device_context.h 26.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
28
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
29
#endif
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
31
#endif
D
dzhwinter 已提交
32

33 34 35 36 37 38 39 40 41 42
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/cuda_helper.h"  // NOLINT
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
#include "paddle/fluid/platform/gpu_info.h"  // NOLINT
#endif

43 44 45 46
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
47
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
48
#include "mkldnn.hpp"
49
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
50 51
#endif

52
#include <map>
W
wanghuancoder 已提交
53

54
#include "glog/logging.h"
Y
Yi Wang 已提交
55 56
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
57
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
58
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
59
#endif
60 61 62
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/stream/npu_stream.h"
#endif
Q
qijun 已提交
63
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
64

W
wanghuancoder 已提交
65 66 67 68 69
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

70 71
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_header.h"
72
#include "paddle/fluid/platform/xpu_info.h"
73 74
#endif

75 76 77 78 79
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
#include "paddle/fluid/platform/npu_info.h"
#endif

Q
QI JUN 已提交
80 81 82
namespace paddle {
namespace platform {

83
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
84 85 86 87
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
88
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
89 90 91 92
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
93 94
#endif  // PADDLE_WITH_CUDA

95 96 97 98
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
99
  NPU = 3,
100 101
};

102 103
DeviceType Place2DeviceType(const platform::Place& place);

104 105 106
constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
107
constexpr DeviceType kNPU = DeviceType::NPU;
108

Q
QI JUN 已提交
109 110
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
111
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
112
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
113

114
  virtual void Wait() const {}
Q
QI JUN 已提交
115 116
};

Q
qijun 已提交
117 118
class CPUDeviceContext : public DeviceContext {
 public:
119
  CPUDeviceContext();
Q
qijun 已提交
120
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
121

122
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
123

L
liaogang 已提交
124
  Place GetPlace() const override;
Y
Yu Yang 已提交
125

Q
qijun 已提交
126
 private:
D
dzhwinter 已提交
127
  CPUPlace place_;
Q
qijun 已提交
128
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
129 130
};

Y
Yang Yu 已提交
131 132 133 134 135 136 137 138
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

139 140 141 142 143 144 145 146 147 148 149 150 151
#ifdef PADDLE_WITH_XPU
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

152
#ifdef PADDLE_WITH_XPU_BKCL
153
  /*! \brief  Return bkcl context. */
154 155 156 157 158 159
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

160 161 162
 private:
  XPUPlace place_;
  xpu::Context* context_;
163 164 165
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
166 167 168 169 170 171 172 173 174 175 176 177 178

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

179 180 181 182 183 184 185 186
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  aclrtContext context() const;
187

188 189 190 191 192 193
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

194 195 196 197 198 199 200
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

216 217 218
 private:
  NPUPlace place_;
  aclrtContext context_;
219 220 221 222

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

  Place GetPlace() const override;

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

259 260 261
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
262
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
263
class EigenCudaStreamDevice;
S
sneaxiy 已提交
264

265 266 267 268 269
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
270
      const stream::Priority& priority = stream::Priority::kNormal);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

286
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
287

288 289 290
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
291
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
292
#endif
293

294
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
295 296 297
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
298
#endif
G
Guo Sheng 已提交
299

300 301 302 303 304 305 306 307 308 309 310
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
311 312 313 314 315
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

335 336 337 338 339
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
340 341 342 343 344 345 346
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
347 348 349 350 351
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
352 353
    }
  }
354
#endif
355 356 357

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
358 359 360 361 362
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenGetVersion(
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
363 364
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
365 366 367 368
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
369 370
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
371
            << ", but MIOPEN version in your machine is "
372
            << local_miopen_version / 100 << "." << local_miopen_version % 100
373 374 375 376 377 378 379 380
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
381 382 383 384 385 386 387 388 389 390 391 392 393
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
394 395
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
396
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
397
#endif
398 399 400 401 402
    } else {
      cudnn_handle_ = nullptr;
    }
  }

403
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
404
  void InitCuSolverContext() {
405 406
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
407 408
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
409
#endif
G
Guo Sheng 已提交
410

411 412
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
413 414 415
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
#else
416
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
417
#endif
418 419 420 421 422 423 424
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
425
    cublas_tf32_tensor_core_handle_.reset();
426 427
  }

428
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
429 430 431 432 433 434
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
435
#endif
G
Guo Sheng 已提交
436

437 438 439 440
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
441 442 443
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
444
  cudnnHandle_t cudnn_handle_;
445
#endif
446 447
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
448
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
449
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
450
  cusolverDnHandle_t cusolver_dn_handle_;
451
#endif
452 453 454
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

455
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
456
 public:
D
dzhwinter 已提交
457
  explicit CUDADeviceContext(CUDAPlace place);
458
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
459

460
  /*! \brief  Wait for all operations completion in the stream. */
461
  void Wait() const override;
Q
QI JUN 已提交
462

463
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
464
  Place GetPlace() const override;
465

K
Kexin Zhao 已提交
466
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
467 468
  int GetComputeCapability() const;

469 470 471
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

472 473 474 475 476 477
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

478 479 480
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

481 482 483
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

484 485 486
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
487
    return context()->CublasCall(callback);
488 489 490 491 492 493 494 495 496
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
497
    return context()->TensorCoreCublasCallIfAvailable(callback);
498
  }
S
sneaxiy 已提交
499

500 501 502 503
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
504
  cudnnHandle_t cudnn_handle() const;
505
#endif
506

507 508 509 510
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
511
  cublasHandle_t cublas_handle() const;
512
#endif
513

S
sneaxiy 已提交
514 515 516 517 518 519 520 521 522
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

523
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
524
  cusolverDnHandle_t cusolver_dn_handle() const;
525
#endif
G
Guo Sheng 已提交
526

Q
init  
qijun 已提交
527
  /*! \brief  Return cuda stream in the device context. */
528
  gpuStream_t stream() const;
Q
QI JUN 已提交
529

530
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
531 532 533 534 535
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
536
#endif
Q
qingqing01 已提交
537

Y
Yu Yang 已提交
538
  template <typename Callback>
539
  void RecordEvent(gpuEvent_t ev, Callback callback) const {
540
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
541 542
  }

S
sneaxiy 已提交
543 544
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
545 546 547 548 549
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
550 551
  }

552
  void ResetDefaultContext(const stream::Priority& priority) {
553 554 555
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

556
  void ResetThreadContext(const stream::Priority& priority) {
557 558 559 560 561 562 563 564 565 566
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
567

Q
QI JUN 已提交
568
 private:
D
dzhwinter 已提交
569
  CUDAPlace place_;
570
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
571

572 573 574 575 576 577
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
578

579 580
  mutable std::mutex cudnn_handle_mtx_;

581
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
582 583 584 585 586 587
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
588
#endif
Q
qingqing01 已提交
589

C
chengduo 已提交
590 591 592 593 594
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
595
  int max_threads_per_block_;
596
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
597

598
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
599
};
Q
qijun 已提交
600

601 602
class CudnnWorkspaceHandle {
 public:
603 604
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
605 606 607 608 609 610 611 612

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
613 614 615 616
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
617 618 619 620 621 622 623 624 625 626 627 628 629
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

630
  void ReallocWorkspace(size_t required_workspace_bytes);
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
647
  std::mutex* mtx_;
648 649
};

Y
Yang Yu 已提交
650 651
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
652
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
653 654
};

C
chengduoZH 已提交
655
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
656 657 658 659 660 661
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
662

C
chengduoZH 已提交
663 664 665 666 667 668 669 670 671 672 673
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
674
#endif
Q
qijun 已提交
675

T
tensor-tang 已提交
676
#ifdef PADDLE_WITH_MKLDNN
677 678 679 680 681 682

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
683
    bool said_once = false;
684 685 686 687 688 689 690 691 692 693 694
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
695 696 697
    // MKL-DNN stream used for execution of primitives (per-thread)
    mkldnn::engine cur_engine;
    mkldnn::stream cur_stream;
J
Jacek Czaja 已提交
698 699
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
700
    void* exec_ptr_ = nullptr;
701 702

    Body();
703
    ~Body();
704 705 706 707 708 709
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
710
    void log_lib_version(void);
711 712
    const mkldnn::engine& get_engine(void);
    mkldnn::stream& get_stream(void);
J
Jacek Czaja 已提交
713 714 715 716
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
717 718
    void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; }
    void* get_curr_exec(void) const { return exec_ptr_; }
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
734

T
tensor-tang 已提交
735 736
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
  using ShapeBlob = umap_key_string_t<KeyBlob>;
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

754 755 756 757 758 759 760 761
  // Auxillary two-level structure (shape, executor) to easier control
  // clearing cache objects related to specific executor

  using ExecKey = void*;
  using ExecMapCacheIterPair = std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>;
  using ExecMap =
      std::unordered_map<ExecKey, std::vector<ExecMapCacheIterPair>>;
  using ExecShape = std::unordered_map<std::string, std::shared_ptr<ExecMap>>;
762

T
tensor-tang 已提交
763 764 765
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
766
  const mkldnn::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
767

768 769
  // Register object to currently used executor's map
  void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;
770
  void RemoveShapeEntriesWithExecutor(void) const;
771

772
  // Remove all entries from the blob map
773
  void ResetBlobMap(void* ptr);
774 775 776

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
777

778 779 780
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

781 782
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
783

784
  // Calculate number of oneDNN objects cached
785
  unsigned int GetCachedObjectsNumber(void) const;
786

787 788
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
789

790 791 792 793
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
794
 private:
795
  std::shared_ptr<BlobMap> p_blobmap_;
796 797
  // Map key is pointer of executor and value is a data(iterator in map) needed
  // to erase
798
  std::shared_ptr<ExecShape> p_exec_items_;
799
  std::shared_ptr<std::mutex> p_mutex_;
800
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
801 802 803
};
#endif

D
dzhwinter 已提交
804 805 806 807 808
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
809
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
810 811 812
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
813 814 815 816
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
817
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
818 819 820 821 822 823
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

824 825
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
826
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
827
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
828

Y
Yang Yu 已提交
829 830 831 832 833 834 835
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

836 837
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
838 839
 private:
  static DeviceContextPool* pool;
840 841
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
842 843 844
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
845 846
}  // namespace platform
}  // namespace paddle