_{in} * scale_{factor}
                H_out = H_{in} * scale_{factor}
X
xiaoting 已提交
849
                W_out = W_{in} * scale_{factor}
850

X
xiaoting 已提交
851
    For details of linear interpolation, please refer to Wikipedia:
852
    https://en.wikipedia.org/wiki/Linear_interpolation.
853

X
xiaoting 已提交
854 855
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
856

X
xiaoting 已提交
857 858
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
859

X
xiaoting 已提交
860 861
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
862

X
xiaoting 已提交
863 864
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
865

X
xiaoting 已提交
866 867 868
    Parameters:
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
869
        size (list|tuple|Tensor|None, optional): Output shape of image resize
870 871
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
872
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1] or [].
X
xiaoting 已提交
873
             If a Tensor , its dimensions size should be a 1.
874
        scale_factor (float|Tensor|list|tuple|None, optional): The multiplier for the input height or width. At
875
             least one of :attr:`size` or :attr:`scale_factor` must be set.
876
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if
877
             it is either a list or a tuple or a Tensor. If a list/tuple, each element can be an integer or a Tensor of shape: [1] or [].
X
xiaoting 已提交
878
             Default: None.
879
        mode (str, optional): The resample method. It supports 'linear', 'nearest', 'bilinear',
X
xiaoting 已提交
880
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
881
        align_corners(bool, optional) :  An optional bool, If True, the centers of the 4 corner pixels of the
X
xiaoting 已提交
882 883 884
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
                               Default: False
885
        align_mode(int, optional)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
X
xiaoting 已提交
886 887 888 889 890 891 892 893 894 895
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
896

X
xiaoting 已提交
897 898 899 900
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
901

902 903
    Examples:
        .. code-block:: python
904

905 906
            import paddle
            import paddle.nn as nn
X
xiaoting 已提交
907

908 909
            input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
            upsample_out = paddle.nn.Upsample(size=[12,12])
910

911 912 913
            output = upsample_out(x=input_data)
            print(output.shape)
            # [2L, 3L, 12L, 12L]
X
xiaoting 已提交
914 915

    """
916 917 918
    return interpolate(
        x, size, scale_factor, mode, align_corners, align_mode, data_format
    )
X
xiaoting 已提交
919 920


921 922 923 924
def bilinear(x1, x2, weight, bias=None, name=None):
    """

    This layer performs bilinear on two inputs.
925
    See :ref:`api_nn_Bilinear` for details and output shape.
926 927

    Parameters:
928 929 930 931 932 933
        x1 (Tensor): the first input tensor, it's data type should be float32, float64.
        x2 (Tensor): the second input tensor, it's data type should be float32, float64.
        weight (Parameter): The learnable weights of this layer, shape is [out_features, in1_features, in2_features].
        bias (Parameter, optional): The learnable bias(Bias) of this layer, shape is [1, out_features]. If it is set to None, no bias will be added to the output units. The default value is None.
        name (str, optional): The default value is None. Normally there is no need for user
            to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
934 935

    Returns:
936
        Tensor: A 2-D Tensor of shape [batch_size, out_features].
937 938

    Examples:
939
        .. code-block:: python
940

941 942
            import paddle
            import paddle.nn.functional as F
943

944 945 946 947
            x1 = paddle.randn((5, 5)).astype(paddle.float32)
            x2 = paddle.randn((5, 4)).astype(paddle.float32)
            w = paddle.randn((1000, 5, 4)).astype(paddle.float32)
            b = paddle.randn((1, 1000)).astype(paddle.float32)
948

949 950 951
            result = F.bilinear(x1, x2, w, b)
            print(result.shape)
            # [5, 1000]
952 953
    """

954
    if in_dygraph_mode():
W
wanghuancoder 已提交
955
        return _C_ops.bilinear_tensor_product(x1, x2, weight, bias)
956 957 958
    else:
        check_variable_and_dtype(x1, 'x1', ['float32', 'float64'], 'bilinear')
        check_variable_and_dtype(x2, 'x2', ['float32', 'float64'], 'bilinear')
959

960 961 962
        inputs = {"X": x1, "Y": x2, "Weight": weight}
        if bias is not None:
            inputs["Bias"] = bias
963

964 965
        helper = LayerHelper("bilinear", **locals())
        out = helper.create_variable_for_type_inference(dtype=x1.dtype)
966

967 968 969
        helper.append_op(
            type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out}
        )
970

971
        return out
972 973


974 975 976
def dropout(
    x, p=0.5, axis=None, training=True, mode="upscale_in_train", name=None
):
977
    r"""
978 979 980 981 982 983
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training. The dropout operator randomly sets the
    outputs of some units to zero, while upscale others according to the given
    dropout probability.

    Args:
984
        x (Tensor): The input tensor. The data type is float16, float32 or float64.
985 986 987
        p (float|int, optional): Probability of setting units to zero. Default: 0.5.
        axis (int|list|tuple, optional): The axis along which the dropout is performed. Default: None.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
988
        mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer'].
989

990
            1. upscale_in_train (default), upscale the output at training time
991

992 993
                - train: :math:`out = input \times \frac{mask}{(1.0 - dropout\_prob)}`
                - inference: :math:`out = input`
994

995
            2. downscale_in_infer, downscale the output at inference
996

997 998
                - train: :math:`out = input \times mask`
                - inference: :math:`out = input \times (1.0 - dropout\_prob)`
999

1000
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
1001 1002 1003 1004

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x` .

1005

1006 1007
    Examples:
        We use ``p=0.5`` in the following description for simplicity.
1008

1009
        1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.
1010 1011 1012

        ..  code-block:: text

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
            Let's see a simple case when x is a 2d tensor with shape 2*3:
            [[1 2 3]
             [4 5 6]]
            we generate mask with the same shape as x, which is 2*3. The value of mask is
            sampled from a Bernoulli distribution randomly. For example, we may get such mask:
            [[0 1 0]
             [1 0 1]]
            So the output is obtained from elementwise multiply of x and mask:
            [[0 2 0]
             [4 0 6]]
            Using default setting, i.e. ``mode='upscale_in_train'`` ,
            if in training phase, the final upscale output is:
            [[0 4 0 ]
             [8 0 12]]
            if in test phase, the output is the same as input:
            [[1 2 3]
             [4 5 6]]
            we can also set ``mode='downscale_in_infer'`` , then
            if in training phase, the final output is:
            [[0 2 0]
             [4 0 6]]
            if in test phase, the scale output is:
            [[0.5 1.  1.5]
             [2.  2.5 3. ]]

1038 1039


1040
        2. When ``axis!=None`` , this is useful for dropping whole channels from an image or sequence.
1041 1042 1043

        ..  code-block:: text

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
            Let's see the simple case when x is a 2d tensor with shape 2*3 again:
            [[1 2 3]
             [4 5 6]]
            (1) If ``axis=0`` , this means the dropout is only performed in axis `0` .
                we generate mask with the shape 2*1. Only in axis `0` the value is randomly selected.
                For example, we may get such mask:
                [[1]
                 [0]]
                The output is obtained from elementwise multiply of x and mask. Doing that the mask will be
                broadcast from 2*1 to 2*3:
                [[1 1 1]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[1 2 3]
                 [0 0 0]]
                then we can do upscale or downscale according to the setting of other arguments.
            (2) If ``axis=1`` , this means the dropout is only performed in axis `1` .
                we generate mask with the shape 1*3. Only in axis `1` the value is randomly selected.
                For example, we may get such mask:
                [[1 0 1]]
                Doing elementwise multiply the mask will be broadcast from 1*3 to 2*3:
                [[1 0 1]
                 [1 0 1]]
                and the result after elementwise multiply is:
                [[1 0 3]
                 [4 0 6]]
            (3) What about ``axis=[0, 1]`` ? This means the dropout is performed in all axes of x,
                which is the same case as default setting ``axis=None`` .
1072
            (4) You may note that logically `axis=None` means the dropout is performed in none axis of x,
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
                We generate mask with the shape 1*1. Whole input is randomly selected or dropped.
                For example, we may get such mask:
                [[0]]
                Doing elementwise multiply the mask will be broadcast from 1*1 to 2*3:
                [[0 0 0]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[0 0 0]
                 [0 0 0]]
                Actually this is not what we want because all elements may set to zero~
1083

1084 1085
        When x is a 4d tensor with shape `NCHW`, where `N` is batch size, `C` is the number of channels, H and W are the height and width of the feature, we can set ``axis=[0,1]`` and the dropout will be performed in channel `N` and `C`, `H` and `W` is tied, i.e. paddle.nn.dropout(x, p, axis=[0,1]) . Please refer to ``paddle.nn.functional.dropout2d`` for more details.
        Similarly, when x is a 5d tensor with shape `NCDHW`, where `D` is the depth of the feature, we can set ``axis=[0,1]`` to perform dropout3d. Please refer to ``paddle.nn.functional.dropout3d`` for more details.
1086 1087

        .. code-block:: python
1088

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
            import paddle

            x = paddle.to_tensor([[1,2,3], [4,5,6]]).astype(paddle.float32)
            y_train = paddle.nn.functional.dropout(x, 0.5)
            y_test = paddle.nn.functional.dropout(x, 0.5, training=False)
            y_0 = paddle.nn.functional.dropout(x, axis=0)
            y_1 = paddle.nn.functional.dropout(x, axis=1)
            y_01 = paddle.nn.functional.dropout(x, axis=[0,1])
            print(x)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
            print(y_train)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[2. , 0. , 6. ],
            #         [8. , 0. , 12.]])
            print(y_test)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
            print(y_0)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0. , 0. , 0. ],
            #         [8. , 10., 12.]])
            print(y_1)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[2. , 0. , 6. ],
            #         [8. , 0. , 12.]])
            print(y_01)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0. , 0. , 0. ],
            #         [8. , 0. , 12.]])
1121 1122

    """
1123 1124 1125 1126 1127
    if not isinstance(p, (float, int, Variable)):
        raise TypeError("p argument should be a number or Variable")

    if isinstance(p, (int, float)):
        # fast return for p == 0
1128 1129
        if p == 0:
            return x
1130 1131
        elif p < 0 or p > 1:
            raise ValueError("p argument should between 0 and 1")
1132 1133
    if mode not in ('downscale_in_infer', 'upscale_in_train'):
        raise ValueError(
1134 1135
            "mode argument should be 'downscale_in_infer' or 'upscale_in_train'"
        )
1136
    if axis and not isinstance(axis, (int, list, tuple)):
1137 1138
        raise TypeError("datatype of axis argument should be int or list")

1139
    if axis is None:  # commonly used dropout
1140
        seed = None
1141 1142 1143
        mode = (
            'downgrade_in_infer' if mode == 'downscale_in_infer' else mode
        )  # semantic transfer
1144

1145
        if in_dygraph_mode():
1146 1147
            if default_main_program().random_seed != 0:
                seed = default_main_program().random_seed
H
hong 已提交
1148

1149
            out, mask = _C_ops.dropout(
1150
                x,
1151
                None,
1152 1153 1154
                p,
                not training,
                mode,
1155 1156
                seed if seed is not None else 0,
                seed is not None,
1157
            )
1158

1159 1160 1161 1162 1163 1164
            return out
        else:
            helper = LayerHelper('dropout', **locals())
            check_variable_and_dtype(
                x, 'x', ['float16', 'float32', 'float64'], 'dropout'
            )
1165

1166 1167 1168 1169
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            mask = helper.create_variable_for_type_inference(
                dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
            )
1170

1171 1172 1173
            def get_attrs(prog, dropout_prob, is_test, seed):
                if (seed is None or seed == 0) and prog.random_seed != 0:
                    seed = prog.random_seed
1174

1175 1176 1177 1178 1179 1180 1181
                if isinstance(
                    dropout_prob, Variable
                ) and not dropout_prob.shape != [1]:
                    raise TypeError(
                        "Required p.shape == [1] if type(p) is Variable, but received p.shape = {}".format(
                            p.shape
                        )
1182
                    )
1183 1184 1185 1186 1187 1188 1189 1190
                attrs = {
                    'dropout_prob': dropout_prob,
                    'is_test': is_test,
                    'fix_seed': seed is not None,
                    'seed': seed if seed is not None else 0,
                    'dropout_implementation': mode,
                }
                return attrs
1191

1192
            attrs = get_attrs(helper.main_program, p, not training, seed)
1193

1194 1195 1196 1197 1198 1199 1200
            helper.append_op(
                type='dropout',
                inputs={'X': [x]},
                outputs={'Out': [out], 'Mask': [mask]},
                attrs=attrs,
            )
            return out
1201
    else:  # sometimes called dropout_nd #TODO: optimize with c++
Z
zhiboniu 已提交
1202
        if not in_dynamic_mode():
1203 1204 1205
            check_variable_and_dtype(
                x, 'x', ['float16', 'float32', 'float64'], 'dropout'
            )
1206 1207 1208
        dtype = x.dtype
        keep_prob = 1 - p
        if training:
1209 1210
            if in_dynamic_mode() and p == 1.0:
                return paddle.scale(x, scale=0.0)
1211

1212 1213 1214 1215 1216
            scale_input = (
                paddle.scale(x, scale=1 / keep_prob)
                if mode == 'upscale_in_train'
                else x
            )
1217

1218
            # get mask shape
1219
            input_shape = x.shape
Z
zhiboniu 已提交
1220
            if not in_dynamic_mode():
1221
                input_shape_tensor = paddle.shape(x)
1222
            drop_axes = [axis] if isinstance(axis, int) else list(axis)
1223
            if min(drop_axes) < 0 or max(drop_axes) > len(input_shape) - 1:
1224 1225 1226 1227 1228
                raise ValueError(
                    "axis value should be greater than or equal to 0 and less than dimensions of x:{}, but get axis value:{} ".format(
                        len(input_shape), max(drop_axes)
                    )
                )
1229 1230
            if len(drop_axes) > len(input_shape):
                raise ValueError(
1231 1232 1233 1234
                    "length of axis should not be greater than dimensions of x:{}, but get length of axis: {}".format(
                        len(input_shape), len(drop_axes)
                    )
                )
1235
            mask_shape = [1] * len(input_shape)
Z
zhiboniu 已提交
1236
            if not in_dynamic_mode():
1237 1238 1239 1240 1241
                for i in drop_axes:
                    mask_shape[i] = input_shape_tensor[i]
            else:
                for i in drop_axes:
                    mask_shape[i] = input_shape[i]
1242

1243 1244 1245 1246
            # get mask
            random_tensor = paddle.uniform(
                mask_shape, dtype='float32', min=0.0, max=1.0
            )
Z
zhiboniu 已提交
1247
            p = full(shape=[1], fill_value=p, dtype='float32')
1248
            keep_mask = paddle.greater_equal(random_tensor, p)
1249

1250 1251
            scale_input = paddle.cast(scale_input, dtype)
            keep_mask = paddle.cast(keep_mask, dtype)
1252 1253 1254
            ret = paddle.multiply(scale_input, keep_mask, name=name)
            return ret
        else:  # test
1255 1256 1257 1258 1259
            ret = (
                paddle.scale(x, scale=keep_prob)
                if mode == 'downscale_in_infer'
                else x
            )
1260 1261 1262 1263 1264 1265 1266 1267 1268
            return ret


def dropout2d(x, p=0.5, training=True, data_format='NCHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

1269
    See :ref:`api_paddle_nn_functional_dropout` for more details.
1270 1271 1272

    Args:
        x (Tensor):  The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C].
1273
                     The data type is float16, float32 or float64.
1274 1275 1276 1277
        p (float, optional): Probability of setting units to zero. Default: 0.5.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC` . When it is `NCHW` , the data is stored in the order of: [batch_size, input_channels, input_height, input_width]. Default: `NCHW` .
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
1278 1279 1280 1281

    Returns:
        A Tensor representing the dropout2d, has same shape and data type as `x` .

1282

1283 1284
    Examples:
        .. code-block:: python
1285

1286 1287
            import paddle

1288
            x = paddle.randn(shape=(2, 3, 4, 5)).astype(paddle.float32)
1289 1290 1291 1292
            y_train = paddle.nn.functional.dropout2d(x)  #train
            y_test = paddle.nn.functional.dropout2d(x, training=False) #test
            for i in range(2):
                for j in range(3):
1293 1294 1295 1296
                    print(x[i,j,:,:])
                    print(y_train[i,j,:,:]) # may all 0
                    print(y_test[i,j,:,:])

1297 1298 1299
    """
    input_shape = x.shape
    if len(input_shape) != 4:
1300 1301 1302 1303 1304
        raise ValueError(
            "dimensions of x should be 4, but received {} != 4".format(
                len(input_shape)
            )
        )
1305 1306 1307 1308

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1309 1310
            "Attr(data_format): %s." % str(data_format)
        )
1311

1312 1313 1314 1315 1316 1317 1318 1319
    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCHW' else [0, 3],
        training=training,
        mode="upscale_in_train",
        name=name,
    )
1320 1321 1322 1323 1324 1325 1326 1327


def dropout3d(x, p=0.5, training=True, data_format='NCDHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

1328
    See :ref:`api_paddle_nn_functional_dropout` for more details.
1329 1330 1331 1332

    Args:
        x (Tensor):  The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C].
                     The data type is float32 or float64.
1333 1334 1335 1336
        p (float, optional): Probability of setting units to zero. Default: 0.5.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default: True.
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from ``NCDHW`` or ``NDHWC``. When it is ``NCDHW`` , the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width]. Default: ``NCDHW`` .
        name (str, optional): Name for the operation, Default: None. For more information, please refer to :ref:`api_guide_Name`.
1337 1338 1339 1340

    Returns:
        A Tensor representing the dropout3d, has same shape and data type with `x` .

1341

1342 1343
    Examples:
        .. code-block:: python
1344

1345
            import paddle
1346

1347 1348 1349 1350 1351 1352
            x = paddle.randn(shape=(2, 3, 4, 5, 6)).astype(paddle.float32)
            y_train = paddle.nn.functional.dropout3d(x)  #train
            y_test = paddle.nn.functional.dropout3d(x, training=False) #test
            print(x[0,0,:,:,:])
            print(y_train[0,0,:,:,:]) # may all 0
            print(y_test[0,0,:,:,:])
1353 1354 1355 1356 1357

    """

    input_shape = x.shape
    if len(input_shape) != 5:
1358 1359 1360 1361 1362
        raise ValueError(
            "dimensions of x should be 5, but received {} != 5".format(
                len(input_shape)
            )
        )
1363 1364 1365 1366

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1367 1368
            "Attr(data_format): %s." % str(data_format)
        )
1369

1370 1371 1372 1373 1374 1375 1376 1377
    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCDHW' else [0, 4],
        training=training,
        mode="upscale_in_train",
        name=name,
    )
1378 1379


1380 1381 1382 1383 1384 1385 1386 1387
def alpha_dropout(x, p=0.5, training=True, name=None):
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property.
    For an input with zero mean and unit standard deviation, the output of Alpha Dropout
    maintains the original mean and standard deviation of the input.
    Alpha Dropout fits well to SELU activate function by randomly setting activations to the negative saturation value.

    Args:
1388
        x (Tensor): The input tensor. The data type is float16, float32 or float64.
1389 1390 1391 1392 1393 1394 1395 1396 1397
        p (float | int): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x`.

    Examples:
        .. code-block:: python
1398

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
            import paddle

            x = paddle.to_tensor([[-1, 1], [-1, 1]]).astype(paddle.float32)
            y_train = paddle.nn.functional.alpha_dropout(x, 0.5)
            y_test = paddle.nn.functional.alpha_dropout(x, 0.5, training=False)
            print(y_train)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-0.10721093, -0.77919382],
            #         [-0.10721093,  1.66559887]]) (randomly)
            print(y_test)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-1.,  1.],
            #         [-1.,  1.]])
1412 1413 1414 1415 1416 1417
    """
    if not isinstance(p, (float, int)):
        raise TypeError("p argument should be a float or int")
    if p < 0 or p > 1:
        raise ValueError("p argument should between 0 and 1")

Z
zhiboniu 已提交
1418
    if not in_dynamic_mode():
1419
        check_variable_and_dtype(
1420
            x, 'x', ['float16', 'float32', 'float64'], 'alpha_dropout'
1421
        )
1422 1423

    if training:
1424
        if p == 1:
1425 1426
            return paddle.scale(x, scale=0.0)
        # get transformation params
1427 1428 1429
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        alpha_p = -alpha * scale
1430
        a = ((1 - p) * (1 + p * alpha_p**2)) ** -0.5
1431 1432 1433 1434 1435
        b = -a * alpha_p * p

        dtype = x.dtype
        input_shape = x.shape

1436 1437 1438 1439
        # get mask
        random_tensor = paddle.uniform(
            input_shape, dtype='float32', min=0.0, max=1.0
        )
1440
        p = full(shape=input_shape, fill_value=p, dtype='float32')
1441 1442 1443
        keep_mask = paddle.greater_equal(random_tensor, p)
        keep_mask = paddle.cast(keep_mask, dtype)
        drop_mask = paddle.subtract(
1444 1445
            full(shape=input_shape, fill_value=1.0, dtype=dtype), keep_mask
        )
1446

1447
        # apply mask
1448
        b = full(shape=input_shape, fill_value=b, dtype=dtype)
1449 1450 1451 1452
        y = paddle.add(
            paddle.multiply(x, keep_mask),
            paddle.scale(drop_mask, scale=alpha_p),
        )
1453
        res = paddle.add(paddle.scale(y, scale=a), b, name=name)
1454 1455 1456 1457 1458
        return res
    else:  # test
        return x


1459
def pad(x, pad, mode='constant', value=0.0, data_format="NCHW", name=None):
L
littletomatodonkey 已提交
1460
    """
1461 1462
    Pad tensor according to ``'pad'`` and ``'mode'``.
    If mode is ``'constant'`` and length of pad is twice as length of x dimension,
L
littletomatodonkey 已提交
1463
    then the padding will be started from the first dimension and moved back onto x
1464 1465
    according to ``'pad'`` and ``'value'``.
    If mode is ``'reflect'``, pad[0] and pad[1] must be no greater
L
littletomatodonkey 已提交
1466 1467 1468 1469
    than width-1. The height and depth dimension has the same condition.

    Parameters:
        x (Tensor): The input tensor with data type float32/double/int32/int64_t.
1470
        pad (Tensor|list[int]|tuple[int]): The padding size with data type int.
1471
            If mode is ``'constant'`` and length of pad is twice as length of x dimension, then x will
1472 1473
            be padded from the first  dimension to the last dimension.
            Else: 1. If input dimension is 3, then the pad has the form (pad_left,
1474 1475
            pad_right). 2. If the input dimension is 4, then the pad has the form (pad_left, pad_right,
            pad_top, pad_bottom). 3. If the input dimension is 5, then the pad has the form
L
littletomatodonkey 已提交
1476
            (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
1477
        mode (str, optional): Four modes: ``'constant'`` (default), ``'reflect'``, ``'replicate'``, ``'circular'``. Default is ``'constant'``.
1478 1479 1480 1481 1482 1483

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

1484 1485 1486 1487
        value (float, optional): The value to fill the padded areas in 'constant' mode . Default is :math:`0.0`.
        data_format (str, optional): An string from: ``'NCL'``, ``'NLC'``, ``'NHWC'``, ``'NCHW'``, ``'NCDHW'``, ``'NDHWC'``. Specify the data format of
           the input data. Default: ``'NCHW'``.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: ``'None'``.
1488 1489

    Returns:
1490
        Tensor, a Tensor padded according to pad and mode and data type is same as input.
L
littletomatodonkey 已提交
1491

1492
    Example:
1493

L
littletomatodonkey 已提交
1494 1495 1496 1497 1498 1499
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]

            Case 0:
1500 1501 1502 1503 1504 1505 1506 1507 1508
                pad = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0., 0., 0.],
                          [1., 2., 3.],
                          [4., 5., 6.],
                          [0., 0., 0.]]]]]

            Case 1:
L
littletomatodonkey 已提交
1509 1510 1511 1512 1513 1514 1515 1516
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0. 0. 0. 0. 0. 0. 0.]
                          [0. 0. 1. 2. 3. 0. 0.]
                          [0. 0. 4. 5. 6. 0. 0.]
                          [0. 0. 0. 0. 0. 0. 0.]]]]]

1517
            Case 2:
L
littletomatodonkey 已提交
1518 1519 1520 1521 1522 1523 1524
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'reflect'
                Out = [[[[[6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]
                          [6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]]]]]

1525
            Case 3:
L
littletomatodonkey 已提交
1526 1527 1528 1529 1530 1531 1532
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'replicate'
                Out = [[[[[1. 1. 1. 2. 3. 3. 3.]
                          [1. 1. 1. 2. 3. 3. 3.]
                          [4. 4. 4. 5. 6. 6. 6.]
                          [4. 4. 4. 5. 6. 6. 6.]]]]]

1533
            Case 4:
L
littletomatodonkey 已提交
1534 1535 1536 1537 1538 1539 1540
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'circular'
                Out = [[[[[5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]
                          [5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]]]]]

1541
    Examples:
L
littletomatodonkey 已提交
1542
        .. code-block:: python
L
littletomatodonkey 已提交
1543

L
littletomatodonkey 已提交
1544 1545
            import paddle
            import paddle.nn.functional as F
1546

L
littletomatodonkey 已提交
1547 1548
            # example 1
            x_shape = (1, 1, 3)
1549
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1550
            y = F.pad(x, [0, 0, 0, 0, 2, 3], value=1, mode='constant', data_format="NCL")
L
littletomatodonkey 已提交
1551
            print(y)
L
littletomatodonkey 已提交
1552
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1553

L
littletomatodonkey 已提交
1554
            # example 2
1555
            x_shape = (1, 1, 3)
1556
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1557 1558 1559
            y = F.pad(x, [2, 3], value=1, mode='constant', data_format="NCL")
            print(y)
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1560

1561
            # example 3
L
littletomatodonkey 已提交
1562
            x_shape = (1, 1, 2, 3)
1563
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
L
littletomatodonkey 已提交
1564 1565
            y = F.pad(x, [1, 2, 1, 1], value=1, mode='circular')
            print(y)
L
littletomatodonkey 已提交
1566 1567 1568 1569 1570
            # [[[[6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]
            #    [6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]]]]
    """
1571 1572 1573 1574 1575 1576 1577 1578
    assert mode in [
        'reflect',
        'replicate',
        'constant',
        'circular',
    ], "mode should be one of constant, reflect, replicate, circular, but got {}.".format(
        mode
    )
L
littletomatodonkey 已提交
1579 1580

    data_format = data_format.upper()
1581 1582
    assert data_format in ["NCL", "NCHW", "NCDHW", "NLC", "NHWC", "NDHWC"], (
        "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], "
L
littletomatodonkey 已提交
1583
        "but got {}".format(data_format)
1584
    )
L
littletomatodonkey 已提交
1585 1586 1587

    x_dim = len(x.shape)

1588 1589 1590 1591 1592
    if (
        mode == "constant"
        and isinstance(pad, (list, tuple))
        and len(pad) == x_dim * 2
    ):
1593 1594
        paddings = pad
        pad_value = value
1595 1596

        if in_dygraph_mode():
1597
            out = _C_ops.pad(x, paddings, float(pad_value))
1598 1599
            return out

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            "pad",
        )
1614

1615 1616 1617 1618
        check_type(pad_value, 'pad_value', (float, int, Variable), 'pad')
        if isinstance(pad_value, int):
            pad_value = float(pad_value)

1619 1620 1621
        helper = LayerHelper('pad', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
1622 1623 1624 1625 1626 1627
        helper.append_op(
            type='pad',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'paddings': paddings, 'pad_value': pad_value},
        )
1628
        return out
L
littletomatodonkey 已提交
1629

1630
    assert x_dim in [
1631 1632 1633
        3,
        4,
        5,
1634 1635 1636 1637 1638 1639 1640
    ], "input tesor dimension must be in [3, 4, 5] but got {}".format(x_dim)

    supported_format_map = {
        3: ["NCL", "NLC"],
        4: ["NCHW", "NHWC"],
        5: ["NCDHW", "NDHWC"],
    }
1641 1642 1643 1644 1645
    assert (
        data_format in supported_format_map[x_dim]
    ), "input tensor dimension is {}, it's data format should be in {} but got {}".format(
        x_dim, supported_format_map[x_dim], data_format
    )
1646

L
littletomatodonkey 已提交
1647 1648 1649 1650 1651 1652
    unsqueezed_dim = []

    if isinstance(pad, Variable):
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
1653
                pad = concat([zeros((4,), dtype="int32"), pad], axis=0)
L
littletomatodonkey 已提交
1654
                unsqueezed_dim = [3, 4]
1655
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1656
            elif x_dim == 4:
1657
                pad = concat([pad, zeros((2,), dtype="int32")], axis=0)
L
littletomatodonkey 已提交
1658
                unsqueezed_dim = [2]
1659
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1660 1661 1662
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
1663
                pad = concat([zeros((4,), dtype="int32"), pad], axis=0)
L
littletomatodonkey 已提交
1664
                unsqueezed_dim = [2, 3]
1665
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1666
            elif x_dim == 4:
1667
                pad = concat([pad, zeros((2,), dtype="int32")], axis=0)
L
littletomatodonkey 已提交
1668
                unsqueezed_dim = [1]
1669
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1670
    else:
1671
        pad = list(pad)
L
littletomatodonkey 已提交
1672 1673 1674 1675 1676
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [3, 4]
1677
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1678 1679 1680
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [2]
1681
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1682 1683 1684 1685 1686
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [2, 3]
1687
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1688 1689 1690
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [1]
1691
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1692

J
Jiabin Yang 已提交
1693
    if in_dygraph_mode():
L
littletomatodonkey 已提交
1694
        if isinstance(pad, Variable):
1695
            pad = pad.tolist()
1696
        out = _C_ops.pad3d(x, pad, mode, value, data_format)
J
Jiabin Yang 已提交
1697
    else:
1698 1699 1700 1701 1702
        attrs = {'mode': mode, 'value': value, 'data_format': data_format}
        inputs = {'X': [x]}
        if isinstance(pad, Variable):
            inputs['Paddings'] = [pad]
            attrs['paddings'] = []
1703
        else:
1704
            attrs['paddings'] = pad
L
littletomatodonkey 已提交
1705

1706
        helper = LayerHelper('pad3d', **locals())
L
littletomatodonkey 已提交
1707

1708 1709 1710 1711 1712
        dtype = helper.input_dtype(input_param_name='input')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='pad3d', inputs=inputs, outputs={"Out": out}, attrs=attrs
        )
L
littletomatodonkey 已提交
1713 1714

    if len(unsqueezed_dim) != 0:
1715
        out = squeeze(out, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1716 1717 1718 1719

    return out


1720 1721 1722 1723 1724 1725 1726 1727 1728
def zeropad2d(x, padding, data_format="NCHW", name=None):
    """
    Pads the input tensor boundaries with zero according to 'pad'.

    Args:
        x(Tensor): The input tensor with data type float16/float32/float64/int32/int64.
        padding(int | Tensor | List[int] | Tuple[int]): The padding size with data type int.
            The input dimension should be 4 and pad has the form (pad_left, pad_right,
            pad_top, pad_bottom).
1729
        data_format(str, optional): An string from: "NHWC", "NCHW". Specify the data format of
1730 1731
            the input data. Default: "NCHW".
        name(str, optional): The default value is None. Normally there is no need for user
1732
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
1733

1734
    Returns:
1735
        Tensor, padded with 0 according to pad and data type is same as input.
1736 1737 1738 1739 1740 1741

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
1742 1743
            x_shape = paddle.to_tensor([1, 1, 2, 3])
            x = paddle.arange(paddle.prod(x_shape), dtype="float32").reshape(x_shape) + 1
1744
            y = F.zeropad2d(x, [1, 2, 1, 1])
1745
            print(y)
1746 1747 1748 1749 1750 1751
            # [[[[0. 0. 0. 0. 0. 0.]
            #    [0. 1. 2. 3. 0. 0.]
            #    [0. 4. 5. 6. 0. 0.]
            #    [0. 0. 0. 0. 0. 0.]]]]
    """

1752 1753 1754 1755 1756 1757 1758 1759
    return pad(
        x,
        pad=padding,
        mode='constant',
        value=0,
        data_format=data_format,
        name=name,
    )
1760 1761


Y
Yang Zhang 已提交
1762
def cosine_similarity(x1, x2, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1763
    """
Y
Yang Zhang 已提交
1764
    Compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1765 1766 1767 1768

    Parameters:
        x1 (Tensor): First input. float32/double.
        x2 (Tensor): Second input. float32/double.
1769 1770
        axis (int, optional): Dimension of vectors to compute cosine similarity. Default is 1.
        eps(float, optional): Small value to avoid division by zero. Default is 1e-8.
1771 1772

    Returns:
1773
        Tensor, a Tensor representing cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1774 1775 1776

    Examples:
        .. code-block:: text
1777

L
littletomatodonkey 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786
            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
Y
Yang Zhang 已提交
1787
                axis = 1
L
littletomatodonkey 已提交
1788 1789 1790 1791 1792
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1793

L
littletomatodonkey 已提交
1794 1795 1796
            import paddle
            import paddle.nn as nn

1797 1798 1799 1800
            paddle.seed(1)
            x1 = paddle.randn(shape=[2, 3])
            x2 = paddle.randn(shape=[2, 3])

Y
Yang Zhang 已提交
1801
            result = paddle.nn.functional.cosine_similarity(x1, x2, axis=0)
L
littletomatodonkey 已提交
1802
            print(result)
1803
            # [0.97689527,  0.99996042, -0.55138415]
1804

L
littletomatodonkey 已提交
1805
    """
1806 1807 1808
    w12 = sum(paddle.multiply(x1, x2), axis=axis)
    w1 = sum(paddle.multiply(x1, x1), axis=axis)
    w2 = sum(paddle.multiply(x2, x2), axis=axis)
Y
Yang Zhang 已提交
1809
    n12 = sqrt(clip(w1 * w2, min=eps * eps))
L
littletomatodonkey 已提交
1810 1811
    cos_sim = w12 / n12
    return cos_sim
1812 1813 1814


def linear(x, weight, bias=None, name=None):
1815
    r"""
1816

1817 1818
    Fully-connected linear transformation operator. For each input :math:`X` ,
    the equation is:
1819 1820 1821

    .. math::

1822
        Out = XW + b
1823

1824
    where :math:`W` is the weight and :math:`b` is the bias.
1825

1826 1827 1828 1829
    If the weight is a 2-D tensor of shape :math:`[in\_features, out\_features]` ,
    input should be a multi-dimensional tensor of shape
    :math:`[batch\_size, *, in\_features]` , where :math:`*` means any number of
    additional dimensions. The linear operator multiplies input tensor with
1830
    weight and produces an output tensor of shape :math:`[batch\_size, *, out\_features]` ,
1831 1832
    If :math:`bias` is not None, the bias should be a 1-D tensor of shape
    :math:`[out\_features]` and will be added to the output.
1833

1834 1835 1836 1837 1838 1839 1840
    Parameters:
        x (Tensor): Input tensor. The data type should be float16, float32 or float64.
        weight (Tensor): Weight tensor. The data type should be float16, float32 or float64.
        bias (Tensor, optional): Bias tensor. The data type should be float16, float32 or float64.
                                 If it is set to None, no bias will be added to the output units.
        name (str, optional): Normally there is no need for user to set this parameter.
                              For detailed information, please refer to :ref:`api_guide_Name` .
1841 1842

    Returns:
1843 1844
        Tensor, the shape is :math:`[batch\_size, *, out\_features]` and the
        data type is the same with input :math:`x` .
1845 1846 1847

    Examples:
        .. code-block:: python
1848

1849
          import paddle
1850

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          weight = paddle.full(shape=[2, 4], fill_value="0.5", dtype="float32", name="weight")
          # weight: [[0.5 0.5 0.5 0.5]
          #          [0.5 0.5 0.5 0.5]]
          bias = paddle.ones(shape=[4], dtype="float32", name="bias")
          # bias: [1. 1. 1. 1.]
          y = paddle.nn.functional.linear(x, weight, bias)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
1864
    """
J
Jiabin Yang 已提交
1865
    if in_dygraph_mode():
1866
        # TODO(jiabin): using addmm for fast forward route
1867
        return _C_ops.linear(x, weight, bias)
1868
    else:
1869 1870
        helper = LayerHelper('linear', **locals())
        dtype = x.dtype
J
Jiabin Yang 已提交
1871

1872 1873 1874 1875
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'linear'
        )
        check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear')
J
Jiabin Yang 已提交
1876

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
        inputs = {'X': [x], 'Y': [weight]}
        attrs = {'trans_x': False, 'trans_y': False}
        tmp = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='matmul_v2',
            inputs=inputs,
            outputs={'Out': tmp},
            attrs=attrs,
        )
        if bias is not None:
            res = helper.create_variable_for_type_inference(dtype)
1888
            helper.append_op(
1889 1890 1891
                type='elementwise_add',
                inputs={'X': [tmp], 'Y': [bias]},
                outputs={'Out': [res]},
J
Jiabin Yang 已提交
1892
                attrs={'axis': -1},
1893
            )
1894 1895 1896
        else:
            res = tmp
        return res
1897 1898 1899


def label_smooth(label, prior_dist=None, epsilon=0.1, name=None):
1900
    r"""
1901
    Label smoothing is a mechanism to regularize the classifier layer and is called
1902 1903 1904 1905
    label-smoothing regularization (LSR).Label smoothing is proposed to encourage
    the model to be less confident, since optimizing the log-likelihood of the
    correct label directly may cause overfitting and reduce the ability of the
    model to adapt.
1906

1907
    Label smoothing replaces the ground-truth label :math:`y` with the weighted sum
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Parameters:
        label(Tensor): The input variable containing the label data. The
                        label data should use one-hot representation. It's
                        a multidimensional tensor with a shape of
1925
                        :math:`[N_1, ..., Depth]`, where Depth is class number. The dtype can be "float16" "float32" and "float64".
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
        prior_dist(Tensor, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is
                        0.1.
        name(str, optional): The default value is None. Normally there is no need for user
                        to set this property. For more information, please refer to
                        :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor containing the smoothed labels.

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_static()
1945 1946 1947 1948

            x = paddle.to_tensor([[[0, 1, 0],
                                [ 1,  0, 1]]], dtype="float32", stop_gradient=False)

1949
            output = paddle.nn.functional.label_smooth(x)
1950
            print(output)
1951 1952 1953
            # Tensor(shape=[1, 2, 3], dtype=float32, place=Place(gpu:0), stop_gradient=False,
            #        [[[0.03333334, 0.93333334, 0.03333334],
            #          [0.93333334, 0.03333334, 0.93333334]]])
1954
    """
1955
    if epsilon > 1.0 or epsilon < 0.0:
1956 1957
        raise ValueError("The value of epsilon must be between 0 and 1.")

1958
    if in_dygraph_mode():
1959
        return _C_ops.label_smooth(label, prior_dist, float(epsilon))
1960

1961
    elif paddle.in_dynamic_mode():
1962 1963 1964
        return _legacy_C_ops.label_smooth(
            label, prior_dist, 'epsilon', float(epsilon)
        )
1965

1966
    check_variable_and_dtype(
1967
        label, 'label', ['float16', 'float32', 'float64'], 'label_smooth'
1968
    )
1969 1970 1971 1972

    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_variable_for_type_inference(label.dtype)
1973 1974 1975 1976 1977 1978 1979 1980
    helper.append_op(
        type="label_smooth",
        inputs={"X": label, "PriorDist": prior_dist}
        if prior_dist
        else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)},
    )
1981
    return smooth_label
1982 1983


G
Guoxia Wang 已提交
1984
def class_center_sample(label, num_classes, num_samples, group=None):
1985 1986
    """
    Class center sample method is proposed from the paper PartialFC that only sample a subset of the class centers.
1987
    The process of sampling subset class centers is straightforward:
1988 1989 1990 1991

    1. First select the positive class centers;
    2. Then randomly sample negative class centers.

1992
    Specifically, given a label tensor, shape [batch_size], select all the positive class centers and randomly
1993 1994 1995 1996
    sample negative class centers, then remap the input label tensor using the sampled class centers.

    For more information, Partial FC: Training 10 Million Identities on a Single Machine
    arxiv: https://arxiv.org/abs/2010.05222
1997

V
Vegetable dog 已提交
1998
    Note:
1999
        If the number of the positive class centers is greater than the input num_samples, it keeps all the positive
2000
        class centers and the shape of sampled_class_center will be [num_positive_class_centers].
2001

2002 2003
        The API supports CPU, single GPU and multi GPU.

2004 2005 2006 2007
        For data parallel mode, set ``group=False``.

        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.

2008
    Args:
G
Guoxia Wang 已提交
2009 2010
        label (Tensor): 1-D tensor with shape [N], each label in [0, num_classes)
        num_classes (int): A positive integer to specify the number of classes at local rank.
2011
            Note that num_classes of each GPU can be different.
G
Guoxia Wang 已提交
2012
        num_samples (int): A positive integer to specify the number of class center to sample.
2013
        group (Group, optional): The group instance return by paddle.distributed.new_group
2014 2015
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
2016 2017 2018 2019 2020 2021 2022 2023

    Returns:
        Tuple of two ``Tensor`` : (remapped_label, sampled_class_center), remapped label using sampled class center,
        sampled class center from [0, num_classes).

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
2024
        :name: code-example1
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046

        # CPU or single GPU
        import paddle
        num_classes = 20
        batch_size = 10
        num_samples = 6
        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes, num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        # the output is
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [11, 5 , 1 , 3 , 12, 2 , 15, 19, 18, 19])
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [4, 3, 0, 2, 5, 1, 6, 8, 7, 8])
        #Tensor(shape=[9], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [1 , 2 , 3 , 5 , 11, 12, 15, 18, 19])

    .. code-block:: python
G
Guoxia Wang 已提交
2047
        :name: code-example2
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078

        # required: distributed
        # Multi GPU, test_class_center_sample.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        batch_size = 10
        num_samples = 6
        rank_id = dist.get_rank()
        # num_classes of each GPU can be different, e.g num_classes_list = [10, 8]
        num_classes_list = [10, 10]
        num_classes = paddle.sum(paddle.to_tensor(num_classes_list))
        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes_list[rank_id], num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        #python -m paddle.distributed.launch --gpus=0,1 test_class_center_sample.py
        # rank 0 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [0, 2, 4, 8, 9, 3])
2079

2080 2081 2082 2083 2084 2085 2086 2087
        # rank 1 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[7], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [0, 1, 2, 3, 5, 7, 8])
    """
2088
    if not (group is False or group is None or hasattr(group, 'is_member')):
2089 2090
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
2091 2092 2093 2094
             (got group: {})'.format(
                group
            )
        )
2095 2096 2097
        return

    if hasattr(group, 'is_member') and not group.is_member():
2098 2099
        return

2100
    ring_id = 0
2101 2102
    rank = 0
    nranks = 1
2103
    if group is not False:
2104 2105 2106
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
2107 2108 2109 2110 2111
            rank = (
                global_rank
                if group is None
                else group.get_group_rank(global_rank)
            )
2112
            nranks = parallel_env.world_size if group is None else group.nranks
2113 2114 2115

    if num_samples > num_classes:
        raise ValueError(
2116 2117 2118 2119
            'Expected num_samples less than or equal to {}, got num_samples {}'.format(
                num_classes, num_samples
            )
        )
2120

G
Guoxia Wang 已提交
2121 2122 2123
    label_size = 1
    for dim in list(label.shape):
        label_size *= dim
2124
    if label_size != -1 and label_size < 1:
2125 2126 2127 2128 2129 2130
        raise ValueError(
            'Expected label_size > 0 \
             (got label_size: {})'.format(
                label_size
            )
        )
G
Guoxia Wang 已提交
2131 2132 2133

    label_dims = len(list(label.shape))
    if label_dims != 1:
2134 2135 2136 2137 2138 2139
        raise ValueError(
            'Expected label_dims == 1 \
             (got label_dims: {})'.format(
                label_dims
            )
        )
G
Guoxia Wang 已提交
2140 2141

    seed = None
2142 2143 2144
    if (seed is None or seed == 0) and default_main_program().random_seed != 0:
        seed = default_main_program().random_seed

2145
    if in_dygraph_mode():
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
        return _C_ops.class_center_sample(
            label,
            num_classes,
            num_samples,
            ring_id,
            rank,
            nranks,
            seed is not None,
            seed if seed is not None else 0,
        )
2156
    elif paddle.in_dynamic_mode():
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
        (
            remapped_label,
            sampled_class_center,
        ) = _legacy_C_ops.class_center_sample(
            label,
            'num_classes',
            num_classes,
            'num_samples',
            num_samples,
            'ring_id',
            ring_id,
            'nranks',
            nranks,
            'rank',
            rank,
            'fix_seed',
            seed is not None,
            'seed',
            seed if seed is not None else 0,
        )
2177 2178
        return remapped_label, sampled_class_center

2179 2180 2181
    check_variable_and_dtype(
        label, 'label', ['int64', 'int32'], 'class_center_sample'
    )
2182 2183 2184
    op_type = 'class_center_sample'
    helper = LayerHelper(op_type, **locals())
    remapped_label = helper.create_variable_for_type_inference(
2185 2186
        dtype=label.dtype
    )
2187
    sampled_class_center = helper.create_variable_for_type_inference(
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
        dtype=label.dtype
    )
    helper.append_op(
        type=op_type,
        inputs={'Label': label},
        outputs={
            'RemappedLabel': remapped_label,
            'SampledLocalClassCenter': sampled_class_center,
        },
        attrs={
            'num_classes': num_classes,
            'num_samples': num_samples,
            'ring_id': ring_id,
            'nranks': nranks,
            'rank': rank,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
        },
    )
2207
    return remapped_label, sampled_class_center
X
xiaoting 已提交
2208 2209


2210 2211 2212
def fold(
    x, output_sizes, kernel_sizes, strides=1, paddings=0, dilations=1, name=None
):
X
xiaoting 已提交
2213
    r"""
2214

2215
    Combines an array of sliding local blocks into a large containing
2216 2217
    tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each
    combined value in the resulting large tensor by summing all values from all containing blocks.
X
xiaoting 已提交
2218 2219 2220 2221 2222 2223


    For each input :math:`x` with shape [N, C_in , L], the output shape [N, C_out, H_out, W_out]
    can be calculated as following.

    .. math::
2224

2225 2226 2227
        H_{out} &= output\_size[0] \\
        W_{out} &= output\_size[1] \\
        C_{out} &= \frac{C_{in}}{kernel\_sizes[0]\times kernel\_sizes[1]} \\
X
xiaoting 已提交
2228 2229 2230 2231

    Parameters:
        x(Tensor):                3-D Tensor, input tensor of format [N, C, L],
                                  data type can be float32 or float64
X
xiaoting 已提交
2232
        output_sizes(int|list|tuple):       The size of output size, should be [output_size_h, output_size_w]
X
xiaoting 已提交
2233
                                  or an interger o treated as [o, o].
X
xiaoting 已提交
2234
        kernel_sizes(int|list|tuple):   The size of convolution kernel, should be [k_h, k_w]
X
xiaoting 已提交
2235
                                  or an integer k treated as [k, k].
2236
        strides(int|list|tuple, optional):        The strides, should be [stride_h, stride_w]
X
xiaoting 已提交
2237 2238
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
2239
        paddings(int|list|tuple, optional):       The paddings of each dimension, should be
X
xiaoting 已提交
2240 2241 2242 2243 2244 2245
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
2246
        dilations(int|list|tuple, optional):      the dilations of convolution kernel, should be
X
xiaoting 已提交
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
        The tensor formed by combining a group of sliding local blocks
        The output shape is [N, Cout, H, W] as decriabled above.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

X
xiaoting 已提交
2265 2266 2267
            x = paddle.randn([2,3*2*2,12])
            y = F.fold(x, output_sizes=[4, 5], kernel_sizes=2)
            # y.shape = [2,3,4,5]
X
xiaoting 已提交
2268 2269

    """
2270 2271 2272 2273 2274

    helper = LayerHelper("fold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'fold')

2275
    assert len(x.shape) == 3, "input should be the format of [N, C, L]"
X
xiaoting 已提交
2276

X
xiaoting 已提交
2277
    def _is_list_or_turple_(data):
2278
        return isinstance(data, list) or isinstance(data, tuple)
X
xiaoting 已提交
2279

X
xiaoting 已提交
2280 2281 2282
    if isinstance(output_sizes, int):
        output_sizes = [output_sizes, output_sizes]
    else:
2283 2284 2285
        assert _is_list_or_turple_(output_sizes) and (
            len(output_sizes) == 2
        ), "output_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2286 2287 2288 2289

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
2290 2291 2292
        assert _is_list_or_turple_(kernel_sizes) and (
            len(kernel_sizes) == 2
        ), "kernel_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2293 2294 2295 2296

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
2297 2298 2299
        assert _is_list_or_turple_(strides) and (
            len(strides) == 2
        ), "strides should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2300 2301 2302 2303

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
2304 2305 2306
        assert _is_list_or_turple_(dilations) and (
            len(dilations) == 2
        ), "dilations should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
2322 2323
            "of 2 or 4 integers"
        )
X
xiaoting 已提交
2324

X
xiaoting 已提交
2325
    if in_dygraph_mode():
2326 2327 2328
        out = _C_ops.fold(
            x, output_sizes, kernel_sizes, strides, paddings, dilations
        )
X
xiaoting 已提交
2329
    elif in_dynamic_mode():
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
        out = _legacy_C_ops.fold(
            x,
            "output_sizes",
            output_sizes,
            "kernel_sizes",
            kernel_sizes,
            "strides",
            strides,
            "paddings",
            paddings,
            "dilations",
            dilations,
        )
X
xiaoting 已提交
2343 2344
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
        helper.append_op(
            type="fold",
            inputs={"X": x},
            outputs={"Y": out},
            attrs={
                "output_sizes": output_sizes,
                "kernel_sizes": kernel_sizes,
                "strides": strides,
                "paddings": paddings,
                "dilations": dilations,
            },
        )
X
xiaoting 已提交
2357
    return out