device_context.h 26.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
W
wanghuancoder 已提交
20

Y
Yu Yang 已提交
21
#include "paddle/fluid/memory/malloc.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
G
Guo Sheng 已提交
26
#include "paddle/fluid/platform/dynload/cusolver.h"
27
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
W
Wu Yi 已提交
28
#include "paddle/fluid/platform/dynload/nccl.h"
W
Wu Yi 已提交
29
#endif
Y
Yi Wang 已提交
30
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
31
#endif
D
dzhwinter 已提交
32

33 34 35 36 37 38 39 40 41 42
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/cuda_helper.h"  // NOLINT
#include "paddle/fluid/platform/dynload/miopen.h"
#include "paddle/fluid/platform/dynload/rocblas.h"
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/platform/dynload/rccl.h"
#endif
#include "paddle/fluid/platform/gpu_info.h"  // NOLINT
#endif

43 44 45 46
#if defined(PADDLE_WITH_XPU_BKCL)
#include "xpu/bkcl.h"
#endif

T
tensor-tang 已提交
47
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
48
#include "mkldnn.hpp"
49
#include "paddle/fluid/framework/data_layout.h"
T
tensor-tang 已提交
50 51
#endif

52
#include <map>
W
wanghuancoder 已提交
53

54
#include "glog/logging.h"
Y
Yi Wang 已提交
55 56
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
57
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
58
#include "paddle/fluid/platform/stream/cuda_stream.h"
S
sneaxiy 已提交
59
#endif
60 61 62
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/stream/npu_stream.h"
#endif
Q
qijun 已提交
63
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
64

W
wanghuancoder 已提交
65 66 67 68 69
namespace Eigen {
struct DefaultDevice;
struct GpuDevice;
}  // namespace Eigen

70
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
71 72
#include "paddle/fluid/platform/xpu/xpu_header.h"
#include "paddle/fluid/platform/xpu/xpu_info.h"
73 74
#endif

75 76 77 78 79
#ifdef PADDLE_WITH_ASCEND_CL
#include "acl/acl.h"
#include "paddle/fluid/platform/npu_info.h"
#endif

Q
QI JUN 已提交
80 81 82
namespace paddle {
namespace platform {

83
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
84 85 86 87
/*Set the value of the global variable allow_tf32_cublas*/
void SetAllowTF32Cublas(bool active);
/*Get the global variable allow_tf32_cublas value*/
bool AllowTF32Cublas();
A
AshburnLee 已提交
88
extern bool allow_tf32_cudnn;
A
AshburnLee 已提交
89 90 91 92
/*Set the value of the global variable allow_tf32_cudnn*/
void SetAllowTF32Cudnn(bool active);
/*Get the global variable allow_tf32_cudnn value*/
bool AllowTF32Cudnn();
93 94
#endif  // PADDLE_WITH_CUDA

95 96 97 98
enum DeviceType {
  CPU = 0,
  CUDA = 1,
  XPU = 2,
99
  NPU = 3,
100 101

  MAX_DEVICE_TYPES = 4,
102 103
};

104 105
DeviceType Place2DeviceType(const platform::Place& place);

106 107 108
constexpr DeviceType kCPU = DeviceType::CPU;
constexpr DeviceType kCUDA = DeviceType::CUDA;
constexpr DeviceType kXPU = DeviceType::XPU;
109
constexpr DeviceType kNPU = DeviceType::NPU;
110

Q
QI JUN 已提交
111 112
class DeviceContext {
 public:
Z
Zeng Jinle 已提交
113
  virtual ~DeviceContext() PADDLE_MAY_THROW {}
L
liaogang 已提交
114
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
115

116
  virtual void Wait() const {}
Q
QI JUN 已提交
117 118
};

Q
qijun 已提交
119 120
class CPUDeviceContext : public DeviceContext {
 public:
121
  CPUDeviceContext();
Q
qijun 已提交
122
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
123

124
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
125

L
liaogang 已提交
126
  Place GetPlace() const override;
Y
Yu Yang 已提交
127

Q
qijun 已提交
128
 private:
D
dzhwinter 已提交
129
  CPUPlace place_;
Q
qijun 已提交
130
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
131 132
};

Y
Yang Yu 已提交
133 134 135 136 137 138 139 140
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

141
#ifdef PADDLE_WITH_XPU
Q
QingshuChen 已提交
142
namespace xpu = baidu::xpu::api;
143 144 145 146 147 148
class XPUDeviceContext : public DeviceContext {
 public:
  XPUDeviceContext();
  explicit XPUDeviceContext(XPUPlace place);
  virtual ~XPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
Q
QingshuChen 已提交
149
  XPUVersion xpu_version() const { return xpu_version_; }
150 151 152 153 154 155
  Place GetPlace() const override;
  xpu::Context* x_context() const;

  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

156
#ifdef PADDLE_WITH_XPU_BKCL
157
  /*! \brief  Return bkcl context. */
158 159 160 161 162 163
  BKCLContext_t bkcl_context() const { return bkcl_context_; }

  /*! \brief  Set bkcl context. */
  void set_bkcl_context(BKCLContext_t context) { bkcl_context_ = context; }
#endif

164 165
 private:
  XPUPlace place_;
Q
QingshuChen 已提交
166
  XPUVersion xpu_version_;
167
  xpu::Context* context_;
168 169 170
#ifdef PADDLE_WITH_XPU_BKCL
  BKCLContext_t bkcl_context_;
#endif
171 172 173 174 175 176 177 178 179 180 181 182 183

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in XPU
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  DISABLE_COPY_AND_ASSIGN(XPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::XPUPlace> {
  using TYPE = XPUDeviceContext;
};
#endif

184 185 186 187 188 189 190 191
#ifdef PADDLE_WITH_ASCEND_CL
class NPUDeviceContext : public DeviceContext {
 public:
  explicit NPUDeviceContext(NPUPlace place);
  virtual ~NPUDeviceContext();
  Eigen::DefaultDevice* eigen_device() const { return nullptr; }
  Place GetPlace() const override;
  aclrtContext context() const;
192

193 194 195 196 197 198
  /*! \brief  Wait for all operations completion in the stream. */
  void Wait() const override;

  /*! \brief  Return npu stream in the device context. */
  aclrtStream stream() const;

199 200 201 202 203 204 205
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    return stream_->AddCallback(callback);
  }

  void WaitStreamCallback() const { return stream_->WaitCallback(); }

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
#if defined(PADDLE_WITH_ASCEND_CL)
  /*! \brief  Return hccl communicators. */
  HcclComm hccl_comm() const { return hccl_comm_; }

  /*! \brief  Set hccl communicators. */
  void set_hccl_comm(HcclComm comm) { hccl_comm_ = comm; }
#endif

  // template <typename Callback>
  // void AddStreamCallback(Callback&& callback) const {
  //   return stream_->AddCallback(callback);
  // }

  // void WaitStreamCallback() const { return stream_->WaitCallback(); }

221 222 223
 private:
  NPUPlace place_;
  aclrtContext context_;
224 225 226 227

#ifdef PADDLE_WITH_ASCEND_CL
  // HCCLContext_t hccl_context_;
  HcclComm hccl_comm_{nullptr};
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
#endif

  // Need to be the same with other DeviceContext,
  // Eventhough eigen_device_ is not used in NPU
  // NOTE(zhiqiu): why need?
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
  std::shared_ptr<stream::NPUStream> stream_;

  DISABLE_COPY_AND_ASSIGN(NPUDeviceContext);
};

template <>
struct DefaultDeviceContextType<platform::NPUPlace> {
  using TYPE = NPUDeviceContext;
};
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

// Currently, NPUPinnedDeviceContext is only used to data copying.
class NPUPinnedDeviceContext : public DeviceContext {
 public:
  NPUPinnedDeviceContext();
  explicit NPUPinnedDeviceContext(NPUPinnedPlace place);

  Place GetPlace() const override;

  Eigen::DefaultDevice* eigen_device() const;

 private:
  NPUPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::NPUPinnedPlace> {
  using TYPE = NPUPinnedDeviceContext;
};

264 265 266
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
267
class CudnnWorkspaceHandle;
W
wanghuancoder 已提交
268
class EigenCudaStreamDevice;
S
sneaxiy 已提交
269

270 271 272 273 274
class CUDAContext {
 public:
  CUDAContext() = default;
  explicit CUDAContext(
      const CUDAPlace& place,
275
      const stream::Priority& priority = stream::Priority::kNormal);
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

  ~CUDAContext();

  const CUDAPlace& Place() const { return place_; }

  const std::unique_ptr<Eigen::GpuDevice>& EigenDevice() const {
    return eigen_device_;
  }

  const std::unique_ptr<EigenCudaStreamDevice>& EigenStream() const {
    return eigen_stream_;
  }

  const std::unique_ptr<stream::CUDAStream>& Stream() const { return stream_; }

291
  const gpuStream_t& RawStream() { return stream_->raw_stream(); }
292

293 294 295
#ifdef PADDLE_WITH_HIP
  const miopenHandle_t& CudnnHandle() const { return cudnn_handle_; }
#else
296
  const cudnnHandle_t& CudnnHandle() const { return cudnn_handle_; }
297
#endif
298

299
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
300 301 302
  const cusolverDnHandle_t& CusolverDnHandle() const {
    return cusolver_dn_handle_;
  }
303
#endif
G
Guo Sheng 已提交
304

305 306 307 308 309 310 311 312 313 314 315
  const std::unique_ptr<CublasHandleHolder>& CublasHandle() const {
    return cublas_handle_;
  }

  const std::unique_ptr<CublasHandleHolder>& CublasTensorCoreHandle() const {
    return cublas_tensor_core_handle_;
  }

  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
316 317 318 319 320
    if (cublas_tf32_tensor_core_handle_) {
      cublas_tf32_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }

 private:
  void InitEigenContext();

340 341 342 343 344
#ifdef PADDLE_WITH_HIP
  void InitCuBlasContext() {
    cublas_handle_.reset(new CublasHandleHolder(RawStream()));
  }
#else
345 346 347 348 349 350 351
  void InitCuBlasContext() {
    cublas_handle_.reset(
        new CublasHandleHolder(RawStream(), CUBLAS_DEFAULT_MATH));
    if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
      cublas_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TENSOR_OP_MATH));
352 353 354 355 356
#if CUDA_VERSION >= 11000
      cublas_tf32_tensor_core_handle_.reset(
          new CublasHandleHolder(RawStream(), CUBLAS_TF32_TENSOR_OP_MATH));
#endif  // CUDA_VERSION >= 11000
#endif  // CUDA_VERSION >= 9000
357 358
    }
  }
359
#endif
360 361 362

  void InitCuDNNContext() {
    if (dynload::HasCUDNN()) {
363 364 365 366 367
#ifdef PADDLE_WITH_HIP
      size_t miopen_major, miopen_minor, miopen_patch;
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenGetVersion(
          &miopen_major, &miopen_minor, &miopen_patch));
      auto local_miopen_version =
368 369
          (miopen_major * 1000 + miopen_minor * 10 + miopen_patch) / 10;
      auto compile_miopen_version = MIOPEN_VERSION / 10;
370 371 372 373
      if (local_miopen_version < static_cast<size_t>(compile_miopen_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with MIOPEN "
374 375
            << compile_miopen_version / 100 << "."
            << compile_miopen_version % 100
376
            << ", but MIOPEN version in your machine is "
377
            << local_miopen_version / 100 << "." << local_miopen_version % 100
378 379 380 381 382 383 384 385
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible MIOPEN "
               "version.";
      }
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenCreate(&cudnn_handle_));
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::miopenSetStream(cudnn_handle_, RawStream()));
#else
386 387 388 389 390 391 392 393 394 395 396 397 398
      auto local_cudnn_version = dynload::cudnnGetVersion() / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
399 400
      PADDLE_RETRY_CUDA_SUCCESS(dynload::cudnnCreate(&cudnn_handle_));
      PADDLE_RETRY_CUDA_SUCCESS(
401
          dynload::cudnnSetStream(cudnn_handle_, RawStream()));
402
#endif
403 404 405 406 407
    } else {
      cudnn_handle_ = nullptr;
    }
  }

408
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
409
  void InitCuSolverContext() {
410 411
    PADDLE_RETRY_CUDA_SUCCESS(dynload::cusolverDnCreate(&cusolver_dn_handle_));
    PADDLE_RETRY_CUDA_SUCCESS(
G
Guo Sheng 已提交
412 413
        dynload::cusolverDnSetStream(cusolver_dn_handle_, RawStream()));
  }
414
#endif
G
Guo Sheng 已提交
415

416 417
  void DestoryCuDNNContext() {
    if (cudnn_handle_) {
418 419 420
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenDestroy(cudnn_handle_));
#else
421
      PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_));
422
#endif
423 424 425 426 427 428 429
    }
    cudnn_handle_ = nullptr;
  }

  void DestoryCuBlasContext() {
    cublas_handle_.reset();
    cublas_tensor_core_handle_.reset();
430
    cublas_tf32_tensor_core_handle_.reset();
431 432
  }

433
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
434 435 436 437 438 439
  void DestoryCuSolverContext() {
    if (cusolver_dn_handle_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cusolverDnDestroy(cusolver_dn_handle_));
    }
  }
440
#endif
G
Guo Sheng 已提交
441

442 443 444 445
  CUDAPlace place_;
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
  std::unique_ptr<stream::CUDAStream> stream_;
446 447 448
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle_;
#else
449
  cudnnHandle_t cudnn_handle_;
450
#endif
451 452
  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
453
  std::unique_ptr<CublasHandleHolder> cublas_tf32_tensor_core_handle_;
454
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
455
  cusolverDnHandle_t cusolver_dn_handle_;
456
#endif
457 458 459
  DISABLE_COPY_AND_ASSIGN(CUDAContext);
};

460
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
461
 public:
D
dzhwinter 已提交
462
  explicit CUDADeviceContext(CUDAPlace place);
463
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
464

465
  /*! \brief  Wait for all operations completion in the stream. */
466
  void Wait() const override;
Q
QI JUN 已提交
467

468
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
469
  Place GetPlace() const override;
470

K
Kexin Zhao 已提交
471
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
472 473
  int GetComputeCapability() const;

474 475 476
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

477 478 479 480 481 482
  /*! \brief  Return the SM count in the device context */
  int GetSMCount() const;

  /*! \brief  Return the Max thread num of block in the device context */
  int GetMaxThreadsPerBlock() const;

483 484 485
  /*! \brief  Return the max grid dim size in the device context */
  dim3 GetCUDAMaxGridDimSize() const;

486 487 488
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

489 490 491
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
492
    return context()->CublasCall(callback);
493 494 495 496 497 498 499 500 501
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
502
    return context()->TensorCoreCublasCallIfAvailable(callback);
503
  }
S
sneaxiy 已提交
504

505 506 507 508
/*! \brief  Return cudnn  handle in the device context. */
#ifdef PADDLE_WITH_HIP
  miopenHandle_t cudnn_handle() const;
#else
509
  cudnnHandle_t cudnn_handle() const;
510
#endif
511

512 513 514 515
/*! \brief  Return cublas handle in the device context. */
#ifdef PADDLE_WITH_HIP
  rocblas_handle cublas_handle() const;
#else
516
  cublasHandle_t cublas_handle() const;
517
#endif
518

S
sneaxiy 已提交
519 520 521 522 523 524 525 526 527
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

528
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
529
  cusolverDnHandle_t cusolver_dn_handle() const;
530
#endif
G
Guo Sheng 已提交
531

Q
init  
qijun 已提交
532
  /*! \brief  Return cuda stream in the device context. */
533
  gpuStream_t stream() const;
Q
QI JUN 已提交
534

535
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
536 537 538 539 540
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Q
qingqing01 已提交
541
#endif
Q
qingqing01 已提交
542

Y
Yu Yang 已提交
543
  template <typename Callback>
544
  void RecordEvent(gpuEvent_t ev, Callback callback) const {
545
    return context()->Stream()->RecordEvent(ev, callback);
Y
Yu Yang 已提交
546 547
  }

S
sneaxiy 已提交
548 549
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
550 551 552 553 554
    return context()->Stream()->AddCallback(callback);
  }

  void WaitStreamCallback() const {
    return context()->Stream()->WaitCallback();
555 556
  }

557
  void ResetDefaultContext(const stream::Priority& priority) {
558 559 560
    default_ctx_.reset(new CUDAContext(place_, priority));
  }

561
  void ResetThreadContext(const stream::Priority& priority) {
562 563 564 565 566 567 568 569 570 571
    std::lock_guard<std::mutex> guard(ctx_mtx_);
    thread_ctx_[this].reset(new CUDAContext(place_, priority));
  }

  std::shared_ptr<CUDAContext> context() const {
    if (!thread_ctx_.count(this)) {
      return default_ctx_;
    }
    return thread_ctx_.at(this);
  }
S
sneaxiy 已提交
572

Q
QI JUN 已提交
573
 private:
D
dzhwinter 已提交
574
  CUDAPlace place_;
575
  std::shared_ptr<CUDAContext> default_ctx_;
Q
QI JUN 已提交
576

577 578 579 580 581 582
  // The thread_local static variable will be released before the
  // global static variable, so avoid using it in dtor.
  static thread_local std::unordered_map<const CUDADeviceContext*,
                                         std::shared_ptr<CUDAContext>>
      thread_ctx_;
  static thread_local std::mutex ctx_mtx_;
583

584 585
  mutable std::mutex cudnn_handle_mtx_;

586
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Q
qingqing01 已提交
587 588 589 590 591 592
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Q
qingqing01 已提交
593
#endif
Q
qingqing01 已提交
594

C
chengduo 已提交
595 596 597 598 599
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
600
  int max_threads_per_block_;
601
  dim3 max_grid_dim_size_;
Y
yuyang18 已提交
602

603
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
604
};
Q
qijun 已提交
605

606 607
class CudnnWorkspaceHandle {
 public:
608 609
  inline CudnnWorkspaceHandle(const CUDADeviceContext& dev_ctx, std::mutex* mtx)
      : device_context_(dev_ctx), mtx_(mtx) {}
610 611 612 613 614 615 616 617

  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_bytes) {
    if (required_workspace_bytes > WorkspaceSize()) {
      ReallocWorkspace(required_workspace_bytes);
    }
    VLOG(2) << "Cudnn workspace size at RunFunc: "
            << static_cast<double>(WorkspaceSize()) / (1 << 20) << " MB";
618 619 620 621
    {
      std::lock_guard<std::mutex> guard(*mtx_);
      cudnn_func(allocation_ ? allocation_->ptr() : nullptr);
    }
622 623 624 625 626 627 628 629 630 631 632 633 634
  }

  /*! \brief Thread which call RunFuncSync() would release gpu memory after
   *  running the function. Currently this function is only used when cudnn
   *  exhaustive searching and callers have to guarantee that the input function
   *  is host blocking */
  template <typename Callback>
  inline void RunFuncSync(Callback&& cudnn_func,
                          size_t required_workspace_bytes) {
    RunFunc(cudnn_func, required_workspace_bytes);
    ResetWorkspace();
  }

635
  void ReallocWorkspace(size_t required_workspace_bytes);
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651

  inline void ResetWorkspace() { allocation_ = nullptr; }

  inline size_t WorkspaceSize() {
    if (allocation_ == nullptr) {
      return 0;
    }
    return allocation_->size();
  }

  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;

 private:
  memory::allocation::AllocationPtr allocation_;
  const CUDADeviceContext& device_context_;
652
  std::mutex* mtx_;
653 654
};

Y
Yang Yu 已提交
655 656
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
657
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
658 659
};

C
chengduoZH 已提交
660
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
661 662 663 664 665 666
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
667

C
chengduoZH 已提交
668 669 670 671 672 673 674 675 676 677 678
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
679
#endif
Q
qijun 已提交
680

T
tensor-tang 已提交
681
#ifdef PADDLE_WITH_MKLDNN
682 683 684 685 686 687

class MKLDNNDeviceContextThreadLocals {
  // default mkldnn session id

  typedef MKLDNNDeviceContextThreadLocals self;
  struct Body {
688
    bool said_once = false;
689 690 691 692 693 694 695 696 697 698 699
    size_t cur_mkldnn_session_id;
    // Current data input shape string.
    // - For fixed-shape, it's a null string in default.
    // - For dynamic-shape, it's user specific.
    std::string cur_input_shape_str;
    // the cache capacity of different input shapes for MKLDNN.
    // Default 1 means fixed input shape, not dynamic shape.
    int cur_input_shape_cache_capacity;
    // Recently registered data_format. This is needed to
    // know for converting MKL-DNN Tensor to non MKL-DNN
    paddle::framework::DataLayout cur_paddle_data_layout;
700 701 702
    // MKL-DNN stream used for execution of primitives (per-thread)
    mkldnn::engine cur_engine;
    mkldnn::stream cur_stream;
J
Jacek Czaja 已提交
703 704
    std::string key_suffix;  // Key identifying current Executor
    bool key_attach_thread_id = true;
705
    void* exec_ptr_ = nullptr;
706 707

    Body();
708
    ~Body();
709 710 711 712 713 714
    void set_cur_mkldnn_session_id(size_t sid);
    size_t get_cur_mkldnn_session_id(void);
    void set_cur_input_shape_str(std::string input_shape_str);
    void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity);
    void set_cur_paddle_data_layout(framework::DataLayout dl);
    framework::DataLayout get_cur_paddle_data_layout(void);
715
    void log_lib_version(void);
716 717
    const mkldnn::engine& get_engine(void);
    mkldnn::stream& get_stream(void);
J
Jacek Czaja 已提交
718 719 720 721
    void set_key_suffix(const std::string& suffix) { key_suffix = suffix; }
    const std::string& get_key_suffix(void) const { return key_suffix; }
    void disable_tid_in_key(void) { key_attach_thread_id = false; }
    bool is_tid_used_in_key(void) const { return key_attach_thread_id; }
722 723
    void set_curr_exec(void* exec_ptr) { exec_ptr_ = exec_ptr; }
    void* get_curr_exec(void) const { return exec_ptr_; }
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
  };
  MKLDNNDeviceContextThreadLocals() = default;
  MKLDNNDeviceContextThreadLocals(const MKLDNNDeviceContextThreadLocals& c) =
      delete;

 public:
  // default mkldnn session id
  static constexpr size_t kMKLDNNSessionID_Default = 0;
  // mkldnn session id for cache clearing mode
  static constexpr size_t kMKLDNNSessionID_CacheClearing = -1;
  static Body& fetch() {
    thread_local Body b;
    return b;
  }
};
S
Sylwester Fraczek 已提交
739

T
tensor-tang 已提交
740 741
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
  template <class T>
  using BlobPtr_t = std::shared_ptr<T>;
  template <class P1, class P2>
  using umap_value_smart_t = std::unordered_map<P1, BlobPtr_t<P2>>;
  template <class T>
  using umap_key_string_t = umap_value_smart_t<std::string, T>;

  // Following three maps are used to cache MKLDNN primitives.
  // There relations are:
  // - BlobMap = Map<cur_thread_id, ShapeBlob>
  // - ShapeBlob = Map<cur_input_shape_str, KeyBlob>
  // - KeyBlob  = Map<blob_name, blob>

  using KeyBlob = umap_key_string_t<void>;
  using ShapeBlob = umap_key_string_t<KeyBlob>;
  using BlobMap = umap_value_smart_t<int, ShapeBlob>;

759 760 761 762 763 764 765 766
  // Auxillary two-level structure (shape, executor) to easier control
  // clearing cache objects related to specific executor

  using ExecKey = void*;
  using ExecMapCacheIterPair = std::pair<BlobPtr_t<KeyBlob>, KeyBlob::iterator>;
  using ExecMap =
      std::unordered_map<ExecKey, std::vector<ExecMapCacheIterPair>>;
  using ExecShape = std::unordered_map<std::string, std::shared_ptr<ExecMap>>;
767

T
tensor-tang 已提交
768 769 770
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
771
  const mkldnn::engine& GetEngine() const { return tls().get_engine(); }
T
tensor-tang 已提交
772

773 774
  // Register object to currently used executor's map
  void LinkEntryWithExecutor(BlobPtr_t<KeyBlob>, KeyBlob::iterator) const;
775
  void RemoveShapeEntriesWithExecutor(void) const;
776

777
  // Remove all entries from the blob map
778
  void ResetBlobMap(void* ptr);
779 780 781

  // Prevent next ResetBlobMap()
  void BlockNextCacheClearing();
782

783 784 785
  // Get the ShapeBlob size in cur_mkldnn_session_id.
  size_t GetShapeBlobSize() const;

786 787
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
788

789
  // Calculate number of oneDNN objects cached
790
  unsigned int GetCachedObjectsNumber(void) const;
791

792 793
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
794

795 796 797 798
  static auto tls() -> decltype(MKLDNNDeviceContextThreadLocals::fetch()) {
    return MKLDNNDeviceContextThreadLocals::fetch();
  }

T
tensor-tang 已提交
799
 private:
800
  std::shared_ptr<BlobMap> p_blobmap_;
801 802
  // Map key is pointer of executor and value is a data(iterator in map) needed
  // to erase
803
  std::shared_ptr<ExecShape> p_exec_items_;
804
  std::shared_ptr<std::mutex> p_mutex_;
805
  bool block_next_cache_clearing_ = false;
T
tensor-tang 已提交
806 807 808
};
#endif

D
dzhwinter 已提交
809 810 811 812 813
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
814
  static DeviceContextPool& Instance() {
G
GaoWei8 已提交
815 816 817
    PADDLE_ENFORCE_NOT_NULL(pool,
                            platform::errors::PreconditionNotMet(
                                "Need to Create DeviceContextPool firstly!"));
D
dzhwinter 已提交
818 819 820 821
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
822
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
823 824 825 826 827 828
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

829 830
  static void SetPool(DeviceContextPool* dev_pool) { pool = dev_pool; }

D
dzhwinter 已提交
831
  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
832
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
833

Y
Yang Yu 已提交
834 835 836 837 838 839 840
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

841 842
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
843 844
 private:
  static DeviceContextPool* pool;
845 846
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
847 848 849
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
850 851
}  // namespace platform
}  // namespace paddle