device_context.h 28.8 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3
Copyright (c) 2022 NVIDIA Corporation. All rights reserved.

Q
QI JUN 已提交
4 5 6 7 8 9 10 11 12 13 14
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

W
Wilber 已提交
15
#include <functional>
16
#include <future>  // NOLINT
D
dzhwinter 已提交
17
#include <memory>
Y
yuyang18 已提交
18
#include <mutex>  // NOLINT
19
#include <string>
D
dzhwinter 已提交
20
#include <unordered_map>
21
#include <utility>
22
#include <vector>
W
wanghuancoder 已提交
23

24
#include "paddle/fluid/memory/malloc.h"
W
Wilber 已提交
25
#include "paddle/fluid/platform/device/gpu/gpu_types.h"
26
#include "paddle/phi/backends/cpu/cpu_context.h"
27
#include "paddle/phi/backends/custom/custom_context.h"
28 29
#include "paddle/phi/backends/gpu/gpu_decls.h"
#include "paddle/phi/core/device_context.h"
30
#ifdef PADDLE_WITH_CUDA
31
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"
Y
Yi Wang 已提交
32
#include "paddle/fluid/platform/dynload/cublas.h"
33
#include "paddle/fluid/platform/dynload/cublasLt.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
35
#include "paddle/fluid/platform/dynload/cusolver.h"
36
#include "paddle/fluid/platform/dynload/cusparse.h"
37
#include "paddle/phi/backends/gpu/gpu_context.h"
38
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
39
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
40
#endif
41
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Q
QI JUN 已提交
42
#endif
D
dzhwinter 已提交
43

44
#ifdef PADDLE_WITH_HIP
45
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"  // NOLINT
46 47
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
48
#include "paddle/phi/backends/gpu/gpu_context.h"  // NOLINT
49 50 51
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
52
#include "paddle/fluid/platform/device/gpu/gpu_info.h"  // NOLINT
53 54
#endif

55 56 57 58
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
59
#ifdef PADDLE_WITH_MKLDNN
60
#include "dnnl.hpp"  // NOLINT
61
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
62 63
#endif

64
#include <map>
W
wanghuancoder 已提交
65

66
#include "glog/logging.h"
Y
Yi Wang 已提交
67 68
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
69
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
70
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
71
#endif
72
#ifdef PADDLE_WITH_ASCEND_CL
73 74
#include "paddle/fluid/platform/device/npu/enforce_npu.h"
#include "paddle/fluid/platform/device/npu/npu_stream.h"
75
#endif
76

77 78
#include "paddle/phi/backends/device_ext.h"
#include "paddle/phi/backends/stream.h"
79 80

#if !defined(PADDLE_WITH_XPU_KP) || defined(__xpu_on_host__)
Q
qijun 已提交
81
#include "unsupported/Eigen/CXX11/Tensor"
82
#endif
Q
QI JUN 已提交
83

W
wanghuancoder 已提交
84 85 86 87 88
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

89
#ifdef PADDLE_WITH_XPU
90 91
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
92
#include "paddle/phi/backends/xpu/xpu_context.h"
93 94
#endif

95 96
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
97
#include "paddle/fluid/platform/device/npu/npu_info.h"
98 99
#endif

Q
QI JUN 已提交
100 101 102
namespace paddle {
namespace platform {

103
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
104 105 106 107
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
108
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
109 110 111 112
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
113 114
#endif  // PADDLE_WITH_CUDA

115 116 117 118
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
119
  NPU = 3,
J
jianghaicheng 已提交
120
  IPU = 4,
F
fwenguang 已提交
121 122 123
  MLU = 5,

  MAX_DEVICE_TYPES = 6,
124 125
};

126 127
DeviceType Place2DeviceType(const platform::Place& place);

128 129 130
constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
131
constexpr DeviceType kNPU = DeviceType::NPU;
J
jianghaicheng 已提交
132
constexpr DeviceType kIPU = DeviceType::IPU;
F
fwenguang 已提交
133
constexpr DeviceType kMLU = DeviceType::MLU;
134

135
using DeviceContext = phi::DeviceContext;
Q
QI JUN 已提交
136

L
Leo Chen 已提交
137
using CPUDeviceContext = phi::CPUContext;
Q
QI JUN 已提交
138

Y
Yang Yu 已提交
139 140 141 142 143 144 145 146
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

J
jianghaicheng 已提交
147 148 149 150 151 152 153 154
// Graphcore IPU
#ifdef PADDLE_WITH_IPU
class IPUDeviceContext : public DeviceContext {
 public:
  IPUDeviceContext() = delete;
  explicit IPUDeviceContext(IPUPlace place);
  virtual ~IPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
W
Wilber 已提交
155
  const Place& GetPlace() const override;
J
jianghaicheng 已提交
156 157 158 159 160 161 162 163 164 165
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

 private:
  IPUPlace place_;
};
template <>
struct DefaultDeviceContextType<platform::IPUPlace> {
  using TYPE = IPUDeviceContext;
};
F
fwenguang 已提交
166
#endif
J
jianghaicheng 已提交
167

F
fwenguang 已提交
168 169 170 171 172
#ifdef PADDLE_WITH_MLU
class MLUDeviceContext;

template <>
struct DefaultDeviceContextType<platform::MLUPlace>;
J
jianghaicheng 已提交
173 174
#endif

175
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
176
namespace xpu = baidu::xpu::api;
177
class XPUDeviceContext : public phi::XPUContext {
178 179 180 181 182
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
183
  xpuStream stream() const { return XPUContext::x_context()->xpu_stream; }
184 185 186 187 188 189 190 191
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

192 193 194 195 196 197
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
W
Wilber 已提交
198
  const Place& GetPlace() const override;
199
  aclrtContext context() const;
200

201 202 203 204 205 206
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

207 208 209 210 211 212 213
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

229 230 231
 private:
  NPUPlace place_;
  aclrtContext context_;
232 233 234 235

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
251 252 253 254 255 256 257

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

W
Wilber 已提交
258
  const Place& GetPlace() const override;
259 260 261 262 263 264 265 266 267 268 269 270 271

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

272 273 274
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
275
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
276
class EigenCudaStreamDevice;
S
sneaxiy 已提交
277

278 279 280 281 282
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
283 284
      const stream::Priority& priority = stream::Priority::kNormal,
      const stream::StreamFlag& flag = stream::StreamFlag::kDefaultFlag);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

300 301 302 303 304 305
  stream::CUDAStream* SetStream(stream::CUDAStream* new_stream_ptr) {
    auto* old_stream_ptr = stream_.release();
    stream_.reset(new_stream_ptr);
    return old_stream_ptr;
  }

W
Wilber 已提交
306 307
  void SetStream(gpuStream_t stream);

308
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
309

310 311 312
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
313
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
314
#endif
315

316
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
317 318 319
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
320
#endif
G
Guo Sheng 已提交
321

322 323 324 325 326 327 328 329
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

Z
zhangkaihuo 已提交
330
#ifndef PADDLE_WITH_HIP
331 332 333 334 335 336
#if CUDA_VERSION >= 11060
  const std::unique_ptr<CublasLtHandleHolder>& CublasLtHandle() const {
    return cublaslt_handle_;
  }
#endif

Z
zhangkaihuo 已提交
337 338 339 340 341
  const std::unique_ptr<CusparseHandleHolder>& CusparseHandle() const {
    return cusparse_handle_;
  }
#endif

342
  /*! \brief  Call cublas function safely. */
W
Wilber 已提交
343 344
  inline void CublasCall(
      const std::function<void(blasHandle_t)>& callback) const {
345
    if (cublas_tf32_tensor_core_handle_) {
W
Wilber 已提交
346
      cublas_tf32_tensor_core_handle_->Call(callback);
347
    } else {
W
Wilber 已提交
348
      cublas_handle_->Call(callback);
349
    }
350 351
  }

Z
zhangkaihuo 已提交
352
#ifndef PADDLE_WITH_HIP
353 354 355 356 357 358 359 360
#if CUDA_VERSION >= 11060
  /*! \brief  Call cublasLt function safely. */
  inline void CublasLtCall(
      const std::function<void(blasLtHandle_t)>& callback) const {
    cublaslt_handle_->Call(callback);
  }
#endif

Z
zhangkaihuo 已提交
361
  /*! \brief  Call cusparse function safely. */
W
Wilber 已提交
362
  inline void CusparseCall(
363
      const std::function<void(phi::sparseHandle_t)>& callback) const {
W
Wilber 已提交
364
    cusparse_handle_->Call(callback);
Z
zhangkaihuo 已提交
365 366 367
  }
#endif

368 369 370 371 372
  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
W
Wilber 已提交
373 374
  inline void TensorCoreCublasCallIfAvailable(
      const std::function<void(blasHandle_t)>& callback) const {
375
    if (cublas_tensor_core_handle_) {
W
Wilber 已提交
376
      cublas_tensor_core_handle_->Call(callback);
377
    } else {
W
Wilber 已提交
378
      cublas_handle_->Call(callback);
379 380 381 382 383 384
    }
  }

 private:
  void InitEigenContext();

385 386 387 388 389
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
390 391 392 393 394 395 396
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
397 398 399 400 401
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
402 403
    }
  }
404
#endif
405

Z
zhangkaihuo 已提交
406
#ifndef PADDLE_WITH_HIP
407 408 409 410 411 412
#if CUDA_VERSION >= 11060
  void InitCuBlasLtContext() {
    cublaslt_handle_.reset(new CublasLtHandleHolder());
  }
#endif

Z
zhangkaihuo 已提交
413 414 415 416 417
  void InitCuSparseContext() {
    cusparse_handle_.reset(new CusparseHandleHolder(RawStream()));
  }
#endif

418 419
  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
420 421
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
422
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenGetVersion(
423 424
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
425 426
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
427 428 429 430
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
431 432
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
433
            << ", but MIOPEN version in your machine is "
434
            << local_miopen_version / 100 << "." << local_miopen_version % 100
435 436 437 438
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
439 440
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_GPU_SUCCESS(
441 442
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
443 444 445 446 447 448 449 450 451 452 453 454 455
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
456 457
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
458
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
459
#endif
460 461 462 463 464
    } else {
      cudnn_handle_ = nullptr;
    }
  }

465
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
466
  void InitCuSolverContext() {
467 468
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
469 470
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
471
#endif
G
Guo Sheng 已提交
472

473 474
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
475
#ifdef PADDLE_WITH_HIP
476
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
477
#else
478
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
479
#endif
480 481 482 483 484 485 486
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
487
    cublas_tf32_tensor_core_handle_.reset();
488 489
  }

Z
zhangkaihuo 已提交
490
#ifndef PADDLE_WITH_HIP
491 492 493 494
#if CUDA_VERSION >= 11060
  void DestoryCuBlasLtContext() { cublaslt_handle_.reset(); }
#endif

Z
zhangkaihuo 已提交
495 496 497
  void DestoryCuSparseContext() { cusparse_handle_.reset(); }
#endif

498
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
499 500
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
501
      PADDLE_ENFORCE_GPU_SUCCESS(
G
Guo Sheng 已提交
502 503 504
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
505
#endif
G
Guo Sheng 已提交
506

507 508 509 510
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
511 512 513
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
514
  cudnnHandle_t cudnn_handle_;
515
#endif
516 517
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
518
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
519
#ifndef PADDLE_WITH_HIP
520 521 522
#if CUDA_VERSION >= 11060
  std::unique_ptr<CublasLtHandleHolder> cublaslt_handle_;
#endif
G
Guo Sheng 已提交
523
  cusolverDnHandle_t cusolver_dn_handle_;
Z
zhangkaihuo 已提交
524
  std::unique_ptr<CusparseHandleHolder> cusparse_handle_;
525
#endif
526 527 528
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

529
class CUDADeviceContext : public phi::GPUContext {
Q
QI JUN 已提交
530
 public:
D
dzhwinter 已提交
531
  explicit CUDADeviceContext(CUDAPlace place);
532
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
533

534
  /*! \brief  Wait for all operations completion in the stream. */
535
  void Wait() const override;
Q
QI JUN 已提交
536

537 538 539
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

540
  /*! \brief  Call cublas function safely. */
W
Wilber 已提交
541 542 543
  inline void CublasCall(
      const std::function<void(blasHandle_t)>& callback) const {
    if (!thread_ctx_.count(this)) {
544
      phi::GPUContext::CublasCall(callback);
W
Wilber 已提交
545 546
      return;
    }
547
    return context()->CublasCall(callback);
548 549
  }

Z
zhangkaihuo 已提交
550 551
#ifndef PADDLE_WITH_HIP
  /*! \brief  Call cusparse function safely. */
W
Wilber 已提交
552
  inline void CusparseCall(
553
      const std::function<void(phi::sparseHandle_t)>& callback) const {
W
Wilber 已提交
554
    if (!thread_ctx_.count(this)) {
555
      phi::GPUContext::CusparseCall(callback);
W
Wilber 已提交
556 557 558
      return;
    }
    context()->CusparseCall(callback);
Z
zhangkaihuo 已提交
559 560 561
  }
#endif

562 563
  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
W
Wilber 已提交
564 565 566
  inline void TensorCoreCublasCallIfAvailable(
      const std::function<void(blasHandle_t)>& callback) const {
    if (!thread_ctx_.count(this)) {
567
      phi::GPUContext::TensorCoreCublasCallIfAvailable(callback);
W
Wilber 已提交
568 569 570
      return;
    }
    context()->TensorCoreCublasCallIfAvailable(callback);
571
  }
S
sneaxiy 已提交
572

573 574 575 576
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
577
  cudnnHandle_t cudnn_handle() const;
578
#endif
579

580 581 582 583
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
584
  cublasHandle_t cublas_handle() const;
585
  cublasLtHandle_t cublaslt_handle() const;
Z
zhangkaihuo 已提交
586
  cusparseHandle_t cusparse_handle() const;
587
#endif
588

W
Wilber 已提交
589 590 591 592
#ifndef PADDLE_WITH_HIP
  cusolverDnHandle_t cusolver_dn_handle() const;
#endif

S
sneaxiy 已提交
593 594 595 596 597 598 599
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
600
  phi::DnnWorkspaceHandle cudnn_workspace_handle() const;
S
sneaxiy 已提交
601

Q
init  
qijun 已提交
602
  /*! \brief  Return cuda stream in the device context. */
603
  gpuStream_t stream() const;
Q
QI JUN 已提交
604

W
Wilber 已提交
605
  void RecordEvent(gpuEvent_t ev, const std::function<void()>& callback) const;
606

W
Wilber 已提交
607
  void AddStreamCallback(const std::function<void()>& callback) const;
608

W
Wilber 已提交
609
  void WaitStreamCallback() const;
610

611
  void ResetThreadContext(const stream::Priority& priority) {
612
    std::lock_guard<std::mutex> guard(ctx_mtx_);
W
Wilber 已提交
613
    thread_ctx_[this].reset(new CUDAContext(this->GetPlace(), priority));
614 615
  }

W
Wilber 已提交
616
  std::shared_ptr<CUDAContext> context() const;
S
sneaxiy 已提交
617

W
Wilber 已提交
618 619 620 621 622
  // Note: Can only be used under thread_local semantics.
  void SetThreadLocalStream(const gpuStream_t stream) {
    thread_ctx_.at(this)->SetStream(stream);
  }

W
Wilber 已提交
623 624 625 626
  // NOTE: Just for compatibility with the past, please delete if there is an
  // elegant way.
  stream::CUDAStream* GetCudaStream() const;
  stream::CUDAStream* SetCudaStream(stream::CUDAStream*);
Q
QI JUN 已提交
627

W
Wilber 已提交
628
 private:
629 630 631 632 633 634
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
635

636 637
  mutable std::mutex cudnn_handle_mtx_;

W
Wilber 已提交
638 639 640
  // NOTE: Just for compatibility with the past, please delete if there is an
  // elegant way.
  std::unique_ptr<stream::CUDAStream> cuda_stream_;
Y
yuyang18 已提交
641

642
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
643
};
Q
qijun 已提交
644

645 646
class CudnnWorkspaceHandle {
 public:
647 648
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
649 650 651 652 653 654 655 656

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
657 658 659 660
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
661 662 663 664 665 666 667 668 669 670 671 672 673
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

674
  void ReallocWorkspace(size_t required_workspace_bytes);
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
691
  std::mutex* mtx_;
692 693
};

Y
Yang Yu 已提交
694 695
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
696
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
697 698
};

C
chengduoZH 已提交
699
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
700 701 702 703 704
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

W
Wilber 已提交
705
  const Place& GetPlace() const override;
C
chengduoZH 已提交
706

C
chengduoZH 已提交
707 708 709 710 711 712 713 714 715 716 717
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
718
#endif
Q
qijun 已提交
719

T
tensor-tang 已提交
720
#ifdef PADDLE_WITH_MKLDNN
721 722 723 724 725 726

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
727
    bool said_once = false;
728 729 730 731 732 733 734 735 736 737 738
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
739
    // MKL-DNN stream used for execution of primitives (per-thread)
740 741
    dnnl::engine cur_engine;
    dnnl::stream cur_stream;
J
Jacek Czaja 已提交
742 743
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
744
    void* exec_ptr_ = nullptr;
745 746

    Body();
747
    ~Body();
748 749 750 751 752 753
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
754
    void log_lib_version(void);
755 756
    const dnnl::engine& get_engine(void);
    dnnl::stream& get_stream(void);
J
Jacek Czaja 已提交
757 758 759 760
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
761 762
    void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; }
    void* get_curr_exec(void) const { return exec_ptr_; }
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
778

T
tensor-tang 已提交
779 780
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
781 782 783 784 785 786 787 788 789 790
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
791
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
792 793 794
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
795
  using ShapeBlob = umap_key_string_t<KeyBlob>;
796 797
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

798 799 800 801
  // Auxillary two-level structure (shape, executor) to easier control
  // clearing cache objects related to specific executor

  using ExecKey = void*;
802
  using ExecMapCacheIterPair = std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>;
803 804 805
  using ExecMap =
      std::unordered_map<ExecKey, std::vector<ExecMapCacheIterPair>>;
  using ExecShape = std::unordered_map<std::string, std::shared_ptr<ExecMap>>;
806

T
tensor-tang 已提交
807 808 809
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
810
  const dnnl::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
811

812
  // Register object to currently used executor's map
813 814
  void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;
  void RemoveShapeEntriesWithExecutor(void) const;
815

816
  // Remove all entries from the blob map
817
  void ResetBlobMap(void* ptr);
818 819 820

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
821

822 823 824
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

825 826
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
827

828
  // Calculate number of oneDNN objects cached
829
  unsigned int GetCachedObjectsNumber(void) const;
830

831 832
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
833

834 835 836 837
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
838
 private:
839
  std::shared_ptr<BlobMap> p_blobmap_;
840 841
  // Map key is pointer of executor and value is a data(iterator in map) needed
  // to erase
842
  std::shared_ptr<ExecShape> p_exec_items_;
843
  std::shared_ptr<std::mutex> p_mutex_;
844 845
  // 0 - clearing is allowed. x > 0 do not clear.
  unsigned int block_next_cache_clearing_ = 0;
T
tensor-tang 已提交
846 847 848
};
#endif

849
#ifdef PADDLE_WITH_CUSTOM_DEVICE
850
class CustomDeviceContext : public phi::CustomContext {
851 852 853 854 855 856 857 858 859 860 861 862 863 864
 public:
  explicit CustomDeviceContext(CustomPlace place);
  virtual ~CustomDeviceContext();

  Eigen::DefaultDevice* eigen_device() const { return nullptr; }

  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

 private:
865
  std::shared_ptr<phi::stream::Stream> stream_;
866 867 868 869 870 871 872 873 874 875 876 877
};
template <>
struct DefaultDeviceContextType<platform::CustomPlace> {
  using TYPE = CustomDeviceContext;
};
#else
template <>
struct DefaultDeviceContextType<platform::CustomPlace> {
  using TYPE = DeviceContext;
};
#endif

878 879 880 881 882 883
void EmplaceDeviceContexts(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        place_to_device_context,
    const std::vector<platform::Place>& places,
    bool disable_setting_default_stream_for_allocator);

D
dzhwinter 已提交
884 885 886
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
Y
Yang Yu 已提交
887
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
888 889 890
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
891 892 893 894
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
895
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
896 897 898 899 900 901
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

902 903
  static bool IsInitialized() { return pool != nullptr; }

904 905
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
906
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
907
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
908

Y
Yang Yu 已提交
909 910 911 912 913 914 915
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

916
  size_t size() const;
917

918
  const std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>&
919 920 921 922 923
  device_contexts() const;

  static void SetDeviceContexts(
      const std::map<Place,
                     std::shared_future<std::unique_ptr<DeviceContext>>>*);
924

D
dzhwinter 已提交
925
 private:
926 927
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

D
dzhwinter 已提交
928
  static DeviceContextPool* pool;
929 930
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
931 932 933
  static thread_local const std::
      map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
          external_device_contexts_;  // not owned
D
dzhwinter 已提交
934 935 936
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
937 938
}  // namespace platform
}  // namespace paddle