executor.cpp 38.6 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hjchen2 已提交
15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <unordered_map>
18
#include <utility>
W
wangliu 已提交
19
#include <vector>
L
liuruilong 已提交
20
#include "common/enforce.h"
L
liuruilong 已提交
21
#include "common/log.h"
22
#include "framework/context.h"
L
liuruilong 已提交
23
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
24 25
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
26
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
27 28 29 30
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
H
hjchen2 已提交
31
#include "memory/t_malloc.h"
32
#include "pass/memory_optimize.h"
33
#include "pass/model_obfuscate.h"
L
update  
liuruilong 已提交
34 35
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
36
#include "pass/memory_optimize_cl.h"
L
update  
liuruilong 已提交
37
#endif
W
wangliu 已提交
38 39

namespace paddle_mobile {
40
namespace framework {
41

W
wangliu 已提交
42 43
#pragma mark - executor

44
template <typename Device, typename T>
45 46
void Executor<Device, T>::SetThreadNum(int thread_num, PowerMode power_mode) {
  CPUContext::Context()->set_thread_num(thread_num, power_mode);
47 48
}

49
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
50 51 52 53
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
54
    : program_(program),
H
hjchen2 已提交
55 56
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
57 58
      lod_mode_(lod_mode),
      config_(config) {
59
  DLOG << "executor in lod mode: " << lod_mode;
60

W
wangliu 已提交
61
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
62
  variable_ptr->SetValue<int>(batch_size);
63 64

  program_desc_ =
Refine  
陈后江 已提交
65
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
66 67
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
C
Chon 已提交
68 69
#if !defined(PADDLE_MOBILE_FPGA) && !defined(PADDLE_MOBILE_FPGA_KD) && \
    !defined(PADDLE_MOBILE_CL)
70
  if (config_.memory_optimization_level != NoMemoryOptimization) {
71 72
    pass::MemoryOptPass()(program_desc_.get(), program_.scope.get(),
                          config_.memory_optimization_level);
Y
Yanzhan Yang 已提交
73
  }
74
#endif
75 76 77 78
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
  const auto &blocks = program_desc_->Blocks();
79 80 81 82 83 84 85 86
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
87
        op_desc->GetAttrMap(), program_.scope.get());
88 89 90 91
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
92
    }
93
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
94
  }
95 96 97
#ifdef PADDLE_MOBILE_FPGA_V2
  InitQuantMemory();
#endif
W
wangliu 已提交
98
  if (program_.combined) {
L
liuruilong 已提交
99 100 101 102
    InitCombineMemory();
  } else {
    InitMemory();
  }
103
  int count = 0;
Z
zp7 已提交
104
#ifdef PADDLE_MOBILE_PROFILE
105 106 107
  std::vector<ProfInfo> profile(ops_of_block0_.size());
  struct timespec ts;
  int op_index = 0;
Z
zp7 已提交
108
#endif
109
  for (auto &op_handler : ops_of_block0_) {
Z
zp7 已提交
110 111 112 113
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
114
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
115 116 117
    if (op_handler->Type() == "feed" || op_handler->Type() == "fetch") {
      op_handler->setPrePostType(config_.pre_post_type);
    }
118
    op_handler->Init();
Z
zp7 已提交
119 120
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
121 122
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
Z
zp7 已提交
123
#endif
L
liuruilong 已提交
124
  }
Z
zp7 已提交
125 126 127 128
#ifdef PADDLE_MOBILE_PROFILE
  printf("================[ op init profile ]==================\n");
  PrintProfile(profile);
#endif
129 130 131 132 133 134 135 136

#ifdef PADDLE_MOBILE_CL
  if (!config.load_when_predict && !lod_mode &&
      config_.memory_optimization_level != NoMemoryOptimization) {
    pass::MemoryOptPassCl()(program_desc_.get(), program_.scope.get(),
                            config_.memory_optimization_level);
  }
#endif
W
wangliu 已提交
137 138
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

166
template <typename T>
167
static void LoadMemInternal(void **data, LoDTensor *tensor,
168
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
169
  char **data_buf = reinterpret_cast<char **>(data);
170
  int64_t size = tensor->numel();
171
  T *tensor_data = tensor->mutable_data<T>();
172 173
  if (quant_uint8) {
    // should be moved into operator init function
174 175
    float min_value;
    float max_value;
176 177 178
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
179
    const float factor = (max_value - min_value) / 255.0;
180
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
181 182
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
183
    }
184
    *data_buf += size * sizeof(uint8_t);
185
  } else {
186 187
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
188
  }
189
}
W
wangliu 已提交
190

191 192 193 194
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
195
  char **data_buf = reinterpret_cast<char **>(data);
196
  // version
197
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
198
  *data_buf += sizeof(uint32_t);
199
  // lod information
H
hjchen2 已提交
200 201
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
202
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
203
  *data_buf += sizeof(uint64_t);
204 205 206 207

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
208
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
209
    *data_buf += sizeof(uint64_t);
210
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
211
    memory::Copy(tmp_dim.data(), *data_buf, size);
212
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
213
    *data_buf += size;
W
wangliu 已提交
214
  }
215
  // tensor version
216
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
217
  *data_buf += sizeof(uint32_t);
218
  // tensor desc size
219
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
220
  *data_buf += sizeof(int32_t);
221
  // skip tensor desc
Refine  
陈后江 已提交
222
  *data_buf += tensor_desc_size;
223

224 225
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
226 227
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
228
    case VARTYPE_TYPE_FP32:
229 230
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
231
      break;
232
    case VARTYPE_TYPE_INT8:
233
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
234
      break;
235
    case VARTYPE_TYPE_INT32:
236
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
237 238
      break;
    default:
239
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
240
  }
W
wangliu 已提交
241 242
}

243 244 245
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
246 247 248 249
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
250
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
251 252
          continue;
        }
H
hjchen2 已提交
253
        DLOG << "init persistable var: " << var_desc->Name();
Refine  
陈后江 已提交
254
        char *origin_data =
Refine  
陈后江 已提交
255
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
256
        char *data = origin_data;
H
update  
hjchen2 已提交
257
        auto tensor = var->template GetMutable<LoDTensor>();
258 259
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
260
      } else {
261
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
262
        varInputMemory(var_desc, var);
W
wangliu 已提交
263 264 265 266 267
      }
    }
  }
}

268 269
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
270
  char *origin_data = nullptr;
Refine  
陈后江 已提交
271
  bool self_alloc = false;
272
  if (program_.combined_params_buf && program_.combined_params_len) {
273 274
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
275 276 277 278
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, program_.combined_params_len);
    }
279
  } else {
Refine  
陈后江 已提交
280
    self_alloc = true;
Refine  
陈后江 已提交
281
    origin_data = ReadFileToBuff(program_.para_path);
282 283 284 285
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, GetFileLength(program_.para_path));
    }
286
  }
Refine  
陈后江 已提交
287 288
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
289
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
290 291 292 293
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
294
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
295 296
          continue;
        }
L
liuruilong 已提交
297 298

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
299
        auto tensor = var->template GetMutable<LoDTensor>();
300
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
301
      } else {
H
update  
hjchen2 已提交
302 303
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
304 305 306
      }
    }
  }
Refine  
陈后江 已提交
307
  if (self_alloc) {
308
    delete[] origin_data;
Refine  
陈后江 已提交
309 310
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
311
}
312

C
Chon 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326
static void ClearNoPersistableTensorArray(const framework::ProgramDesc *program,
                                          framework::Scope *scope) {
  for (const auto &block : program->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
        auto var = scope->Var(var_desc->Name());
        auto array = var->template GetMutable<framework::LoDTensorArray>();
        array->resize(1);
      }
    }
  }
}

L
liuruilong 已提交
327
template <typename Device, typename T>
L
liuruilong 已提交
328
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
329 330 331
  if (input_tensor.dims().size() != 4) {
    return;
  }
L
liuruilong 已提交
332 333 334
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
335 336 337 338 339 340
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
        DLOG << "InitNoPersistableMemory var " << var_desc->Name();
        auto tensor = var->template GetMutable<LoDTensor>();
        if (tensor->IsInitialized() && tensor->dims().size() == 4) {
          DLOG << "var's tensor is Initialized or dims size != 4";
L
liuruilong 已提交
341
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
342 343 344 345
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
346 347 348
          tensor->template mutable_data_new<T>();
          DLOG << "var's tensor dims " << tensor_dim;
          DLOG << "var's tensor new dims " << new_dim;
H
update  
hjchen2 已提交
349
        } else {
350
          DLOG << "var's tensor is not Initialized ???";
L
liuruilong 已提交
351 352 353 354 355 356
        }
      }
    }
  }
}

357 358
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
359
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
360
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
361
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
362 363 364
#ifdef PADDLE_MOBILE_FPGA_V2
  tensor->init(type_id<int8_t>().hash_code());
#else
365
  tensor->init(type_id<float>().hash_code());
366
#endif
367 368
  return true;
#endif
H
update  
hjchen2 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
382
  }
H
update  
hjchen2 已提交
383
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
384
}
L
liuruilong 已提交
385

386 387 388 389 390
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
391
  }
392 393 394 395 396 397 398 399
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
400
  }
401
  return this->Predict();
W
wangliu 已提交
402
}
xiebaiyuan's avatar
xiebaiyuan 已提交
403

404 405 406
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
407 408 409 410 411 412 413
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
414
  Tensor feed_tensor(input, make_ddim(dims));
415
  SetInput(feed_tensor, input_name);
416 417
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
418 419
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
420 421 422 423 424 425
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
426

427 428 429
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
430
  int index = 0;
431
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
432
    index = feed_indices_.find(var_name)->second;
433
  }
H
hjchen2 已提交
434 435 436 437 438 439
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
440 441
  if (feed_indices_.size() == 1) {
    auto &dim = input.dims();
442 443 444
    if (lod_mode_ && product(dim) < 0.9 * product(input_dim_last_)) {
      InitNoPersistableMemory(target);
    }
445 446 447
    input_dim_has_changed_ = input_dim_last_ != dim;
    input_dim_last_ = static_cast<DDim>(dim);
  }
448
}
xiebaiyuan's avatar
xiebaiyuan 已提交
449

450 451 452
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
453
  int index = 0;
454
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
455
    index = feed_indices_.find(var_name)->second;
456
  }
H
hjchen2 已提交
457 458 459 460 461 462 463
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
464 465
  if (feed_indices_.size() == 1) {
    auto &dim = input.dims();
466 467 468
    if (lod_mode_ && product(dim) < 0.9 * product(input_dim_last_)) {
      InitNoPersistableMemory(target);
    }
469 470 471
    input_dim_has_changed_ = input_dim_last_ != dim;
    input_dim_last_ = static_cast<DDim>(dim);
  }
472 473 474 475 476
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
477 478 479 480 481 482 483 484 485
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
486

487 488 489 490 491 492 493
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
494
}
xiebaiyuan's avatar
xiebaiyuan 已提交
495

496 497 498 499 500 501 502 503 504 505 506 507 508 509
#ifdef PADDLE_MOBILE_CL
template <typename Device, typename T>
const CLImage *Executor<Device, T>::GetOutputImage(
    const std::string &var_name) {
  auto var = program_.scope->FindVar(var_name);
  if (var->IsInitialized() && var->template IsType<framework::CLImage>()) {
    const CLImage *cl_image = var->template Get<framework::CLImage>();
    return cl_image;
  } else {
    return nullptr;
  }
}
#endif

510 511
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
512
  try {
513
#if _OPENMP
514
    omp_set_num_threads(CPUContext::Context()->get_thread_num());
515
#endif
516 517 518
    // clear all no persistable tensor array since write_to_array
    // is always push back a new tensor in the array
    ClearNoPersistableTensorArray(program_desc_.get(), program_.scope.get());
519

xiebaiyuan's avatar
xiebaiyuan 已提交
520
#ifdef PADDLE_MOBILE_PROFILE
521 522 523
    std::vector<ProfInfo> profile(ops_of_block0_.size());
    struct timespec ts;
    int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
524
#endif
525 526
    for (int i = 0; i < ops_of_block0_.size(); ++i) {
      auto &op_handler = ops_of_block0_[i];
xiebaiyuan's avatar
xiebaiyuan 已提交
527
#ifdef PADDLE_MOBILE_PROFILE
528 529
      clock_gettime(CLOCK_MONOTONIC, &ts);
      profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
530
#endif
531 532 533 534 535 536
      DLOG << i << "th, "
           << "run op: " << op_handler->Type();
      if (lod_mode_ && input_dim_has_changed_) {
        op_handler->InferShape();
      }
      op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
537
#ifdef PADDLE_MOBILE_PROFILE
538 539 540
      clock_gettime(CLOCK_MONOTONIC, &ts);
      profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
      ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
541
#endif
542 543 544 545
    }
    if (feed_indices_.size() == 1) {
      input_dim_has_changed_ = false;
    }
546 547

#ifdef PADDLE_MOBILE_PROFILE
548
    PrintProfile(profile);
549
#endif
550 551 552 553 554 555 556 557
    return PMSuccess;
  } catch (PaddleMobileException &e) {
    exception_msg_ = e.what();
    return PMException;
  } catch (std::exception &e) {
    exception_msg_ = e.what();
    return PMException;
  }
558 559
}

xiebaiyuan's avatar
xiebaiyuan 已提交
560
#ifdef PADDLE_MOBILE_PROFILE
561 562 563
template <typename Device, typename T>
void Executor<Device, T>::PrintProfile(
    const vector<Executor<Device, T>::ProfInfo> &profile) const {
xiebaiyuan's avatar
xiebaiyuan 已提交
564 565 566 567
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
568 569 570 571 572 573
    if (this->ops_of_block0_[i]->Type() == "conv2d" ||
        this->ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = this->ops_of_block0_[i]->Inputs();

      auto *filter = GetVarValue<ProfileTensorType>("Filter", inputs,
                                                    *(this->program_.scope));
574
      int kernel_size = filter->dims()[2];
575 576
      _tp[this->ops_of_block0_[i]->Type() + "_" +
          std::to_string(kernel_size)] += timeCost;
577
    } else {
578
      _tp[this->ops_of_block0_[i]->Type()] += timeCost;
579
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
580
  }
H
hjchen2 已提交
581
  printf("====================[ profile ]======================\n");
582
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
598
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
599
}
600
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
601

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
template <typename Device, typename T>
void Executor<Device, T>::FeedTensorData(const vector<framework::Tensor> &v) {
  auto input_size = v.size();
  auto *feed_var = program_.scope->Var("feed");

  PADDLE_MOBILE_ENFORCE(input_size == feed_indices_.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
    framework::LoDTensor &target =
        feed_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    target.ShareDataWith(v[input_size - i - 1]);
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
  auto *fetch_var = program_.scope->Var("fetch");
  auto output_size = fetch_indices_.size();
  for (int i = 0; i < output_size; i++) {
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    v->push_back(&target);
  }
}

628 629 630 631 632
template <typename Device, typename T>
std::string Executor<Device, T>::GetExceptionMsg() {
  return exception_msg_;
}

633
#ifdef PADDLE_MOBILE_FPGA
634 635 636 637
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
638
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
639 640
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
641
}
642

643 644
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
645
  InjectVariable(t, "feed0");
646
}
647

648
template <typename Device, typename T>
649
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
650
  auto input_size = v.size();
Z
zhangyang0701 已提交
651
  int index = 0;
652 653 654
  // auto vars = program_.scope->VarContain("feed", &index);
  // PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
  //                    "input data number not correct");
655
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
656
    auto var = program_.scope->Var("feed", i + index);
657 658 659 660 661 662 663 664 665
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
666 667
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
668 669
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
670

671
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
672
    auto var = program_.scope->Var("fetch", i + index);
673 674
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
675
  }
676
}
677

678
template <typename Device, typename T>
679 680 681 682
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
683
}
684

685 686
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
687
  auto &ops = ops_of_block0_;
688

Z
zhangyang 已提交
689 690 691 692 693
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
694 695 696
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
697
}
698

699 700
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
701
  auto &ops = ops_of_block0_;
702
  end = end < 0 ? static_cast<int>(ops.size()) : end;
703 704 705 706 707 708 709 710 711 712 713 714
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
715
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
716 717 718 719 720 721 722
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
723
}
724

725 726
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
727
  Predict_From_To(start);
728
}
729

730 731
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
732
  Predict_From_To(0, end);
733
}
734 735 736 737 738 739
#ifdef PADDLE_MOBILE_FPGA_V2
std::map<std::string, float> LoadQuantValFromFile(std::string filename) {
  std::map<std::string, float> quantValList;
  std::ifstream in;
  in.open(filename, std::ios::in);
  if (!in.is_open()) {
740 741
    // std::cout << "open File Failed." << std::endl;
    DLOG << "open File Failed.";
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
    exit(-1);
  }

  std::string line;
  while (getline(in, line)) {
    std::string splitStr = " : ";
    std::string::size_type pos;
    pos = line.find(splitStr);
    std::string subStr[2];
    subStr[0] = line.substr(0, pos);
    subStr[1] = line.substr(pos + splitStr.size(), line.size());
    quantValList.insert(std::make_pair(subStr[0], atof(subStr[1].c_str())));
  }
  in.close();
  return quantValList;
}
758

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
template <typename Device, typename T>
void Executor<Device, T>::InitQuantMemory() {
  std::string quantValFilePath;
  if (program_.combined) {
    quantValFilePath = program_.para_path;
    quantValFilePath =
        quantValFilePath.substr(0, (quantValFilePath.length() - 6));
    quantValFilePath = quantValFilePath + "scale";
  } else {
    quantValFilePath = program_.model_path + "/scale";
  }
  std::map<std::string, float> quantValList =
      LoadQuantValFromFile(quantValFilePath);
  auto ops = ops_of_block0_;
  for (int id = 0; id < ops.size(); id++) {
    auto op = ops[id];
    auto input_keys = op->GetInputKeys();
    auto inputs = op->Inputs();
    for (auto key = input_keys.begin(); key != input_keys.end(); key++) {
      auto inputs_vars = inputs[*key];
      int count = inputs_vars.size();
      for (int i = 0; i < count; i++) {
781 782 783 784 785 786
        if (inputs_vars[i] != "feed") {
          auto tensor = GetTensorByName(inputs_vars[i]);
          tensor->scale[0] = quantValList[inputs_vars[i]];
          DLOG << "input variance name : " << inputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
787 788 789 790 791 792 793 794
      }
    }
    auto output_keys = op->GetOutKeys();
    auto outputs = op->Outputs();
    for (auto key = output_keys.begin(); key != output_keys.end(); key++) {
      auto outputs_vars = outputs[*key];
      int count = outputs_vars.size();
      for (int i = 0; i < count; i++) {
795 796 797 798 799 800
        if (outputs_vars[i] != "fetch") {
          auto tensor = GetTensorByName(outputs_vars[i]);
          tensor->scale[0] = quantValList[outputs_vars[i]];
          DLOG << "output variance name : " << outputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
801 802 803 804 805 806
      }
    }
  }
}
#endif
#endif
Y
yangfei 已提交
807
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
808 809
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
810
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
811 812 813 814 815 816 817
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
818
          var->template GetMutable<framework::LoDTensorArray>();
xiebaiyuan's avatar
xiebaiyuan 已提交
819 820 821 822
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
823
          auto cl_image = var->template GetMutable<CLImage>();
xiebaiyuan's avatar
xiebaiyuan 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
842

xiebaiyuan's avatar
xiebaiyuan 已提交
843 844 845
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
846 847 848 849 850
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
851
  framework::LoDTensor *input_tensor =
H
hjchen2 已提交
852
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
853 854

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
855 856
  DLOG << "target_tensor->IsInitialized() " << input_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << input_tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
857
  DLOG << "input.dims()   " << input.dims();
858
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
859
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
860
    if (input_dim_last_ != input.dims()) {
861
      DLOG << "SetInput ---- > resize1";
862 863
      input_tensor->Resize(input.dims());
      input_tensor->mutable_data<float>();
864 865 866 867 868 869 870
      if (config_.memory_optimization_level == NoMemoryOptimization) {
        InitNoPersistableMemory(*input_tensor);
      } else {
        pass::MemoryOptPassCl()(program_desc_.get(), program_.scope.get(),
                                config_.memory_optimization_level,
                                input.dims());
      }
xiebaiyuan's avatar
xiebaiyuan 已提交
871 872 873
    }
  } else {
    DLOG << "SetInput ---- > resize2";
874
    input_tensor->Resize(input.dims());
xiebaiyuan's avatar
xiebaiyuan 已提交
875 876
    DLOG << "SetInput ---- > ShareDataWith";
  }
877
  input_tensor->ShareDataWith(input);
878 879 880
  if (feed_indices_.size() == 1) {
    input_dim_has_changed_ = input_dim_last_ != input.dims();
  }
881 882
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
883 884
}

885 886 887
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
888

Y
yangfei 已提交
889
template <>
H
hjchen2 已提交
890 891
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

929
  const TensorDesc &desc = var_desc.Tensor_desc();
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
964

Y
yangfei 已提交
965
template <>
966 967
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
968 969 970
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
971
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
972
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
973
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
974
          continue;
L
liuruilong 已提交
975
        } else {
976
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
977
        }
L
liuruilong 已提交
978

Y
yangfei 已提交
979
        char *origin_data =
L
liuruilong 已提交
980
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
981
        char *data = origin_data;
Y
yangfei 已提交
982
        cl_context context = program_.scope->GetCLScpoe()->Context();
983
        const TensorDesc &desc = var_desc->Tensor_desc();
984 985 986 987 988
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
989
        float *tensorInput = static_cast<float *>(
990 991
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
992

993
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
994

L
liuruilong 已提交
995 996
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
997

998
        delete origin_data;
Y
yangfei 已提交
999
        paddle_mobile::memory::Free(tensorInput);
1000
      } else {
1001 1002
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
1003
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
1004 1005
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
1006

1007 1008 1009
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
1010
          DLOG << var_desc->Name();
L
liuruilong 已提交
1011
          cl_image->InitEmptyImage(context, command_queue, ddim);
1012
        }
Y
yangfei 已提交
1013 1014 1015 1016
      }
    }
  }
}
1017

Y
yangfei 已提交
1018
template <>
1019
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
1020 1021
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
1022 1023
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
1024 1025
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
1026
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
1027 1028 1029 1030
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, program_.combined_params_len);
    }
Y
yangfei 已提交
1031 1032
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
1033
    self_alloc = true;
L
liuruilong 已提交
1034
    origin_data = ReadFileToBuff(program_.para_path);
1035 1036 1037 1038
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, GetFileLength(program_.para_path));
    }
Y
yangfei 已提交
1039 1040
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
1041
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
1042

1043
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
1044 1045 1046
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
1047
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
1048
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
1049
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
1050
          continue;
L
liuruilong 已提交
1051
        } else {
1052
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
1053 1054 1055 1056
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

1057 1058
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
1059 1060 1061 1062 1063

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
1064 1065 1066
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
1067 1068 1069 1070

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

1071 1072
        paddle_mobile::memory::Free(tensorInput);
      } else {
1073
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
1074
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
1075 1076
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
1077 1078
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
1079 1080 1081
        bool shouldResize = true;
        if (ddim.size() > 4) {
          for (int i = 0; i < ddim.size() - 4; ++i) {
1082
            if (ddim[i] != 0 && ddim[i] != 1) {
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
              shouldResize = false;
              break;
            }
          }
          if (shouldResize) {
            std::vector<int64_t> temp_intput_dims;
            temp_intput_dims.reserve(static_cast<size_t>(4));
            for (int i = ddim.size() - 4; i < ddim.size(); ++i) {
              temp_intput_dims.push_back(ddim[i]);
            }
            ddim = framework::make_ddim(temp_intput_dims);
          }
        }
1096
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
1097
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
1098 1099 1100
      }
    }
  }
Y
yangfei 已提交
1101
  if (self_alloc) {
1102
    delete data;
Y
yangfei 已提交
1103
  }
Y
yangfei 已提交
1104
  LOG(kLOG_INFO) << " end init combine memory ";
1105
}
Y
yangfei 已提交
1106 1107 1108

#endif

1109
template class Executor<CPU, float>;
Y
yangfei 已提交
1110

1111
template class Executor<FPGA, float>;
W
wangliu 已提交
1112

1113
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
1114 1115

}  // namespace framework
W
wangliu 已提交
1116
}  // namespace paddle_mobile