device_context.h 10.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/malloc.h"
21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
W
Wu Yi 已提交
25
#if !defined(__APPLE__) && !defined(_WIN32)
W
Wu Yi 已提交
26
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
27
#endif
Y
Yi Wang 已提交
28
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
29
#endif
D
dzhwinter 已提交
30

T
tensor-tang 已提交
31
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
32
#include "mkldnn.hpp"
T
tensor-tang 已提交
33 34
#endif

35 36
#include <map>
#include "glog/logging.h"
Y
Yi Wang 已提交
37 38
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
39 40 41
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/stream_callback_manager.h"
#endif
Q
qijun 已提交
42
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
43 44 45 46 47 48 49

namespace paddle {
namespace platform {

class DeviceContext {
 public:
  virtual ~DeviceContext() {}
L
liaogang 已提交
50
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
51

52
  virtual void Wait() const {}
Q
QI JUN 已提交
53 54
};

Q
qijun 已提交
55 56
class CPUDeviceContext : public DeviceContext {
 public:
57
  CPUDeviceContext();
Q
qijun 已提交
58
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
59

60
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
61

L
liaogang 已提交
62
  Place GetPlace() const override;
Y
Yu Yang 已提交
63

Q
qijun 已提交
64
 private:
D
dzhwinter 已提交
65
  CPUPlace place_;
Q
qijun 已提交
66
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
67 68
};

Y
Yang Yu 已提交
69 70 71 72 73 74 75 76
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

77
#ifdef PADDLE_WITH_CUDA
78

Q
qijun 已提交
79
class EigenCudaStreamDevice;
80
class CudnnWorkspaceHandle;
S
sneaxiy 已提交
81

82
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
83
 public:
D
dzhwinter 已提交
84
  explicit CUDADeviceContext(CUDAPlace place);
85
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
86

87
  /*! \brief  Wait for all operations completion in the stream. */
88
  void Wait() const override;
Q
QI JUN 已提交
89

90
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
91
  Place GetPlace() const override;
92

K
Kexin Zhao 已提交
93
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
94 95
  int GetComputeCapability() const;

96 97 98
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

99 100 101
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
    cublas_handle_->Call(std::forward<Callback>(callback));
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }
S
sneaxiy 已提交
121

122
  /*! \brief  Return cudnn  handle in the device context. */
123
  cudnnHandle_t cudnn_handle() const;
124

S
sneaxiy 已提交
125 126 127 128 129 130 131 132 133
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

Q
init  
qijun 已提交
134
  /*! \brief  Return cuda stream in the device context. */
135
  cudaStream_t stream() const;
Q
QI JUN 已提交
136

Q
qingqing01 已提交
137
#if !defined(_WIN32)
Q
qingqing01 已提交
138 139 140 141 142
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
143
#endif
Q
qingqing01 已提交
144

Y
Yu Yang 已提交
145 146 147
  template <typename Callback>
  void RecordEvent(cudaEvent_t ev, Callback callback) {
    callback();
148
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventRecord(ev, stream_));
Y
Yu Yang 已提交
149 150
  }

S
sneaxiy 已提交
151 152 153 154 155
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    callback_manager_->AddCallback(callback);
  }

S
fix bug  
sneaxiy 已提交
156
  void WaitStreamCallback() const { callback_manager_->Wait(); }
S
sneaxiy 已提交
157

Q
QI JUN 已提交
158
 private:
D
dzhwinter 已提交
159
  CUDAPlace place_;
Q
QI JUN 已提交
160

N
nhzlx 已提交
161
  mutable std::once_flag init_cudnn_;
162

Q
qijun 已提交
163
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
Q
init  
qijun 已提交
164
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
165
  cudaStream_t stream_;
166
  cudnnHandle_t cudnn_handle_;
167 168
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
169

Q
qingqing01 已提交
170
#if !defined(_WIN32)
Q
qingqing01 已提交
171 172 173 174 175 176
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
177
#endif
Q
qingqing01 已提交
178

C
chengduo 已提交
179 180 181 182 183
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
Y
yuyang18 已提交
184

S
fix bug  
sneaxiy 已提交
185
  // StreamCallbackManager is thread-safe
S
sneaxiy 已提交
186
  std::unique_ptr<StreamCallbackManager> callback_manager_;
187

188
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
189
};
Q
qijun 已提交
190

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
class CudnnWorkspaceHandle {
 public:
  inline explicit CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx)
      : device_context_(dev_ctx) {}

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
    cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

  inline void ReallocWorkspace(size_t required_workspace_bytes) {
    if (required_workspace_bytes <= WorkspaceSize()) {
      return;
    }
221 222
    // reset allocation first before re-allocate to save memory
    allocation_.reset();
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
  }

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
};

Y
Yang Yu 已提交
243 244
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
245
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
246 247
};

C
chengduoZH 已提交
248
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
249 250 251 252 253 254
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
255

C
chengduoZH 已提交
256 257 258 259 260 261 262 263 264 265 266
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
267
#endif
Q
qijun 已提交
268

T
tensor-tang 已提交
269
#ifdef PADDLE_WITH_MKLDNN
270 271 272 273 274 275
// Following three maps are used to cache MKLDNN primitives.
// There relations are:
// - BlobMap = Map<cur_thread_id, ShapeBlob>
// - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
// - KeyBlob  = Map<blob_name, blob>
// Where:
S
Sylwester Fraczek 已提交
276
using KeyBlob = std::unordered_map<std::string, std::shared_ptr<void>>;
277 278
using ShapeBlob = std::unordered_map<std::string, std::shared_ptr<KeyBlob>>;
using BlobMap = std::unordered_map<int, std::shared_ptr<ShapeBlob>>;
S
Sylwester Fraczek 已提交
279

280 281 282 283 284 285 286
// default mkldnn session id
constexpr size_t kMKLDNNSessionID_Default = 0;
// mkldnn session id for cache clearing mode
constexpr size_t kMKLDNNSessionID_CacheClearing = -1;

void set_cur_mkldnn_session_id(size_t);
size_t get_cur_mkldnn_session_id(void);
287
void set_cur_input_shape_str(std::string input_shape_str);
288
void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
S
Sylwester Fraczek 已提交
289

T
tensor-tang 已提交
290 291 292 293 294
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
295
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
296

297 298 299
  // Remove all entries from the blob map
  void ResetBlobMap() const;

300 301 302
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

303 304
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
305

306 307
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
308 309

 private:
310
  mkldnn::engine engine_;
311 312
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
T
tensor-tang 已提交
313 314 315
};
#endif

D
dzhwinter 已提交
316 317 318 319 320
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
321
  static DeviceContextPool& Instance() {
D
dzhwinter 已提交
322 323 324 325 326
    PADDLE_ENFORCE_NOT_NULL(pool, "Need to Create DeviceContextPool first!");
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
327
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
328 329 330 331 332 333 334
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
335
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
336

Y
Yang Yu 已提交
337 338 339 340 341 342 343
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

344 345
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
346 347
 private:
  static DeviceContextPool* pool;
348 349
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
350 351 352
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
353 354
}  // namespace platform
}  // namespace paddle