device_context.h 27.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

W
Wilber 已提交
13
#include <functional>
14
#include <future>  // NOLINT
D
dzhwinter 已提交
15
#include <memory>
Y
yuyang18 已提交
16
#include <mutex>  // NOLINT
17
#include <string>
D
dzhwinter 已提交
18
#include <unordered_map>
19
#include <utility>
20
#include <vector>
W
wanghuancoder 已提交
21

W
Wilber 已提交
22
#include "paddle/fluid/platform/device/gpu/gpu_types.h"
23
#include "paddle/phi/backends/cpu/cpu_context.h"
24
#include "paddle/phi/backends/custom/custom_context.h"
25 26
#include "paddle/phi/backends/gpu/gpu_decls.h"
#include "paddle/phi/core/device_context.h"
W
Wilber 已提交
27

Y
Yu Yang 已提交
28
#include "paddle/fluid/memory/malloc.h"
29
#ifdef PADDLE_WITH_CUDA
30
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"
Y
Yi Wang 已提交
31 32
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
33
#include "paddle/fluid/platform/dynload/cusolver.h"
34
#include "paddle/fluid/platform/dynload/cusparse.h"
35
#include "paddle/phi/backends/gpu/gpu_context.h"
36
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
37
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
38
#endif
39
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Q
QI JUN 已提交
40
#endif
D
dzhwinter 已提交
41

42
#ifdef PADDLE_WITH_HIP
43
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"  // NOLINT
44 45
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
46
#include "paddle/phi/backends/gpu/gpu_context.h"  // NOLINT
47 48 49
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
50
#include "paddle/fluid/platform/device/gpu/gpu_info.h"  // NOLINT
51 52
#endif

53 54 55 56
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
57
#ifdef PADDLE_WITH_MKLDNN
58
#include "dnnl.hpp"
59
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
60 61
#endif

62
#include <map>
W
wanghuancoder 已提交
63

64
#include "glog/logging.h"
Y
Yi Wang 已提交
65 66
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
67
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
68
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
69
#endif
70
#ifdef PADDLE_WITH_ASCEND_CL
71 72
#include "paddle/fluid/platform/device/npu/enforce_npu.h"
#include "paddle/fluid/platform/device/npu/npu_stream.h"
73
#endif
74 75 76

#include "paddle/fluid/platform/device/device_ext.h"
#include "paddle/fluid/platform/device/stream.h"
Q
qijun 已提交
77
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
78

W
wanghuancoder 已提交
79 80 81 82 83
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

84
#ifdef PADDLE_WITH_XPU
85 86
#include "paddle/fluid/platform/device/xpu/xpu_header.h"
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
87
#include "paddle/phi/backends/xpu/xpu_context.h"
88 89
#endif

90 91
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
92
#include "paddle/fluid/platform/device/npu/npu_info.h"
93 94
#endif

Q
QI JUN 已提交
95 96 97
namespace paddle {
namespace platform {

98
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
99 100 101 102
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
103
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
104 105 106 107
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
108 109
#endif  // PADDLE_WITH_CUDA

110 111 112 113
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
114
  NPU = 3,
J
jianghaicheng 已提交
115
  IPU = 4,
F
fwenguang 已提交
116 117 118
  MLU = 5,

  MAX_DEVICE_TYPES = 6,
119 120
};

121 122
DeviceType Place2DeviceType(const platform::Place& place);

123 124 125
constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
126
constexpr DeviceType kNPU = DeviceType::NPU;
J
jianghaicheng 已提交
127
constexpr DeviceType kIPU = DeviceType::IPU;
F
fwenguang 已提交
128
constexpr DeviceType kMLU = DeviceType::MLU;
129

130
using DeviceContext = phi::DeviceContext;
Q
QI JUN 已提交
131

132
// using CPUDeviceContext = phi::CPUContext;
W
Wilber 已提交
133
// TODO(wilber): The place constructor is used in many places, it is more
134 135
// difficult to use CPUDeviceContext = phi::CPUContext directly.
class CPUDeviceContext : public phi::CPUContext {
Q
qijun 已提交
136
 public:
137
  CPUDeviceContext();
Q
qijun 已提交
138
  explicit CPUDeviceContext(CPUPlace place);
Q
QI JUN 已提交
139 140
};

Y
Yang Yu 已提交
141 142 143 144 145 146 147 148
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

J
jianghaicheng 已提交
149 150 151 152 153 154 155 156
// Graphcore IPU
#ifdef PADDLE_WITH_IPU
class IPUDeviceContext : public DeviceContext {
 public:
  IPUDeviceContext() = delete;
  explicit IPUDeviceContext(IPUPlace place);
  virtual ~IPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
W
Wilber 已提交
157
  const Place& GetPlace() const override;
J
jianghaicheng 已提交
158 159 160 161 162 163 164 165 166 167
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

 private:
  IPUPlace place_;
};
template <>
struct DefaultDeviceContextType<platform::IPUPlace> {
  using TYPE = IPUDeviceContext;
};
F
fwenguang 已提交
168
#endif
J
jianghaicheng 已提交
169

F
fwenguang 已提交
170 171 172 173 174
#ifdef PADDLE_WITH_MLU
class MLUDeviceContext;

template <>
struct DefaultDeviceContextType<platform::MLUPlace>;
J
jianghaicheng 已提交
175 176
#endif

177
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
178
namespace xpu = baidu::xpu::api;
179
class XPUDeviceContext : public phi::XPUContext {
180 181 182 183 184 185 186 187 188 189 190 191 192
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

193 194 195 196 197 198
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
W
Wilber 已提交
199
  const Place& GetPlace() const override;
200
  aclrtContext context() const;
201

202 203 204 205 206 207
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

208 209 210 211 212 213 214
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

230 231 232
 private:
  NPUPlace place_;
  aclrtContext context_;
233 234 235 236

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
252 253 254 255 256 257 258

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

W
Wilber 已提交
259
  const Place& GetPlace() const override;
260 261 262 263 264 265 266 267 268 269 270 271 272

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

273 274 275
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
276
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
277
class EigenCudaStreamDevice;
S
sneaxiy 已提交
278

279 280 281 282 283
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
284 285
      const stream::Priority& priority = stream::Priority::kNormal,
      const stream::StreamFlag& flag = stream::StreamFlag::kDefaultFlag);
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

301 302 303 304 305 306
  stream::CUDAStream* SetStream(stream::CUDAStream* new_stream_ptr) {
    auto* old_stream_ptr = stream_.release();
    stream_.reset(new_stream_ptr);
    return old_stream_ptr;
  }

W
Wilber 已提交
307 308
  void SetStream(gpuStream_t stream);

309
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
310

311 312 313
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
314
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
315
#endif
316

317
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
318 319 320
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
321
#endif
G
Guo Sheng 已提交
322

323 324 325 326 327 328 329 330
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

Z
zhangkaihuo 已提交
331 332 333 334 335 336
#ifndef PADDLE_WITH_HIP
  const std::unique_ptr<CusparseHandleHolder>& CusparseHandle() const {
    return cusparse_handle_;
  }
#endif

337
  /*! \brief  Call cublas function safely. */
W
Wilber 已提交
338 339
  inline void CublasCall(
      const std::function<void(blasHandle_t)>& callback) const {
340
    if (cublas_tf32_tensor_core_handle_) {
W
Wilber 已提交
341
      cublas_tf32_tensor_core_handle_->Call(callback);
342
    } else {
W
Wilber 已提交
343
      cublas_handle_->Call(callback);
344
    }
345 346
  }

Z
zhangkaihuo 已提交
347 348
#ifndef PADDLE_WITH_HIP
  /*! \brief  Call cusparse function safely. */
W
Wilber 已提交
349
  inline void CusparseCall(
350
      const std::function<void(phi::sparseHandle_t)>& callback) const {
W
Wilber 已提交
351
    cusparse_handle_->Call(callback);
Z
zhangkaihuo 已提交
352 353 354
  }
#endif

355 356 357 358 359
  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
W
Wilber 已提交
360 361
  inline void TensorCoreCublasCallIfAvailable(
      const std::function<void(blasHandle_t)>& callback) const {
362
    if (cublas_tensor_core_handle_) {
W
Wilber 已提交
363
      cublas_tensor_core_handle_->Call(callback);
364
    } else {
W
Wilber 已提交
365
      cublas_handle_->Call(callback);
366 367 368 369 370 371
    }
  }

 private:
  void InitEigenContext();

372 373 374 375 376
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
377 378 379 380 381 382 383
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
384 385 386 387 388
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
389 390
    }
  }
391
#endif
392

Z
zhangkaihuo 已提交
393 394 395 396 397 398
#ifndef PADDLE_WITH_HIP
  void InitCuSparseContext() {
    cusparse_handle_.reset(new CusparseHandleHolder(RawStream()));
  }
#endif

399 400
  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
401 402
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
403
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenGetVersion(
404 405
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
406 407
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
408 409 410 411
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
412 413
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
414
            << ", but MIOPEN version in your machine is "
415
            << local_miopen_version / 100 << "." << local_miopen_version % 100
416 417 418 419
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
420 421
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_GPU_SUCCESS(
422 423
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
424 425 426 427 428 429 430 431 432 433 434 435 436
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
437 438
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
439
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
440
#endif
441 442 443 444 445
    } else {
      cudnn_handle_ = nullptr;
    }
  }

446
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
447
  void InitCuSolverContext() {
448 449
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
450 451
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
452
#endif
G
Guo Sheng 已提交
453

454 455
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
456
#ifdef PADDLE_WITH_HIP
457
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
458
#else
459
      PADDLE_ENFORCE_GPU_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
460
#endif
461 462 463 464 465 466 467
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
468
    cublas_tf32_tensor_core_handle_.reset();
469 470
  }

Z
zhangkaihuo 已提交
471 472 473 474
#ifndef PADDLE_WITH_HIP
  void DestoryCuSparseContext() { cusparse_handle_.reset(); }
#endif

475
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
476 477
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
478
      PADDLE_ENFORCE_GPU_SUCCESS(
G
Guo Sheng 已提交
479 480 481
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
482
#endif
G
Guo Sheng 已提交
483

484 485 486 487
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
488 489 490
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
491
  cudnnHandle_t cudnn_handle_;
492
#endif
493 494
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
495
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
496
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
497
  cusolverDnHandle_t cusolver_dn_handle_;
Z
zhangkaihuo 已提交
498
  std::unique_ptr<CusparseHandleHolder> cusparse_handle_;
499
#endif
500 501 502
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

503
class CUDADeviceContext : public phi::GPUContext {
Q
QI JUN 已提交
504
 public:
D
dzhwinter 已提交
505
  explicit CUDADeviceContext(CUDAPlace place);
506
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
507

508
  /*! \brief  Wait for all operations completion in the stream. */
509
  void Wait() const override;
Q
QI JUN 已提交
510

511 512 513
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

514
  /*! \brief  Call cublas function safely. */
W
Wilber 已提交
515 516 517
  inline void CublasCall(
      const std::function<void(blasHandle_t)>& callback) const {
    if (!thread_ctx_.count(this)) {
518
      phi::GPUContext::CublasCall(callback);
W
Wilber 已提交
519 520
      return;
    }
521
    return context()->CublasCall(callback);
522 523
  }

Z
zhangkaihuo 已提交
524 525
#ifndef PADDLE_WITH_HIP
  /*! \brief  Call cusparse function safely. */
W
Wilber 已提交
526
  inline void CusparseCall(
527
      const std::function<void(phi::sparseHandle_t)>& callback) const {
W
Wilber 已提交
528
    if (!thread_ctx_.count(this)) {
529
      phi::GPUContext::CusparseCall(callback);
W
Wilber 已提交
530 531 532
      return;
    }
    context()->CusparseCall(callback);
Z
zhangkaihuo 已提交
533 534 535
  }
#endif

536 537
  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
W
Wilber 已提交
538 539 540
  inline void TensorCoreCublasCallIfAvailable(
      const std::function<void(blasHandle_t)>& callback) const {
    if (!thread_ctx_.count(this)) {
541
      phi::GPUContext::TensorCoreCublasCallIfAvailable(callback);
W
Wilber 已提交
542 543 544
      return;
    }
    context()->TensorCoreCublasCallIfAvailable(callback);
545
  }
S
sneaxiy 已提交
546

547 548 549 550
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
551
  cudnnHandle_t cudnn_handle() const;
552
#endif
553

554 555 556 557
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
558
  cublasHandle_t cublas_handle() const;
Z
zhangkaihuo 已提交
559
  cusparseHandle_t cusparse_handle() const;
560
#endif
561

W
Wilber 已提交
562 563 564 565
#ifndef PADDLE_WITH_HIP
  cusolverDnHandle_t cusolver_dn_handle() const;
#endif

S
sneaxiy 已提交
566 567 568 569 570 571 572
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
573
  phi::DnnWorkspaceHandle cudnn_workspace_handle() const;
S
sneaxiy 已提交
574

Q
init  
qijun 已提交
575
  /*! \brief  Return cuda stream in the device context. */
576
  gpuStream_t stream() const;
Q
QI JUN 已提交
577

W
Wilber 已提交
578
  void RecordEvent(gpuEvent_t ev, const std::function<void()>& callback) const;
579

W
Wilber 已提交
580
  void AddStreamCallback(const std::function<void()>& callback) const;
581

W
Wilber 已提交
582
  void WaitStreamCallback() const;
583

584
  void ResetThreadContext(const stream::Priority& priority) {
585
    std::lock_guard<std::mutex> guard(ctx_mtx_);
W
Wilber 已提交
586
    thread_ctx_[this].reset(new CUDAContext(this->GetPlace(), priority));
587 588
  }

W
Wilber 已提交
589
  std::shared_ptr<CUDAContext> context() const;
S
sneaxiy 已提交
590

W
Wilber 已提交
591 592 593 594 595
  // Note: Can only be used under thread_local semantics.
  void SetThreadLocalStream(const gpuStream_t stream) {
    thread_ctx_.at(this)->SetStream(stream);
  }

W
Wilber 已提交
596 597 598 599
  // NOTE: Just for compatibility with the past, please delete if there is an
  // elegant way.
  stream::CUDAStream* GetCudaStream() const;
  stream::CUDAStream* SetCudaStream(stream::CUDAStream*);
Q
QI JUN 已提交
600

W
Wilber 已提交
601
 private:
602 603 604 605 606 607
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
608

609 610
  mutable std::mutex cudnn_handle_mtx_;

W
Wilber 已提交
611 612 613
  // NOTE: Just for compatibility with the past, please delete if there is an
  // elegant way.
  std::unique_ptr<stream::CUDAStream> cuda_stream_;
614
  std::unique_ptr<phi::DnnWorkspaceHandle> workspace_{nullptr};
Y
yuyang18 已提交
615

616
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
617
};
Q
qijun 已提交
618

619 620
class CudnnWorkspaceHandle {
 public:
621 622
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
623 624 625 626 627 628 629 630

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
631 632 633 634
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
635 636 637 638 639 640 641 642 643 644 645 646 647
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

648
  void ReallocWorkspace(size_t required_workspace_bytes);
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
665
  std::mutex* mtx_;
666 667
};

Y
Yang Yu 已提交
668 669
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
670
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
671 672
};

C
chengduoZH 已提交
673
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
674 675 676 677 678
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

W
Wilber 已提交
679
  const Place& GetPlace() const override;
C
chengduoZH 已提交
680

C
chengduoZH 已提交
681 682 683 684 685 686 687 688 689 690 691
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
692
#endif
Q
qijun 已提交
693

T
tensor-tang 已提交
694
#ifdef PADDLE_WITH_MKLDNN
695 696 697 698 699 700

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
701
    bool said_once = false;
702 703 704 705 706 707 708 709 710 711 712
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
713
    // MKL-DNN stream used for execution of primitives (per-thread)
714 715
    dnnl::engine cur_engine;
    dnnl::stream cur_stream;
J
Jacek Czaja 已提交
716 717
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
718
    void* exec_ptr_ = nullptr;
719 720

    Body();
721
    ~Body();
722 723 724 725 726 727
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
728
    void log_lib_version(void);
729 730
    const dnnl::engine& get_engine(void);
    dnnl::stream& get_stream(void);
J
Jacek Czaja 已提交
731 732 733 734
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
735 736
    void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; }
    void* get_curr_exec(void) const { return exec_ptr_; }
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
752

T
tensor-tang 已提交
753 754
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
755 756 757 758 759 760 761 762 763 764
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
765
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
766 767 768
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
769
  using ShapeBlob = umap_key_string_t<KeyBlob>;
770 771
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

772 773 774 775
  // Auxillary two-level structure (shape, executor) to easier control
  // clearing cache objects related to specific executor

  using ExecKey = void*;
776
  using ExecMapCacheIterPair = std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>;
777 778 779
  using ExecMap =
      std::unordered_map<ExecKey, std::vector<ExecMapCacheIterPair>>;
  using ExecShape = std::unordered_map<std::string, std::shared_ptr<ExecMap>>;
780

T
tensor-tang 已提交
781 782 783
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
784
  const dnnl::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
785

786
  // Register object to currently used executor's map
787 788
  void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;
  void RemoveShapeEntriesWithExecutor(void) const;
789

790
  // Remove all entries from the blob map
791
  void ResetBlobMap(void* ptr);
792 793 794

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
795

796 797 798
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

799 800
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
801

802
  // Calculate number of oneDNN objects cached
803
  unsigned int GetCachedObjectsNumber(void) const;
804

805 806
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
807

808 809 810 811
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
812
 private:
813
  std::shared_ptr<BlobMap> p_blobmap_;
814 815
  // Map key is pointer of executor and value is a data(iterator in map) needed
  // to erase
816
  std::shared_ptr<ExecShape> p_exec_items_;
817
  std::shared_ptr<std::mutex> p_mutex_;
818
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
819 820 821
};
#endif

822
#ifdef PADDLE_WITH_CUSTOM_DEVICE
823
class CustomDeviceContext : public phi::CustomContext {
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
 public:
  explicit CustomDeviceContext(CustomPlace place);
  virtual ~CustomDeviceContext();

  Eigen::DefaultDevice* eigen_device() const { return nullptr; }

  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

 private:
  std::shared_ptr<platform::stream::Stream> stream_;
};
template <>
struct DefaultDeviceContextType<platform::CustomPlace> {
  using TYPE = CustomDeviceContext;
};
#else
template <>
struct DefaultDeviceContextType<platform::CustomPlace> {
  using TYPE = DeviceContext;
};
#endif

D
dzhwinter 已提交
851 852 853 854 855
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
856
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
857 858 859
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
860 861 862 863
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
864
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
865 866 867 868 869 870
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

871 872
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
873
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
874
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
875

Y
Yang Yu 已提交
876 877 878 879 880 881 882
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

883 884
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
885 886
 private:
  static DeviceContextPool* pool;
887 888
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
889 890 891
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
892 893
}  // namespace platform
}  // namespace paddle