executor.cpp 39.2 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hjchen2 已提交
15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <unordered_map>
18
#include <utility>
W
wangliu 已提交
19
#include <vector>
L
liuruilong 已提交
20
#include "common/enforce.h"
L
liuruilong 已提交
21
#include "common/log.h"
22
#include "framework/context.h"
L
liuruilong 已提交
23
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
24 25
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
26
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
27 28 29 30
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
H
hjchen2 已提交
31
#include "memory/t_malloc.h"
32
#include "pass/memory_optimize.h"
33
#include "pass/model_obfuscate.h"
L
update  
liuruilong 已提交
34 35
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
36
#include "pass/memory_optimize_cl.h"
L
update  
liuruilong 已提交
37
#endif
W
wangliu 已提交
38 39

namespace paddle_mobile {
40
namespace framework {
41

W
wangliu 已提交
42 43
#pragma mark - executor

44
template <typename Device, typename T>
45 46
void Executor<Device, T>::SetThreadNum(int thread_num, PowerMode power_mode) {
  CPUContext::Context()->set_thread_num(thread_num, power_mode);
47 48
}

49
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
50 51 52 53
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
54
    : program_(program),
H
hjchen2 已提交
55 56
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
57 58
      lod_mode_(lod_mode),
      config_(config) {
59
  DLOG << "executor in lod mode: " << lod_mode;
60

W
wangliu 已提交
61
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
62
  variable_ptr->SetValue<int>(batch_size);
63 64

  program_desc_ =
Refine  
陈后江 已提交
65
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
66 67
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
C
Chon 已提交
68 69
#if !defined(PADDLE_MOBILE_FPGA) && !defined(PADDLE_MOBILE_FPGA_KD) && \
    !defined(PADDLE_MOBILE_CL)
70
  if (config_.memory_optimization_level != NoMemoryOptimization) {
71 72
    pass::MemoryOptPass()(program_desc_.get(), program_.scope.get(),
                          config_.memory_optimization_level);
Y
Yanzhan Yang 已提交
73
  }
74
#endif
75 76 77 78
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
  const auto &blocks = program_desc_->Blocks();
79 80 81 82
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
83
    LOG(kLOG_INFO) << "create op[" << j << "]: " << op_desc->Type();
84 85 86

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
87
        op_desc->GetAttrMap(), program_.scope.get());
88 89 90 91
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
92
    }
93
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
94
  }
95 96 97
#ifdef PADDLE_MOBILE_FPGA_V2
  InitQuantMemory();
#endif
W
wangliu 已提交
98
  if (program_.combined) {
L
liuruilong 已提交
99 100 101 102
    InitCombineMemory();
  } else {
    InitMemory();
  }
103
  int count = 0;
Z
zp7 已提交
104
#ifdef PADDLE_MOBILE_PROFILE
105 106 107
  std::vector<ProfInfo> profile(ops_of_block0_.size());
  struct timespec ts;
  int op_index = 0;
Z
zp7 已提交
108
#endif
109
  for (auto &op_handler : ops_of_block0_) {
Z
zp7 已提交
110 111 112 113
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
114 115
    LOG(kLOG_INFO) << "Initialize op[" << count++
                   << "]: " << op_handler->Type();
116 117 118
    if (op_handler->Type() == "feed" || op_handler->Type() == "fetch") {
      op_handler->setPrePostType(config_.pre_post_type);
    }
119
    op_handler->Init();
Z
zp7 已提交
120 121
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
122 123
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
Z
zp7 已提交
124
#endif
L
liuruilong 已提交
125
  }
Z
zp7 已提交
126 127 128 129
#ifdef PADDLE_MOBILE_PROFILE
  printf("================[ op init profile ]==================\n");
  PrintProfile(profile);
#endif
130 131 132 133 134 135
  ApplyMemoryOptimise(config, lod_mode);
}

template <typename Device, typename T>
void Executor<Device, T>::ApplyMemoryOptimise(
    const PaddleMobileConfigInternal &config, const bool lod_mode) const {}
136 137

#ifdef PADDLE_MOBILE_CL
138 139 140
template <>
void Executor<GPU_CL, float>::ApplyMemoryOptimise(
    const PaddleMobileConfigInternal &config, const bool lod_mode) const {
141 142 143 144 145
  if (!config.load_when_predict && !lod_mode &&
      config_.memory_optimization_level != NoMemoryOptimization) {
    pass::MemoryOptPassCl()(program_desc_.get(), program_.scope.get(),
                            config_.memory_optimization_level);
  }
W
wangliu 已提交
146
}
147
#endif
W
wangliu 已提交
148

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

176
template <typename T>
177 178 179 180
static void LoadMemInternal(void **in_data, void *out_data, int64_t size,
                            bool quant_uint8 = false, int quant_fold = 1) {
  char **data_buf = reinterpret_cast<char **>(in_data);
  T *tensor_data = reinterpret_cast<T *>(out_data);
181
  if (quant_uint8) {
182 183
    const int minimal_fold_size = 2;
    quant_fold = fmin(fmax(1, size / minimal_fold_size), quant_fold);
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    int step = fmax(size / quant_fold, 1);
    int visited_fold = 0;
    while (visited_fold * step < size) {
      // should be moved into operator init function
      float min_value;
      float max_value;
      memory::Copy(&min_value, *data_buf, sizeof(float));
      memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
      *data_buf += 2 * sizeof(float);
      const float factor = (max_value - min_value) / 255.0;
      const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
      int k = 0;
      for (; k < step; ++k) {
        int tensor_data_idx = visited_fold * step + k;
        if (tensor_data_idx >= size) {
          break;
        }
        tensor_data[tensor_data_idx] = uint8_data[k] * factor + min_value;
      }
      *data_buf += k * sizeof(uint8_t);
      visited_fold++;
W
wangliu 已提交
205
    }
206
  } else {
207 208
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
209
  }
210
}
W
wangliu 已提交
211

212 213 214 215
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
216
  char **data_buf = reinterpret_cast<char **>(data);
217
  // version
218
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
219
  *data_buf += sizeof(uint32_t);
220
  // lod information
H
hjchen2 已提交
221 222
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
223
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
224
  *data_buf += sizeof(uint64_t);
225 226 227 228

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
229
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
230
    *data_buf += sizeof(uint64_t);
231
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
232
    memory::Copy(tmp_dim.data(), *data_buf, size);
233
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
234
    *data_buf += size;
W
wangliu 已提交
235
  }
236
  // tensor version
237
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
238
  *data_buf += sizeof(uint32_t);
239
  // tensor desc size
240
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
241
  *data_buf += sizeof(int32_t);
242
  // skip tensor desc
Refine  
陈后江 已提交
243
  *data_buf += tensor_desc_size;
244

245 246
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
247 248
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
249
    case VARTYPE_TYPE_FP32:
250 251 252 253
      LoadMemInternal<float>(
          reinterpret_cast<void **>(data_buf),
          reinterpret_cast<void *>(tensor->mutable_data<T>()), tensor->numel(),
          program_.quantification, program_.quantification_fold);
W
wangliu 已提交
254
      break;
255
    case VARTYPE_TYPE_INT8:
256 257
      LoadMemInternal<int8_t>(
          reinterpret_cast<void **>(data_buf),
258 259
          reinterpret_cast<void *>(tensor->mutable_data<int8_t>()),
          tensor->numel());
W
wangliu 已提交
260
      break;
261
    case VARTYPE_TYPE_INT32:
262 263 264 265
      LoadMemInternal<int>(
          reinterpret_cast<void **>(data_buf),
          reinterpret_cast<void *>(tensor->mutable_data<int>()),
          tensor->numel());
W
wangliu 已提交
266 267
      break;
    default:
268
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
269
  }
W
wangliu 已提交
270 271
}

272 273 274
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
275 276 277 278
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
279
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
280 281
          continue;
        }
H
hjchen2 已提交
282
        DLOG << "init persistable var: " << var_desc->Name();
Refine  
陈后江 已提交
283
        char *origin_data =
Refine  
陈后江 已提交
284
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
285
        char *data = origin_data;
H
update  
hjchen2 已提交
286
        auto tensor = var->template GetMutable<LoDTensor>();
287 288
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
289
      } else {
290
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
291
        varInputMemory(var_desc, var);
W
wangliu 已提交
292 293 294 295 296
      }
    }
  }
}

297 298
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
299
  char *origin_data = nullptr;
Refine  
陈后江 已提交
300
  bool self_alloc = false;
301
  if (program_.combined_params_buf && program_.combined_params_len) {
302 303
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
304 305 306 307
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, program_.combined_params_len);
    }
308
  } else {
Refine  
陈后江 已提交
309
    self_alloc = true;
Refine  
陈后江 已提交
310
    origin_data = ReadFileToBuff(program_.para_path);
311 312 313 314
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, GetFileLength(program_.para_path));
    }
315
  }
Refine  
陈后江 已提交
316 317
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
318
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
319 320 321 322
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
323
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
324 325
          continue;
        }
L
liuruilong 已提交
326 327

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
328
        auto tensor = var->template GetMutable<LoDTensor>();
329
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
330
      } else {
H
update  
hjchen2 已提交
331 332
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
333 334 335
      }
    }
  }
Refine  
陈后江 已提交
336
  if (self_alloc) {
337
    delete[] origin_data;
Refine  
陈后江 已提交
338 339
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
340
}
341

C
Chon 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355
static void ClearNoPersistableTensorArray(const framework::ProgramDesc *program,
                                          framework::Scope *scope) {
  for (const auto &block : program->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
        auto var = scope->Var(var_desc->Name());
        auto array = var->template GetMutable<framework::LoDTensorArray>();
        array->resize(1);
      }
    }
  }
}

L
liuruilong 已提交
356
template <typename Device, typename T>
L
liuruilong 已提交
357
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
358 359 360
  if (input_tensor.dims().size() != 4) {
    return;
  }
L
liuruilong 已提交
361 362 363
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
364 365 366 367 368
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
        DLOG << "InitNoPersistableMemory var " << var_desc->Name();
        auto tensor = var->template GetMutable<LoDTensor>();
        if (tensor->IsInitialized() && tensor->dims().size() == 4) {
369 370 371 372
          // don't change user's input and avoid memory leaks
          if (feed_indices_.find(var_desc->Name()) != feed_indices_.end()) {
            break;
          }
L
liuruilong 已提交
373
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
374 375 376 377
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
378 379 380
          tensor->template mutable_data_new<T>();
          DLOG << "var's tensor dims " << tensor_dim;
          DLOG << "var's tensor new dims " << new_dim;
H
update  
hjchen2 已提交
381
        } else {
382
          DLOG << "var's tensor is not Initialized ???";
L
liuruilong 已提交
383 384 385 386 387 388
        }
      }
    }
  }
}

389 390
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
391
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
392
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
393
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
394 395 396
#ifdef PADDLE_MOBILE_FPGA_V2
  tensor->init(type_id<int8_t>().hash_code());
#else
397
  tensor->init(type_id<float>().hash_code());
398
#endif
399 400
  return true;
#endif
H
update  
hjchen2 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
414
  }
H
update  
hjchen2 已提交
415
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
416
}
L
liuruilong 已提交
417

418 419 420 421 422
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
423
  }
424 425 426 427 428 429 430 431
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
432
  }
433
  return this->Predict();
W
wangliu 已提交
434
}
xiebaiyuan's avatar
xiebaiyuan 已提交
435

436 437 438
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
439 440 441 442 443 444 445
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
446
  Tensor feed_tensor(input, make_ddim(dims));
447
  SetInput(feed_tensor, input_name);
448 449
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
450 451
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
452 453 454 455 456 457
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
458

459 460 461
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
462
  int index = 0;
463
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
464
    index = feed_indices_.find(var_name)->second;
465
  }
H
hjchen2 已提交
466 467 468 469 470 471
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
472 473
  if (feed_indices_.size() == 1) {
    auto &dim = input.dims();
474 475 476
    if (lod_mode_ && product(dim) < 0.9 * product(input_dim_last_)) {
      InitNoPersistableMemory(target);
    }
477 478 479
    input_dim_has_changed_ = input_dim_last_ != dim;
    input_dim_last_ = static_cast<DDim>(dim);
  }
480
}
xiebaiyuan's avatar
xiebaiyuan 已提交
481

482 483 484
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
485
  int index = 0;
486
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
487
    index = feed_indices_.find(var_name)->second;
488
  }
H
hjchen2 已提交
489 490 491 492 493 494 495
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
496 497
  if (feed_indices_.size() == 1) {
    auto &dim = input.dims();
498 499 500
    if (lod_mode_ && product(dim) < 0.9 * product(input_dim_last_)) {
      InitNoPersistableMemory(target);
    }
501 502 503
    input_dim_has_changed_ = input_dim_last_ != dim;
    input_dim_last_ = static_cast<DDim>(dim);
  }
504 505 506 507 508
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
509 510 511 512 513 514 515 516 517
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
518

519 520 521 522 523 524 525
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
526
}
xiebaiyuan's avatar
xiebaiyuan 已提交
527

528 529 530 531 532 533 534 535 536 537 538 539 540 541
#ifdef PADDLE_MOBILE_CL
template <typename Device, typename T>
const CLImage *Executor<Device, T>::GetOutputImage(
    const std::string &var_name) {
  auto var = program_.scope->FindVar(var_name);
  if (var->IsInitialized() && var->template IsType<framework::CLImage>()) {
    const CLImage *cl_image = var->template Get<framework::CLImage>();
    return cl_image;
  } else {
    return nullptr;
  }
}
#endif

542 543
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
544
  try {
545
#if _OPENMP
546
    omp_set_num_threads(CPUContext::Context()->get_thread_num());
547
#endif
548 549 550
    // clear all no persistable tensor array since write_to_array
    // is always push back a new tensor in the array
    ClearNoPersistableTensorArray(program_desc_.get(), program_.scope.get());
551

xiebaiyuan's avatar
xiebaiyuan 已提交
552
#ifdef PADDLE_MOBILE_PROFILE
553 554 555
    std::vector<ProfInfo> profile(ops_of_block0_.size());
    struct timespec ts;
    int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
556
#endif
557 558
    for (int i = 0; i < ops_of_block0_.size(); ++i) {
      auto &op_handler = ops_of_block0_[i];
xiebaiyuan's avatar
xiebaiyuan 已提交
559
#ifdef PADDLE_MOBILE_PROFILE
560 561
      clock_gettime(CLOCK_MONOTONIC, &ts);
      profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
562
#endif
563 564
      LOG(paddle_mobile::kLOG_INFO) << i << "th, "
                                    << "run op: " << op_handler->Type();
565 566 567 568
      if (lod_mode_ && input_dim_has_changed_) {
        op_handler->InferShape();
      }
      op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
569
#ifdef PADDLE_MOBILE_PROFILE
570 571 572
      clock_gettime(CLOCK_MONOTONIC, &ts);
      profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
      ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
573
#endif
574 575 576 577
    }
    if (feed_indices_.size() == 1) {
      input_dim_has_changed_ = false;
    }
578 579

#ifdef PADDLE_MOBILE_PROFILE
580
    PrintProfile(profile);
581
#endif
582 583 584 585 586 587 588 589
    return PMSuccess;
  } catch (PaddleMobileException &e) {
    exception_msg_ = e.what();
    return PMException;
  } catch (std::exception &e) {
    exception_msg_ = e.what();
    return PMException;
  }
590 591
}

xiebaiyuan's avatar
xiebaiyuan 已提交
592
#ifdef PADDLE_MOBILE_PROFILE
593 594 595
template <typename Device, typename T>
void Executor<Device, T>::PrintProfile(
    const vector<Executor<Device, T>::ProfInfo> &profile) const {
xiebaiyuan's avatar
xiebaiyuan 已提交
596 597 598 599
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
600 601 602 603 604 605
    if (this->ops_of_block0_[i]->Type() == "conv2d" ||
        this->ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = this->ops_of_block0_[i]->Inputs();

      auto *filter = GetVarValue<ProfileTensorType>("Filter", inputs,
                                                    *(this->program_.scope));
606
      int kernel_size = filter->dims()[2];
607 608
      _tp[this->ops_of_block0_[i]->Type() + "_" +
          std::to_string(kernel_size)] += timeCost;
609
    } else {
610
      _tp[this->ops_of_block0_[i]->Type()] += timeCost;
611
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
612
  }
H
hjchen2 已提交
613
  printf("====================[ profile ]======================\n");
614
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
630
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
631
}
632
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
633

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
template <typename Device, typename T>
void Executor<Device, T>::FeedTensorData(const vector<framework::Tensor> &v) {
  auto input_size = v.size();
  auto *feed_var = program_.scope->Var("feed");

  PADDLE_MOBILE_ENFORCE(input_size == feed_indices_.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
    framework::LoDTensor &target =
        feed_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    target.ShareDataWith(v[input_size - i - 1]);
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
  auto *fetch_var = program_.scope->Var("fetch");
  auto output_size = fetch_indices_.size();
  for (int i = 0; i < output_size; i++) {
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    v->push_back(&target);
  }
}

660 661 662 663 664
template <typename Device, typename T>
std::string Executor<Device, T>::GetExceptionMsg() {
  return exception_msg_;
}

665
#ifdef PADDLE_MOBILE_FPGA
666 667 668 669
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
670
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
671 672
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
673
}
674

675 676
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
677
  InjectVariable(t, "feed0");
678
}
679

680
template <typename Device, typename T>
681
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
682
  auto input_size = v.size();
Z
zhangyang0701 已提交
683
  int index = 0;
684 685 686
  // auto vars = program_.scope->VarContain("feed", &index);
  // PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
  //                    "input data number not correct");
687
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
688
    auto var = program_.scope->Var("feed", i + index);
689 690 691 692 693 694 695 696 697
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
698 699
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
700 701
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
702

703
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
704
    auto var = program_.scope->Var("fetch", i + index);
705 706
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
707
  }
708
}
709

710
template <typename Device, typename T>
711 712 713 714
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
715
}
716

717 718
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
719
  auto &ops = ops_of_block0_;
720

Z
zhangyang 已提交
721 722 723 724 725
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
726 727 728
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
729
}
730

731 732
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
733
  auto &ops = ops_of_block0_;
734
  end = end < 0 ? static_cast<int>(ops.size()) : end;
735 736 737 738 739 740 741 742 743 744 745 746
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
747
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
748 749 750 751 752 753 754
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
755
}
756

757 758
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
759
  Predict_From_To(start);
760
}
761

762 763
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
764
  Predict_From_To(0, end);
765
}
766 767 768 769 770 771
#ifdef PADDLE_MOBILE_FPGA_V2
std::map<std::string, float> LoadQuantValFromFile(std::string filename) {
  std::map<std::string, float> quantValList;
  std::ifstream in;
  in.open(filename, std::ios::in);
  if (!in.is_open()) {
772 773
    // std::cout << "open File Failed." << std::endl;
    DLOG << "open File Failed.";
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
    exit(-1);
  }

  std::string line;
  while (getline(in, line)) {
    std::string splitStr = " : ";
    std::string::size_type pos;
    pos = line.find(splitStr);
    std::string subStr[2];
    subStr[0] = line.substr(0, pos);
    subStr[1] = line.substr(pos + splitStr.size(), line.size());
    quantValList.insert(std::make_pair(subStr[0], atof(subStr[1].c_str())));
  }
  in.close();
  return quantValList;
}
790

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
template <typename Device, typename T>
void Executor<Device, T>::InitQuantMemory() {
  std::string quantValFilePath;
  if (program_.combined) {
    quantValFilePath = program_.para_path;
    quantValFilePath =
        quantValFilePath.substr(0, (quantValFilePath.length() - 6));
    quantValFilePath = quantValFilePath + "scale";
  } else {
    quantValFilePath = program_.model_path + "/scale";
  }
  std::map<std::string, float> quantValList =
      LoadQuantValFromFile(quantValFilePath);
  auto ops = ops_of_block0_;
  for (int id = 0; id < ops.size(); id++) {
    auto op = ops[id];
    auto input_keys = op->GetInputKeys();
    auto inputs = op->Inputs();
    for (auto key = input_keys.begin(); key != input_keys.end(); key++) {
      auto inputs_vars = inputs[*key];
      int count = inputs_vars.size();
      for (int i = 0; i < count; i++) {
813 814 815 816 817 818
        if (inputs_vars[i] != "feed") {
          auto tensor = GetTensorByName(inputs_vars[i]);
          tensor->scale[0] = quantValList[inputs_vars[i]];
          DLOG << "input variance name : " << inputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
819 820 821 822 823 824 825 826
      }
    }
    auto output_keys = op->GetOutKeys();
    auto outputs = op->Outputs();
    for (auto key = output_keys.begin(); key != output_keys.end(); key++) {
      auto outputs_vars = outputs[*key];
      int count = outputs_vars.size();
      for (int i = 0; i < count; i++) {
827 828 829 830 831 832
        if (outputs_vars[i] != "fetch") {
          auto tensor = GetTensorByName(outputs_vars[i]);
          tensor->scale[0] = quantValList[outputs_vars[i]];
          DLOG << "output variance name : " << outputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
833 834 835 836 837 838
      }
    }
  }
}
#endif
#endif
Y
yangfei 已提交
839
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
840 841
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
842
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
843 844 845 846 847 848 849
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
850
          var->template GetMutable<framework::LoDTensorArray>();
xiebaiyuan's avatar
xiebaiyuan 已提交
851 852 853 854
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
855
          auto cl_image = var->template GetMutable<CLImage>();
xiebaiyuan's avatar
xiebaiyuan 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
874

xiebaiyuan's avatar
xiebaiyuan 已提交
875 876 877
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
878 879 880 881 882
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
883
  framework::LoDTensor *input_tensor =
H
hjchen2 已提交
884
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
885 886

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
887 888
  DLOG << "target_tensor->IsInitialized() " << input_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << input_tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
889
  DLOG << "input.dims()   " << input.dims();
890
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
891
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
892
    if (input_dim_last_ != input.dims()) {
893
      DLOG << "SetInput ---- > resize1";
894 895
      input_tensor->Resize(input.dims());
      input_tensor->mutable_data<float>();
896 897 898 899 900 901 902
      if (config_.memory_optimization_level == NoMemoryOptimization) {
        InitNoPersistableMemory(*input_tensor);
      } else {
        pass::MemoryOptPassCl()(program_desc_.get(), program_.scope.get(),
                                config_.memory_optimization_level,
                                input.dims());
      }
xiebaiyuan's avatar
xiebaiyuan 已提交
903 904 905
    }
  } else {
    DLOG << "SetInput ---- > resize2";
906
    input_tensor->Resize(input.dims());
xiebaiyuan's avatar
xiebaiyuan 已提交
907 908
    DLOG << "SetInput ---- > ShareDataWith";
  }
909
  input_tensor->ShareDataWith(input);
910 911 912
  if (feed_indices_.size() == 1) {
    input_dim_has_changed_ = input_dim_last_ != input.dims();
  }
913 914
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
915 916
}

917 918 919
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
920

Y
yangfei 已提交
921
template <>
H
hjchen2 已提交
922 923
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

961
  const TensorDesc &desc = var_desc.Tensor_desc();
962 963 964 965 966 967 968 969
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
970 971 972 973

  LoadMemInternal<float>(reinterpret_cast<void **>(data),
                         reinterpret_cast<void *>(memory), memory_size,
                         program_.quantification, program_.quantification_fold);
974
}
975

Y
yangfei 已提交
976
template <>
977 978
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
979 980 981
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
982
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
983
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
984
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
985
          continue;
L
liuruilong 已提交
986
        } else {
987
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
988
        }
L
liuruilong 已提交
989

Y
yangfei 已提交
990
        char *origin_data =
L
liuruilong 已提交
991
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
992
        char *data = origin_data;
Y
yangfei 已提交
993
        cl_context context = program_.scope->GetCLScpoe()->Context();
994
        const TensorDesc &desc = var_desc->Tensor_desc();
995 996 997 998 999
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
1000
        float *tensorInput = static_cast<float *>(
1001 1002
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
1003

1004
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
1005

L
liuruilong 已提交
1006 1007
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
1008

1009
        delete origin_data;
Y
yangfei 已提交
1010
        paddle_mobile::memory::Free(tensorInput);
1011
      } else {
1012 1013
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
1014
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
1015 1016
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
1017

1018 1019 1020
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
1021
          LOG(kLOG_DEBUG1) << "init image of " << var_desc->Name();
L
liuruilong 已提交
1022
          cl_image->InitEmptyImage(context, command_queue, ddim);
1023
        }
Y
yangfei 已提交
1024 1025 1026 1027
      }
    }
  }
}
1028

Y
yangfei 已提交
1029
template <>
1030
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
1031 1032
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
1033 1034
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
1035 1036
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
1037
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
1038 1039 1040 1041
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, program_.combined_params_len);
    }
Y
yangfei 已提交
1042 1043
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
1044
    self_alloc = true;
L
liuruilong 已提交
1045
    origin_data = ReadFileToBuff(program_.para_path);
1046 1047 1048 1049
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, GetFileLength(program_.para_path));
    }
Y
yangfei 已提交
1050 1051
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
1052
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
1053

1054
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
1055 1056 1057
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
1058
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
1059
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
1060
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
1061
          continue;
L
liuruilong 已提交
1062
        } else {
1063
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
1064 1065 1066 1067
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

1068 1069
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
1070 1071 1072 1073 1074

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
1075 1076 1077
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
1078 1079 1080 1081

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

1082 1083
        paddle_mobile::memory::Free(tensorInput);
      } else {
1084
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
1085
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
1086 1087
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
1088 1089
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
1090 1091 1092
        bool shouldResize = true;
        if (ddim.size() > 4) {
          for (int i = 0; i < ddim.size() - 4; ++i) {
1093
            if (ddim[i] != 0 && ddim[i] != 1) {
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
              shouldResize = false;
              break;
            }
          }
          if (shouldResize) {
            std::vector<int64_t> temp_intput_dims;
            temp_intput_dims.reserve(static_cast<size_t>(4));
            for (int i = ddim.size() - 4; i < ddim.size(); ++i) {
              temp_intput_dims.push_back(ddim[i]);
            }
            ddim = framework::make_ddim(temp_intput_dims);
          }
        }
1107
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
1108
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
1109 1110 1111
      }
    }
  }
Y
yangfei 已提交
1112
  if (self_alloc) {
1113
    delete data;
Y
yangfei 已提交
1114
  }
Y
yangfei 已提交
1115
  LOG(kLOG_INFO) << " end init combine memory ";
1116
}
Y
yangfei 已提交
1117 1118 1119

#endif

1120
template class Executor<CPU, float>;
Y
yangfei 已提交
1121

1122
template class Executor<FPGA, float>;
W
wangliu 已提交
1123

1124
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
1125 1126

}  // namespace framework
W
wangliu 已提交
1127
}  // namespace paddle_mobile