device_context.h 24.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
28
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
29
#endif
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
31
#endif
D
dzhwinter 已提交
32

33 34 35 36 37 38 39 40 41 42
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/cuda_helper.h"  // NOLINT
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
#include "paddle/fluid/platform/gpu_info.h"  // NOLINT
#endif

43 44 45 46
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
47
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
48
#include "mkldnn.hpp"
49
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
50 51
#endif

52
#include <map>
W
wanghuancoder 已提交
53

54
#include "glog/logging.h"
Y
Yi Wang 已提交
55 56
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
57
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
58
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
59
#endif
60 61 62
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/stream/npu_stream.h"
#endif
Q
qijun 已提交
63
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
64

W
wanghuancoder 已提交
65 66 67 68 69
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

70 71
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_header.h"
72
#include "paddle/fluid/platform/xpu_info.h"
73 74
#endif

75 76 77 78 79
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
#include "paddle/fluid/platform/npu_info.h"
#endif

Q
QI JUN 已提交
80 81 82
namespace paddle {
namespace platform {

83
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
84 85 86 87
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
88
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
89 90 91 92
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
93 94
#endif  // PADDLE_WITH_CUDA

95 96 97 98
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
99
  NPU = 3,
100 101 102 103 104
};

constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
105
constexpr DeviceType kNPU = DeviceType::NPU;
106

Q
QI JUN 已提交
107 108
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
109
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
110
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
111

112
  virtual void Wait() const {}
Q
QI JUN 已提交
113 114
};

Q
qijun 已提交
115 116
class CPUDeviceContext : public DeviceContext {
 public:
117
  CPUDeviceContext();
Q
qijun 已提交
118
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
119

120
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
121

L
liaogang 已提交
122
  Place GetPlace() const override;
Y
Yu Yang 已提交
123

Q
qijun 已提交
124
 private:
D
dzhwinter 已提交
125
  CPUPlace place_;
Q
qijun 已提交
126
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
127 128
};

Y
Yang Yu 已提交
129 130 131 132 133 134 135 136
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

137 138 139 140 141 142 143 144 145 146 147 148 149
#ifdef PADDLE_WITH_XPU
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

150
#ifdef PADDLE_WITH_XPU_BKCL
151
  /*! \brief  Return bkcl context. */
152 153 154 155 156 157
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

158 159 160
 private:
  XPUPlace place_;
  xpu::Context* context_;
161 162 163
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
164 165 166 167 168 169 170 171 172 173 174 175 176

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

177 178 179 180 181 182 183 184
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  aclrtContext context() const;
185

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

#ifdef PADDLE_WITH_ASCEND_HCCL
  /*! \brief  Return bkcl context. */
  HCCLContext_t hccl_context() const { return hccl_context_; }

  /*! \brief  Set bkcl context. */
  void set_hccl_context(HCCLContext_t context) { hccl_context_ = context; }
#endif

 private:
  NPUPlace place_;
  aclrtContext context_;
#ifdef PADDLE_WITH_ASCEND_HCCL
  HCCLContext_t hccl_context_;
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
223
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
224
class EigenCudaStreamDevice;
S
sneaxiy 已提交
225

226 227 228 229 230
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
231
      const stream::Priority& priority = stream::Priority::kNormal);
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

247
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
248

249 250 251
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
252
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
253
#endif
254

255
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
256 257 258
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
259
#endif
G
Guo Sheng 已提交
260

261 262 263 264 265 266 267 268 269 270 271
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
272 273 274 275 276
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

296 297 298 299 300
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
301 302 303 304 305 306 307
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
308 309 310 311 312
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
313 314
    }
  }
315
#endif
316 317 318

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenGetVersion(
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
          (miopen_major * 1000 + miopen_minor * 100 + miopen_patch) / 100;
      auto compile_miopen_version = MIOPEN_VERSION / 100;
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
            << compile_miopen_version / 10 << "." << compile_miopen_version % 10
            << ", but MIOPEN version in your machine is "
            << local_miopen_version / 10 << "." << local_miopen_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
341 342 343 344 345 346 347 348 349 350 351 352 353
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
354 355
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
356
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
357
#endif
358 359 360 361 362
    } else {
      cudnn_handle_ = nullptr;
    }
  }

363
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
364
  void InitCuSolverContext() {
365 366
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
367 368
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
369
#endif
G
Guo Sheng 已提交
370

371 372
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
373 374 375
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
#else
376
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
377
#endif
378 379 380 381 382 383 384
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
385
    cublas_tf32_tensor_core_handle_.reset();
386 387
  }

388
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
389 390 391 392 393 394
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
395
#endif
G
Guo Sheng 已提交
396

397 398 399 400
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
401 402 403
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
404
  cudnnHandle_t cudnn_handle_;
405
#endif
406 407
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
408
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
409
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
410
  cusolverDnHandle_t cusolver_dn_handle_;
411
#endif
412 413 414
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

415
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
416
 public:
D
dzhwinter 已提交
417
  explicit CUDADeviceContext(CUDAPlace place);
418
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
419

420
  /*! \brief  Wait for all operations completion in the stream. */
421
  void Wait() const override;
Q
QI JUN 已提交
422

423
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
424
  Place GetPlace() const override;
425

K
Kexin Zhao 已提交
426
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
427 428
  int GetComputeCapability() const;

429 430 431
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

432 433 434 435 436 437
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

438 439 440
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

441 442 443
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

444 445 446
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
447
    return context()->CublasCall(callback);
448 449 450 451 452 453 454 455 456
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
457
    return context()->TensorCoreCublasCallIfAvailable(callback);
458
  }
S
sneaxiy 已提交
459

460 461 462 463
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
464
  cudnnHandle_t cudnn_handle() const;
465
#endif
466

467 468 469 470
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
471
  cublasHandle_t cublas_handle() const;
472
#endif
473

S
sneaxiy 已提交
474 475 476 477 478 479 480 481 482
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

483
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
484
  cusolverDnHandle_t cusolver_dn_handle() const;
485
#endif
G
Guo Sheng 已提交
486

Q
init  
qijun 已提交
487
  /*! \brief  Return cuda stream in the device context. */
488
  gpuStream_t stream() const;
Q
QI JUN 已提交
489

490
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
491 492 493 494 495
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
496
#endif
Q
qingqing01 已提交
497

Y
Yu Yang 已提交
498
  template <typename Callback>
499
  void RecordEvent(gpuEvent_t ev, Callback callback) const {
500
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
501 502
  }

S
sneaxiy 已提交
503 504
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
505 506 507 508 509
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
510 511
  }

512
  void ResetDefaultContext(const stream::Priority& priority) {
513 514 515
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

516
  void ResetThreadContext(const stream::Priority& priority) {
517 518 519 520 521 522 523 524 525 526
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
527

Q
QI JUN 已提交
528
 private:
D
dzhwinter 已提交
529
  CUDAPlace place_;
530
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
531

532 533 534 535 536 537
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
538

539 540
  mutable std::mutex cudnn_handle_mtx_;

541
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
542 543 544 545 546 547
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
548
#endif
Q
qingqing01 已提交
549

C
chengduo 已提交
550 551 552 553 554
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
555
  int max_threads_per_block_;
556
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
557

558
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
559
};
Q
qijun 已提交
560

561 562
class CudnnWorkspaceHandle {
 public:
563 564
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
565 566 567 568 569 570 571 572

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
573 574 575 576
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
577 578 579 580 581 582 583 584 585 586 587 588 589
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

590
  void ReallocWorkspace(size_t required_workspace_bytes);
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
607
  std::mutex* mtx_;
608 609
};

Y
Yang Yu 已提交
610 611
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
612
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
613 614
};

C
chengduoZH 已提交
615
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
616 617 618 619 620 621
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
622

C
chengduoZH 已提交
623 624 625 626 627 628 629 630 631 632 633
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
634
#endif
Q
qijun 已提交
635

T
tensor-tang 已提交
636
#ifdef PADDLE_WITH_MKLDNN
637 638 639 640 641 642

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
643
    bool said_once = false;
644 645 646 647 648 649 650 651 652 653 654
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
655 656 657
    // MKL-DNN stream used for execution of primitives (per-thread)
    mkldnn::engine cur_engine;
    mkldnn::stream cur_stream;
J
Jacek Czaja 已提交
658 659
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
660 661

    Body();
662
    ~Body();
663 664 665 666 667 668
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
669
    void log_lib_version(void);
670 671
    const mkldnn::engine& get_engine(void);
    mkldnn::stream& get_stream(void);
J
Jacek Czaja 已提交
672 673 674 675
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
691

T
tensor-tang 已提交
692 693
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
  using ShapeBlob = umap_key_string_t<KeyBlob>;
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

T
tensor-tang 已提交
711 712 713
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
714
  const mkldnn::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
715

716
  // Remove all entries from the blob map
717 718 719 720
  void ResetBlobMap();

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
721

722 723 724
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

725 726
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
727

728 729 730
  // Calculate number of oneDNN objects cached
  unsigned int GetCachedObjectsNumber(void);

731 732
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
733

734 735 736 737
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
738
 private:
739 740
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
741
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
742 743 744
};
#endif

D
dzhwinter 已提交
745 746 747 748 749
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
750
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
751 752 753
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
754 755 756 757
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
758
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
759 760 761 762 763 764
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

765 766
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
767
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
768
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
769

Y
Yang Yu 已提交
770 771 772 773 774 775 776
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

777 778
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
779 780
 private:
  static DeviceContextPool* pool;
781 782
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
783 784 785
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
786 787
}  // namespace platform
}  // namespace paddle