executor.cpp 38.9 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hjchen2 已提交
15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <unordered_map>
18
#include <utility>
W
wangliu 已提交
19
#include <vector>
L
liuruilong 已提交
20
#include "common/enforce.h"
L
liuruilong 已提交
21
#include "common/log.h"
22
#include "framework/context.h"
L
liuruilong 已提交
23
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
24 25
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
26
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
27 28 29 30
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
H
hjchen2 已提交
31
#include "memory/t_malloc.h"
32
#include "pass/memory_optimize.h"
33
#include "pass/model_obfuscate.h"
L
update  
liuruilong 已提交
34 35
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
36
#include "pass/memory_optimize_cl.h"
L
update  
liuruilong 已提交
37
#endif
W
wangliu 已提交
38 39

namespace paddle_mobile {
40
namespace framework {
41

W
wangliu 已提交
42 43
#pragma mark - executor

44
template <typename Device, typename T>
45 46
void Executor<Device, T>::SetThreadNum(int thread_num, PowerMode power_mode) {
  CPUContext::Context()->set_thread_num(thread_num, power_mode);
47 48
}

49
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
50 51 52 53
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
54
    : program_(program),
H
hjchen2 已提交
55 56
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
57 58
      lod_mode_(lod_mode),
      config_(config) {
59
  DLOG << "executor in lod mode: " << lod_mode;
60

W
wangliu 已提交
61
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
62
  variable_ptr->SetValue<int>(batch_size);
63 64

  program_desc_ =
Refine  
陈后江 已提交
65
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
66 67
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
C
Chon 已提交
68 69
#if !defined(PADDLE_MOBILE_FPGA) && !defined(PADDLE_MOBILE_FPGA_KD) && \
    !defined(PADDLE_MOBILE_CL)
70
  if (config_.memory_optimization_level != NoMemoryOptimization) {
71 72
    pass::MemoryOptPass()(program_desc_.get(), program_.scope.get(),
                          config_.memory_optimization_level);
Y
Yanzhan Yang 已提交
73
  }
74
#endif
75 76 77 78
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
  const auto &blocks = program_desc_->Blocks();
79 80 81 82 83 84 85 86
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
87
        op_desc->GetAttrMap(), program_.scope.get());
88 89 90 91
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
92
    }
93
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
94
  }
95 96 97
#ifdef PADDLE_MOBILE_FPGA_V2
  InitQuantMemory();
#endif
W
wangliu 已提交
98
  if (program_.combined) {
L
liuruilong 已提交
99 100 101 102
    InitCombineMemory();
  } else {
    InitMemory();
  }
103
  int count = 0;
Z
zp7 已提交
104
#ifdef PADDLE_MOBILE_PROFILE
105 106 107
  std::vector<ProfInfo> profile(ops_of_block0_.size());
  struct timespec ts;
  int op_index = 0;
Z
zp7 已提交
108
#endif
109
  for (auto &op_handler : ops_of_block0_) {
Z
zp7 已提交
110 111 112 113
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
114
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
115 116 117
    if (op_handler->Type() == "feed" || op_handler->Type() == "fetch") {
      op_handler->setPrePostType(config_.pre_post_type);
    }
118
    op_handler->Init();
Z
zp7 已提交
119 120
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
121 122
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
Z
zp7 已提交
123
#endif
L
liuruilong 已提交
124
  }
Z
zp7 已提交
125 126 127 128
#ifdef PADDLE_MOBILE_PROFILE
  printf("================[ op init profile ]==================\n");
  PrintProfile(profile);
#endif
129 130 131 132 133 134
  ApplyMemoryOptimise(config, lod_mode);
}

template <typename Device, typename T>
void Executor<Device, T>::ApplyMemoryOptimise(
    const PaddleMobileConfigInternal &config, const bool lod_mode) const {}
135 136

#ifdef PADDLE_MOBILE_CL
137 138 139
template <>
void Executor<GPU_CL, float>::ApplyMemoryOptimise(
    const PaddleMobileConfigInternal &config, const bool lod_mode) const {
140 141 142 143 144
  if (!config.load_when_predict && !lod_mode &&
      config_.memory_optimization_level != NoMemoryOptimization) {
    pass::MemoryOptPassCl()(program_desc_.get(), program_.scope.get(),
                            config_.memory_optimization_level);
  }
W
wangliu 已提交
145
}
146
#endif
W
wangliu 已提交
147

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

175
template <typename T>
176
static void LoadMemInternal(void **data, LoDTensor *tensor,
177
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
178
  char **data_buf = reinterpret_cast<char **>(data);
179
  int64_t size = tensor->numel();
180
  T *tensor_data = tensor->mutable_data<T>();
181 182
  if (quant_uint8) {
    // should be moved into operator init function
183 184
    float min_value;
    float max_value;
185 186 187
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
188
    const float factor = (max_value - min_value) / 255.0;
189
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
190 191
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
192
    }
193
    *data_buf += size * sizeof(uint8_t);
194
  } else {
195 196
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
197
  }
198
}
W
wangliu 已提交
199

200 201 202 203
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
204
  char **data_buf = reinterpret_cast<char **>(data);
205
  // version
206
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
207
  *data_buf += sizeof(uint32_t);
208
  // lod information
H
hjchen2 已提交
209 210
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
211
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
212
  *data_buf += sizeof(uint64_t);
213 214 215 216

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
217
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
218
    *data_buf += sizeof(uint64_t);
219
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
220
    memory::Copy(tmp_dim.data(), *data_buf, size);
221
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
222
    *data_buf += size;
W
wangliu 已提交
223
  }
224
  // tensor version
225
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
226
  *data_buf += sizeof(uint32_t);
227
  // tensor desc size
228
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
229
  *data_buf += sizeof(int32_t);
230
  // skip tensor desc
Refine  
陈后江 已提交
231
  *data_buf += tensor_desc_size;
232

233 234
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
235 236
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
237
    case VARTYPE_TYPE_FP32:
238 239
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
240
      break;
241
    case VARTYPE_TYPE_INT8:
242
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
243
      break;
244
    case VARTYPE_TYPE_INT32:
245
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
246 247
      break;
    default:
248
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
249
  }
W
wangliu 已提交
250 251
}

252 253 254
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
255 256 257 258
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
259
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
260 261
          continue;
        }
H
hjchen2 已提交
262
        DLOG << "init persistable var: " << var_desc->Name();
Refine  
陈后江 已提交
263
        char *origin_data =
Refine  
陈后江 已提交
264
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
265
        char *data = origin_data;
H
update  
hjchen2 已提交
266
        auto tensor = var->template GetMutable<LoDTensor>();
267 268
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
269
      } else {
270
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
271
        varInputMemory(var_desc, var);
W
wangliu 已提交
272 273 274 275 276
      }
    }
  }
}

277 278
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
279
  char *origin_data = nullptr;
Refine  
陈后江 已提交
280
  bool self_alloc = false;
281
  if (program_.combined_params_buf && program_.combined_params_len) {
282 283
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
284 285 286 287
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, program_.combined_params_len);
    }
288
  } else {
Refine  
陈后江 已提交
289
    self_alloc = true;
Refine  
陈后江 已提交
290
    origin_data = ReadFileToBuff(program_.para_path);
291 292 293 294
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, GetFileLength(program_.para_path));
    }
295
  }
Refine  
陈后江 已提交
296 297
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
298
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
299 300 301 302
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
303
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
304 305
          continue;
        }
L
liuruilong 已提交
306 307

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
308
        auto tensor = var->template GetMutable<LoDTensor>();
309
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
310
      } else {
H
update  
hjchen2 已提交
311 312
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
313 314 315
      }
    }
  }
Refine  
陈后江 已提交
316
  if (self_alloc) {
317
    delete[] origin_data;
Refine  
陈后江 已提交
318 319
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
320
}
321

C
Chon 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335
static void ClearNoPersistableTensorArray(const framework::ProgramDesc *program,
                                          framework::Scope *scope) {
  for (const auto &block : program->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
        auto var = scope->Var(var_desc->Name());
        auto array = var->template GetMutable<framework::LoDTensorArray>();
        array->resize(1);
      }
    }
  }
}

L
liuruilong 已提交
336
template <typename Device, typename T>
L
liuruilong 已提交
337
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
338 339 340
  if (input_tensor.dims().size() != 4) {
    return;
  }
L
liuruilong 已提交
341 342 343
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
344 345 346 347 348 349
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
        DLOG << "InitNoPersistableMemory var " << var_desc->Name();
        auto tensor = var->template GetMutable<LoDTensor>();
        if (tensor->IsInitialized() && tensor->dims().size() == 4) {
          DLOG << "var's tensor is Initialized or dims size != 4";
L
liuruilong 已提交
350
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
351 352 353 354
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
355 356 357
          tensor->template mutable_data_new<T>();
          DLOG << "var's tensor dims " << tensor_dim;
          DLOG << "var's tensor new dims " << new_dim;
H
update  
hjchen2 已提交
358
        } else {
359
          DLOG << "var's tensor is not Initialized ???";
L
liuruilong 已提交
360 361 362 363 364 365
        }
      }
    }
  }
}

366 367
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
368
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
369
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
370
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
371 372 373
#ifdef PADDLE_MOBILE_FPGA_V2
  tensor->init(type_id<int8_t>().hash_code());
#else
374
  tensor->init(type_id<float>().hash_code());
375
#endif
376 377
  return true;
#endif
H
update  
hjchen2 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
391
  }
H
update  
hjchen2 已提交
392
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
393
}
L
liuruilong 已提交
394

395 396 397 398 399
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
400
  }
401 402 403 404 405 406 407 408
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
409
  }
410
  return this->Predict();
W
wangliu 已提交
411
}
xiebaiyuan's avatar
xiebaiyuan 已提交
412

413 414 415
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
416 417 418 419 420 421 422
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
423
  Tensor feed_tensor(input, make_ddim(dims));
424
  SetInput(feed_tensor, input_name);
425 426
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
427 428
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
429 430 431 432 433 434
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
435

436 437 438
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
439
  int index = 0;
440
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
441
    index = feed_indices_.find(var_name)->second;
442
  }
H
hjchen2 已提交
443 444 445 446 447 448
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
449 450
  if (feed_indices_.size() == 1) {
    auto &dim = input.dims();
451 452 453
    if (lod_mode_ && product(dim) < 0.9 * product(input_dim_last_)) {
      InitNoPersistableMemory(target);
    }
454 455 456
    input_dim_has_changed_ = input_dim_last_ != dim;
    input_dim_last_ = static_cast<DDim>(dim);
  }
457
}
xiebaiyuan's avatar
xiebaiyuan 已提交
458

459 460 461
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
462
  int index = 0;
463
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
464
    index = feed_indices_.find(var_name)->second;
465
  }
H
hjchen2 已提交
466 467 468 469 470 471 472
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
473 474
  if (feed_indices_.size() == 1) {
    auto &dim = input.dims();
475 476 477
    if (lod_mode_ && product(dim) < 0.9 * product(input_dim_last_)) {
      InitNoPersistableMemory(target);
    }
478 479 480
    input_dim_has_changed_ = input_dim_last_ != dim;
    input_dim_last_ = static_cast<DDim>(dim);
  }
481 482 483 484 485
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
486 487 488 489 490 491 492 493 494
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
495

496 497 498 499 500 501 502
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
503
}
xiebaiyuan's avatar
xiebaiyuan 已提交
504

505 506 507 508 509 510 511 512 513 514 515 516 517 518
#ifdef PADDLE_MOBILE_CL
template <typename Device, typename T>
const CLImage *Executor<Device, T>::GetOutputImage(
    const std::string &var_name) {
  auto var = program_.scope->FindVar(var_name);
  if (var->IsInitialized() && var->template IsType<framework::CLImage>()) {
    const CLImage *cl_image = var->template Get<framework::CLImage>();
    return cl_image;
  } else {
    return nullptr;
  }
}
#endif

519 520
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
521
  try {
522
#if _OPENMP
523
    omp_set_num_threads(CPUContext::Context()->get_thread_num());
524
#endif
525 526 527
    // clear all no persistable tensor array since write_to_array
    // is always push back a new tensor in the array
    ClearNoPersistableTensorArray(program_desc_.get(), program_.scope.get());
528

xiebaiyuan's avatar
xiebaiyuan 已提交
529
#ifdef PADDLE_MOBILE_PROFILE
530 531 532
    std::vector<ProfInfo> profile(ops_of_block0_.size());
    struct timespec ts;
    int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
533
#endif
534 535
    for (int i = 0; i < ops_of_block0_.size(); ++i) {
      auto &op_handler = ops_of_block0_[i];
xiebaiyuan's avatar
xiebaiyuan 已提交
536
#ifdef PADDLE_MOBILE_PROFILE
537 538
      clock_gettime(CLOCK_MONOTONIC, &ts);
      profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
539
#endif
540 541 542 543 544 545
      DLOG << i << "th, "
           << "run op: " << op_handler->Type();
      if (lod_mode_ && input_dim_has_changed_) {
        op_handler->InferShape();
      }
      op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
546
#ifdef PADDLE_MOBILE_PROFILE
547 548 549
      clock_gettime(CLOCK_MONOTONIC, &ts);
      profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
      ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
550
#endif
551 552 553 554
    }
    if (feed_indices_.size() == 1) {
      input_dim_has_changed_ = false;
    }
555 556

#ifdef PADDLE_MOBILE_PROFILE
557
    PrintProfile(profile);
558
#endif
559 560 561 562 563 564 565 566
    return PMSuccess;
  } catch (PaddleMobileException &e) {
    exception_msg_ = e.what();
    return PMException;
  } catch (std::exception &e) {
    exception_msg_ = e.what();
    return PMException;
  }
567 568
}

xiebaiyuan's avatar
xiebaiyuan 已提交
569
#ifdef PADDLE_MOBILE_PROFILE
570 571 572
template <typename Device, typename T>
void Executor<Device, T>::PrintProfile(
    const vector<Executor<Device, T>::ProfInfo> &profile) const {
xiebaiyuan's avatar
xiebaiyuan 已提交
573 574 575 576
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
577 578 579 580 581 582
    if (this->ops_of_block0_[i]->Type() == "conv2d" ||
        this->ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = this->ops_of_block0_[i]->Inputs();

      auto *filter = GetVarValue<ProfileTensorType>("Filter", inputs,
                                                    *(this->program_.scope));
583
      int kernel_size = filter->dims()[2];
584 585
      _tp[this->ops_of_block0_[i]->Type() + "_" +
          std::to_string(kernel_size)] += timeCost;
586
    } else {
587
      _tp[this->ops_of_block0_[i]->Type()] += timeCost;
588
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
589
  }
H
hjchen2 已提交
590
  printf("====================[ profile ]======================\n");
591
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
607
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
608
}
609
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
610

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
template <typename Device, typename T>
void Executor<Device, T>::FeedTensorData(const vector<framework::Tensor> &v) {
  auto input_size = v.size();
  auto *feed_var = program_.scope->Var("feed");

  PADDLE_MOBILE_ENFORCE(input_size == feed_indices_.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
    framework::LoDTensor &target =
        feed_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    target.ShareDataWith(v[input_size - i - 1]);
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
  auto *fetch_var = program_.scope->Var("fetch");
  auto output_size = fetch_indices_.size();
  for (int i = 0; i < output_size; i++) {
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    v->push_back(&target);
  }
}

637 638 639 640 641
template <typename Device, typename T>
std::string Executor<Device, T>::GetExceptionMsg() {
  return exception_msg_;
}

642
#ifdef PADDLE_MOBILE_FPGA
643 644 645 646
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
647
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
648 649
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
650
}
651

652 653
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
654
  InjectVariable(t, "feed0");
655
}
656

657
template <typename Device, typename T>
658
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
659
  auto input_size = v.size();
Z
zhangyang0701 已提交
660
  int index = 0;
661 662 663
  // auto vars = program_.scope->VarContain("feed", &index);
  // PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
  //                    "input data number not correct");
664
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
665
    auto var = program_.scope->Var("feed", i + index);
666 667 668 669 670 671 672 673 674
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
675 676
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
677 678
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
679

680
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
681
    auto var = program_.scope->Var("fetch", i + index);
682 683
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
684
  }
685
}
686

687
template <typename Device, typename T>
688 689 690 691
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
692
}
693

694 695
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
696
  auto &ops = ops_of_block0_;
697

Z
zhangyang 已提交
698 699 700 701 702
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
703 704 705
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
706
}
707

708 709
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
710
  auto &ops = ops_of_block0_;
711
  end = end < 0 ? static_cast<int>(ops.size()) : end;
712 713 714 715 716 717 718 719 720 721 722 723
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
724
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
725 726 727 728 729 730 731
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
732
}
733

734 735
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
736
  Predict_From_To(start);
737
}
738

739 740
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
741
  Predict_From_To(0, end);
742
}
743 744 745 746 747 748
#ifdef PADDLE_MOBILE_FPGA_V2
std::map<std::string, float> LoadQuantValFromFile(std::string filename) {
  std::map<std::string, float> quantValList;
  std::ifstream in;
  in.open(filename, std::ios::in);
  if (!in.is_open()) {
749 750
    // std::cout << "open File Failed." << std::endl;
    DLOG << "open File Failed.";
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
    exit(-1);
  }

  std::string line;
  while (getline(in, line)) {
    std::string splitStr = " : ";
    std::string::size_type pos;
    pos = line.find(splitStr);
    std::string subStr[2];
    subStr[0] = line.substr(0, pos);
    subStr[1] = line.substr(pos + splitStr.size(), line.size());
    quantValList.insert(std::make_pair(subStr[0], atof(subStr[1].c_str())));
  }
  in.close();
  return quantValList;
}
767

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
template <typename Device, typename T>
void Executor<Device, T>::InitQuantMemory() {
  std::string quantValFilePath;
  if (program_.combined) {
    quantValFilePath = program_.para_path;
    quantValFilePath =
        quantValFilePath.substr(0, (quantValFilePath.length() - 6));
    quantValFilePath = quantValFilePath + "scale";
  } else {
    quantValFilePath = program_.model_path + "/scale";
  }
  std::map<std::string, float> quantValList =
      LoadQuantValFromFile(quantValFilePath);
  auto ops = ops_of_block0_;
  for (int id = 0; id < ops.size(); id++) {
    auto op = ops[id];
    auto input_keys = op->GetInputKeys();
    auto inputs = op->Inputs();
    for (auto key = input_keys.begin(); key != input_keys.end(); key++) {
      auto inputs_vars = inputs[*key];
      int count = inputs_vars.size();
      for (int i = 0; i < count; i++) {
790 791 792 793 794 795
        if (inputs_vars[i] != "feed") {
          auto tensor = GetTensorByName(inputs_vars[i]);
          tensor->scale[0] = quantValList[inputs_vars[i]];
          DLOG << "input variance name : " << inputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
796 797 798 799 800 801 802 803
      }
    }
    auto output_keys = op->GetOutKeys();
    auto outputs = op->Outputs();
    for (auto key = output_keys.begin(); key != output_keys.end(); key++) {
      auto outputs_vars = outputs[*key];
      int count = outputs_vars.size();
      for (int i = 0; i < count; i++) {
804 805 806 807 808 809
        if (outputs_vars[i] != "fetch") {
          auto tensor = GetTensorByName(outputs_vars[i]);
          tensor->scale[0] = quantValList[outputs_vars[i]];
          DLOG << "output variance name : " << outputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
810 811 812 813 814 815
      }
    }
  }
}
#endif
#endif
Y
yangfei 已提交
816
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
817 818
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
819
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
820 821 822 823 824 825 826
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
827
          var->template GetMutable<framework::LoDTensorArray>();
xiebaiyuan's avatar
xiebaiyuan 已提交
828 829 830 831
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
832
          auto cl_image = var->template GetMutable<CLImage>();
xiebaiyuan's avatar
xiebaiyuan 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
851

xiebaiyuan's avatar
xiebaiyuan 已提交
852 853 854
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
855 856 857 858 859
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
860
  framework::LoDTensor *input_tensor =
H
hjchen2 已提交
861
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
862 863

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
864 865
  DLOG << "target_tensor->IsInitialized() " << input_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << input_tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
866
  DLOG << "input.dims()   " << input.dims();
867
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
868
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
869
    if (input_dim_last_ != input.dims()) {
870
      DLOG << "SetInput ---- > resize1";
871 872
      input_tensor->Resize(input.dims());
      input_tensor->mutable_data<float>();
873 874 875 876 877 878 879
      if (config_.memory_optimization_level == NoMemoryOptimization) {
        InitNoPersistableMemory(*input_tensor);
      } else {
        pass::MemoryOptPassCl()(program_desc_.get(), program_.scope.get(),
                                config_.memory_optimization_level,
                                input.dims());
      }
xiebaiyuan's avatar
xiebaiyuan 已提交
880 881 882
    }
  } else {
    DLOG << "SetInput ---- > resize2";
883
    input_tensor->Resize(input.dims());
xiebaiyuan's avatar
xiebaiyuan 已提交
884 885
    DLOG << "SetInput ---- > ShareDataWith";
  }
886
  input_tensor->ShareDataWith(input);
887 888 889
  if (feed_indices_.size() == 1) {
    input_dim_has_changed_ = input_dim_last_ != input.dims();
  }
890 891
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
892 893
}

894 895 896
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
897

Y
yangfei 已提交
898
template <>
H
hjchen2 已提交
899 900
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

938
  const TensorDesc &desc = var_desc.Tensor_desc();
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
973

Y
yangfei 已提交
974
template <>
975 976
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
977 978 979
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
980
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
981
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
982
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
983
          continue;
L
liuruilong 已提交
984
        } else {
985
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
986
        }
L
liuruilong 已提交
987

Y
yangfei 已提交
988
        char *origin_data =
L
liuruilong 已提交
989
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
990
        char *data = origin_data;
Y
yangfei 已提交
991
        cl_context context = program_.scope->GetCLScpoe()->Context();
992
        const TensorDesc &desc = var_desc->Tensor_desc();
993 994 995 996 997
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
998
        float *tensorInput = static_cast<float *>(
999 1000
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
1001

1002
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
1003

L
liuruilong 已提交
1004 1005
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
1006

1007
        delete origin_data;
Y
yangfei 已提交
1008
        paddle_mobile::memory::Free(tensorInput);
1009
      } else {
1010 1011
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
1012
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
1013 1014
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
1015

1016 1017 1018
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
1019
          DLOG << var_desc->Name();
L
liuruilong 已提交
1020
          cl_image->InitEmptyImage(context, command_queue, ddim);
1021
        }
Y
yangfei 已提交
1022 1023 1024 1025
      }
    }
  }
}
1026

Y
yangfei 已提交
1027
template <>
1028
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
1029 1030
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
1031 1032
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
1033 1034
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
1035
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
1036 1037 1038 1039
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, program_.combined_params_len);
    }
Y
yangfei 已提交
1040 1041
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
1042
    self_alloc = true;
L
liuruilong 已提交
1043
    origin_data = ReadFileToBuff(program_.para_path);
1044 1045 1046 1047
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, GetFileLength(program_.para_path));
    }
Y
yangfei 已提交
1048 1049
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
1050
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
1051

1052
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
1053 1054 1055
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
1056
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
1057
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
1058
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
1059
          continue;
L
liuruilong 已提交
1060
        } else {
1061
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
1062 1063 1064 1065
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

1066 1067
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
1068 1069 1070 1071 1072

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
1073 1074 1075
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
1076 1077 1078 1079

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

1080 1081
        paddle_mobile::memory::Free(tensorInput);
      } else {
1082
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
1083
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
1084 1085
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
1086 1087
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
1088 1089 1090
        bool shouldResize = true;
        if (ddim.size() > 4) {
          for (int i = 0; i < ddim.size() - 4; ++i) {
1091
            if (ddim[i] != 0 && ddim[i] != 1) {
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
              shouldResize = false;
              break;
            }
          }
          if (shouldResize) {
            std::vector<int64_t> temp_intput_dims;
            temp_intput_dims.reserve(static_cast<size_t>(4));
            for (int i = ddim.size() - 4; i < ddim.size(); ++i) {
              temp_intput_dims.push_back(ddim[i]);
            }
            ddim = framework::make_ddim(temp_intput_dims);
          }
        }
1105
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
1106
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
1107 1108 1109
      }
    }
  }
Y
yangfei 已提交
1110
  if (self_alloc) {
1111
    delete data;
Y
yangfei 已提交
1112
  }
Y
yangfei 已提交
1113
  LOG(kLOG_INFO) << " end init combine memory ";
1114
}
Y
yangfei 已提交
1115 1116 1117

#endif

1118
template class Executor<CPU, float>;
Y
yangfei 已提交
1119

1120
template class Executor<FPGA, float>;
W
wangliu 已提交
1121

1122
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
1123 1124

}  // namespace framework
W
wangliu 已提交
1125
}  // namespace paddle_mobile