device_context.h 24.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
28
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
29
#endif
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
31
#endif
D
dzhwinter 已提交
32

33 34 35 36 37 38 39 40 41 42
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/cuda_helper.h"  // NOLINT
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
#include "paddle/fluid/platform/gpu_info.h"  // NOLINT
#endif

43 44 45 46
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
47
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
48
#include "mkldnn.hpp"
49
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
50 51
#endif

52
#include <map>
W
wanghuancoder 已提交
53

54
#include "glog/logging.h"
Y
Yi Wang 已提交
55 56
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
57
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
58
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
59
#endif
60 61 62
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/stream/npu_stream.h"
#endif
Q
qijun 已提交
63
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
64

W
wanghuancoder 已提交
65 66 67 68 69
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

70 71
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_header.h"
72
#include "paddle/fluid/platform/xpu_info.h"
73 74
#endif

75 76 77 78 79
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
#include "paddle/fluid/platform/npu_info.h"
#endif

Q
QI JUN 已提交
80 81 82
namespace paddle {
namespace platform {

83
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
84 85 86 87
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
88
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
89 90 91 92
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
93 94
#endif  // PADDLE_WITH_CUDA

95 96 97 98
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
99
  NPU = 3,
100 101 102 103 104
};

constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
105
constexpr DeviceType kNPU = DeviceType::NPU;
106

Q
QI JUN 已提交
107 108
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
109
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
110
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
111

112
  virtual void Wait() const {}
Q
QI JUN 已提交
113 114
};

Q
qijun 已提交
115 116
class CPUDeviceContext : public DeviceContext {
 public:
117
  CPUDeviceContext();
Q
qijun 已提交
118
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
119

120
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
121

L
liaogang 已提交
122
  Place GetPlace() const override;
Y
Yu Yang 已提交
123

Q
qijun 已提交
124
 private:
D
dzhwinter 已提交
125
  CPUPlace place_;
Q
qijun 已提交
126
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
127 128
};

Y
Yang Yu 已提交
129 130 131 132 133 134 135 136
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

137 138 139 140 141 142 143 144 145 146 147 148 149
#ifdef PADDLE_WITH_XPU
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

150
#ifdef PADDLE_WITH_XPU_BKCL
151
  /*! \brief  Return bkcl context. */
152 153 154 155 156 157
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

158 159 160
 private:
  XPUPlace place_;
  xpu::Context* context_;
161 162 163
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
164 165 166 167 168 169 170 171 172 173 174 175 176

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

177 178 179 180 181 182 183 184
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  aclrtContext context() const;
185

186 187 188 189 190 191 192 193 194 195 196 197 198 199
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

#ifdef PADDLE_WITH_ASCEND_HCCL
  /*! \brief  Return bkcl context. */
  HCCLContext_t hccl_context() const { return hccl_context_; }

  /*! \brief  Set bkcl context. */
  void set_hccl_context(HCCLContext_t context) { hccl_context_ = context; }
#endif

200 201 202 203 204 205 206
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
 private:
  NPUPlace place_;
  aclrtContext context_;
#ifdef PADDLE_WITH_ASCEND_HCCL
  HCCLContext_t hccl_context_;
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
230
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
231
class EigenCudaStreamDevice;
S
sneaxiy 已提交
232

233 234 235 236 237
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
238
      const stream::Priority& priority = stream::Priority::kNormal);
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

254
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
255

256 257 258
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
259
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
260
#endif
261

262
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
263 264 265
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
266
#endif
G
Guo Sheng 已提交
267

268 269 270 271 272 273 274 275 276 277 278
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
279 280 281 282 283
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

303 304 305 306 307
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
308 309 310 311 312 313 314
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
315 316 317 318 319
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
320 321
    }
  }
322
#endif
323 324 325

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenGetVersion(
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
          (miopen_major * 1000 + miopen_minor * 100 + miopen_patch) / 100;
      auto compile_miopen_version = MIOPEN_VERSION / 100;
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
            << compile_miopen_version / 10 << "." << compile_miopen_version % 10
            << ", but MIOPEN version in your machine is "
            << local_miopen_version / 10 << "." << local_miopen_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
348 349 350 351 352 353 354 355 356 357 358 359 360
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
361 362
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
363
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
364
#endif
365 366 367 368 369
    } else {
      cudnn_handle_ = nullptr;
    }
  }

370
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
371
  void InitCuSolverContext() {
372 373
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
374 375
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
376
#endif
G
Guo Sheng 已提交
377

378 379
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
380 381 382
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
#else
383
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
384
#endif
385 386 387 388 389 390 391
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
392
    cublas_tf32_tensor_core_handle_.reset();
393 394
  }

395
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
396 397 398 399 400 401
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
402
#endif
G
Guo Sheng 已提交
403

404 405 406 407
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
408 409 410
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
411
  cudnnHandle_t cudnn_handle_;
412
#endif
413 414
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
415
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
416
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
417
  cusolverDnHandle_t cusolver_dn_handle_;
418
#endif
419 420 421
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

422
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
423
 public:
D
dzhwinter 已提交
424
  explicit CUDADeviceContext(CUDAPlace place);
425
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
426

427
  /*! \brief  Wait for all operations completion in the stream. */
428
  void Wait() const override;
Q
QI JUN 已提交
429

430
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
431
  Place GetPlace() const override;
432

K
Kexin Zhao 已提交
433
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
434 435
  int GetComputeCapability() const;

436 437 438
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

439 440 441 442 443 444
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

445 446 447
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

448 449 450
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

451 452 453
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
454
    return context()->CublasCall(callback);
455 456 457 458 459 460 461 462 463
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
464
    return context()->TensorCoreCublasCallIfAvailable(callback);
465
  }
S
sneaxiy 已提交
466

467 468 469 470
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
471
  cudnnHandle_t cudnn_handle() const;
472
#endif
473

474 475 476 477
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
478
  cublasHandle_t cublas_handle() const;
479
#endif
480

S
sneaxiy 已提交
481 482 483 484 485 486 487 488 489
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

490
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
491
  cusolverDnHandle_t cusolver_dn_handle() const;
492
#endif
G
Guo Sheng 已提交
493

Q
init  
qijun 已提交
494
  /*! \brief  Return cuda stream in the device context. */
495
  gpuStream_t stream() const;
Q
QI JUN 已提交
496

497
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
498 499 500 501 502
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
503
#endif
Q
qingqing01 已提交
504

Y
Yu Yang 已提交
505
  template <typename Callback>
506
  void RecordEvent(gpuEvent_t ev, Callback callback) const {
507
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
508 509
  }

S
sneaxiy 已提交
510 511
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
512 513 514 515 516
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
517 518
  }

519
  void ResetDefaultContext(const stream::Priority& priority) {
520 521 522
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

523
  void ResetThreadContext(const stream::Priority& priority) {
524 525 526 527 528 529 530 531 532 533
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
534

Q
QI JUN 已提交
535
 private:
D
dzhwinter 已提交
536
  CUDAPlace place_;
537
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
538

539 540 541 542 543 544
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
545

546 547
  mutable std::mutex cudnn_handle_mtx_;

548
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
549 550 551 552 553 554
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
555
#endif
Q
qingqing01 已提交
556

C
chengduo 已提交
557 558 559 560 561
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
562
  int max_threads_per_block_;
563
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
564

565
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
566
};
Q
qijun 已提交
567

568 569
class CudnnWorkspaceHandle {
 public:
570 571
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
572 573 574 575 576 577 578 579

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
580 581 582 583
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
584 585 586 587 588 589 590 591 592 593 594 595 596
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

597
  void ReallocWorkspace(size_t required_workspace_bytes);
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
614
  std::mutex* mtx_;
615 616
};

Y
Yang Yu 已提交
617 618
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
619
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
620 621
};

C
chengduoZH 已提交
622
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
623 624 625 626 627 628
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
629

C
chengduoZH 已提交
630 631 632 633 634 635 636 637 638 639 640
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
641
#endif
Q
qijun 已提交
642

T
tensor-tang 已提交
643
#ifdef PADDLE_WITH_MKLDNN
644 645 646 647 648 649

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
650
    bool said_once = false;
651 652 653 654 655 656 657 658 659 660 661
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
662 663 664
    // MKL-DNN stream used for execution of primitives (per-thread)
    mkldnn::engine cur_engine;
    mkldnn::stream cur_stream;
J
Jacek Czaja 已提交
665 666
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
667 668

    Body();
669
    ~Body();
670 671 672 673 674 675
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
676
    void log_lib_version(void);
677 678
    const mkldnn::engine& get_engine(void);
    mkldnn::stream& get_stream(void);
J
Jacek Czaja 已提交
679 680 681 682
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
698

T
tensor-tang 已提交
699 700
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
  using ShapeBlob = umap_key_string_t<KeyBlob>;
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

T
tensor-tang 已提交
718 719 720
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
721
  const mkldnn::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
722

723
  // Remove all entries from the blob map
724 725 726 727
  void ResetBlobMap();

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
728

729 730 731
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

732 733
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
734

735 736 737
  // Calculate number of oneDNN objects cached
  unsigned int GetCachedObjectsNumber(void);

738 739
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
740

741 742 743 744
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
745
 private:
746 747
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
748
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
749 750 751
};
#endif

D
dzhwinter 已提交
752 753 754 755 756
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
757
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
758 759 760
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
761 762 763 764
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
765
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
766 767 768 769 770 771
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

772 773
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
774
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
775
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
776

Y
Yang Yu 已提交
777 778 779 780 781 782 783
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

784 785
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
786 787
 private:
  static DeviceContextPool* pool;
788 789
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
790 791 792
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
793 794
}  // namespace platform
}  // namespace paddle