executor.cpp 38.2 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hjchen2 已提交
15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <unordered_map>
18
#include <utility>
W
wangliu 已提交
19
#include <vector>
L
liuruilong 已提交
20
#include "common/enforce.h"
L
liuruilong 已提交
21
#include "common/log.h"
22
#include "framework/context.h"
L
liuruilong 已提交
23
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
24 25
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
26
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
27 28 29 30
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
H
hjchen2 已提交
31
#include "memory/t_malloc.h"
32
#include "pass/memory_optimize.h"
33
#include "pass/model_obfuscate.h"
L
update  
liuruilong 已提交
34 35
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
36
#include "pass/memory_optimize_super.h"
L
update  
liuruilong 已提交
37
#endif
W
wangliu 已提交
38 39

namespace paddle_mobile {
40
namespace framework {
41

W
wangliu 已提交
42 43
#pragma mark - executor

44
template <typename Device, typename T>
45 46
void Executor<Device, T>::SetThreadNum(int thread_num, PowerMode power_mode) {
  CPUContext::Context()->set_thread_num(thread_num, power_mode);
47 48
}

49
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
50 51 52 53
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
54
    : program_(program),
H
hjchen2 已提交
55 56
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
57 58
      lod_mode_(lod_mode),
      config_(config) {
59
  DLOG << "executor in lod mode: " << lod_mode;
60

W
wangliu 已提交
61
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
62
  variable_ptr->SetValue<int>(batch_size);
63 64

  program_desc_ =
Refine  
陈后江 已提交
65
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
66 67
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
C
Chon 已提交
68 69
#if !defined(PADDLE_MOBILE_FPGA) && !defined(PADDLE_MOBILE_FPGA_KD) && \
    !defined(PADDLE_MOBILE_CL)
70
  if (config_.memory_optimization_level != NoMemoryOptimization) {
71 72
    pass::MemoryOptPass()(program_desc_.get(), program_.scope.get(),
                          config_.memory_optimization_level);
Y
Yanzhan Yang 已提交
73
  }
74
#endif
75 76 77 78
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
  const auto &blocks = program_desc_->Blocks();
79 80 81 82 83 84 85 86
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
87
        op_desc->GetAttrMap(), program_.scope.get());
88 89 90 91
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
92
    }
93
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
94
  }
95 96 97
#ifdef PADDLE_MOBILE_FPGA_V2
  InitQuantMemory();
#endif
W
wangliu 已提交
98
  if (program_.combined) {
L
liuruilong 已提交
99 100 101 102
    InitCombineMemory();
  } else {
    InitMemory();
  }
103
  int count = 0;
Z
zp7 已提交
104
#ifdef PADDLE_MOBILE_PROFILE
105 106 107
  std::vector<ProfInfo> profile(ops_of_block0_.size());
  struct timespec ts;
  int op_index = 0;
Z
zp7 已提交
108
#endif
109
  for (auto &op_handler : ops_of_block0_) {
Z
zp7 已提交
110 111 112 113
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
114
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
115 116 117
    if (op_handler->Type() == "feed" || op_handler->Type() == "fetch") {
      op_handler->setPrePostType(config_.pre_post_type);
    }
118
    op_handler->Init();
Z
zp7 已提交
119 120
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
121 122
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
Z
zp7 已提交
123
#endif
L
liuruilong 已提交
124
  }
Z
zp7 已提交
125 126 127 128
#ifdef PADDLE_MOBILE_PROFILE
  printf("================[ op init profile ]==================\n");
  PrintProfile(profile);
#endif
W
wangliu 已提交
129 130
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

158
template <typename T>
159
static void LoadMemInternal(void **data, LoDTensor *tensor,
160
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
161
  char **data_buf = reinterpret_cast<char **>(data);
162
  int64_t size = tensor->numel();
163
  T *tensor_data = tensor->mutable_data<T>();
164 165
  if (quant_uint8) {
    // should be moved into operator init function
166 167
    float min_value;
    float max_value;
168 169 170
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
171
    const float factor = (max_value - min_value) / 255.0;
172
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
173 174
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
175
    }
176
    *data_buf += size * sizeof(uint8_t);
177
  } else {
178 179
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
180
  }
181
}
W
wangliu 已提交
182

183 184 185 186
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
187
  char **data_buf = reinterpret_cast<char **>(data);
188
  // version
189
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
190
  *data_buf += sizeof(uint32_t);
191
  // lod information
H
hjchen2 已提交
192 193
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
194
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
195
  *data_buf += sizeof(uint64_t);
196 197 198 199

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
200
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
201
    *data_buf += sizeof(uint64_t);
202
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
203
    memory::Copy(tmp_dim.data(), *data_buf, size);
204
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
205
    *data_buf += size;
W
wangliu 已提交
206
  }
207
  // tensor version
208
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
209
  *data_buf += sizeof(uint32_t);
210
  // tensor desc size
211
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
212
  *data_buf += sizeof(int32_t);
213
  // skip tensor desc
Refine  
陈后江 已提交
214
  *data_buf += tensor_desc_size;
215

216 217
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
218 219
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
220
    case VARTYPE_TYPE_FP32:
221 222
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
223
      break;
224
    case VARTYPE_TYPE_INT8:
225
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
226
      break;
227
    case VARTYPE_TYPE_INT32:
228
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
229 230
      break;
    default:
231
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
232
  }
W
wangliu 已提交
233 234
}

235 236 237
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
238 239 240 241
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
242
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
243 244
          continue;
        }
H
hjchen2 已提交
245
        DLOG << "init persistable var: " << var_desc->Name();
Refine  
陈后江 已提交
246
        char *origin_data =
Refine  
陈后江 已提交
247
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
248
        char *data = origin_data;
H
update  
hjchen2 已提交
249
        auto tensor = var->template GetMutable<LoDTensor>();
250 251
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
252
      } else {
253
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
254
        varInputMemory(var_desc, var);
W
wangliu 已提交
255 256 257 258 259
      }
    }
  }
}

260 261
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
262
  char *origin_data = nullptr;
Refine  
陈后江 已提交
263
  bool self_alloc = false;
264
  if (program_.combined_params_buf && program_.combined_params_len) {
265 266
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
267 268 269 270
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, program_.combined_params_len);
    }
271
  } else {
Refine  
陈后江 已提交
272
    self_alloc = true;
Refine  
陈后江 已提交
273
    origin_data = ReadFileToBuff(program_.para_path);
274 275 276 277
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, GetFileLength(program_.para_path));
    }
278
  }
Refine  
陈后江 已提交
279 280
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
281
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
282 283 284 285
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
286
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
287 288
          continue;
        }
L
liuruilong 已提交
289 290

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
291
        auto tensor = var->template GetMutable<LoDTensor>();
292
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
293
      } else {
H
update  
hjchen2 已提交
294 295
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
296 297 298
      }
    }
  }
Refine  
陈后江 已提交
299
  if (self_alloc) {
300
    delete[] origin_data;
Refine  
陈后江 已提交
301 302
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
303
}
304

C
Chon 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318
static void ClearNoPersistableTensorArray(const framework::ProgramDesc *program,
                                          framework::Scope *scope) {
  for (const auto &block : program->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
        auto var = scope->Var(var_desc->Name());
        auto array = var->template GetMutable<framework::LoDTensorArray>();
        array->resize(1);
      }
    }
  }
}

L
liuruilong 已提交
319
template <typename Device, typename T>
L
liuruilong 已提交
320
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
321 322 323
  if (input_tensor.dims().size() != 4) {
    return;
  }
L
liuruilong 已提交
324 325 326
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
327 328 329 330 331 332
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
        DLOG << "InitNoPersistableMemory var " << var_desc->Name();
        auto tensor = var->template GetMutable<LoDTensor>();
        if (tensor->IsInitialized() && tensor->dims().size() == 4) {
          DLOG << "var's tensor is Initialized or dims size != 4";
L
liuruilong 已提交
333
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
334 335 336 337
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
338 339 340
          tensor->template mutable_data_new<T>();
          DLOG << "var's tensor dims " << tensor_dim;
          DLOG << "var's tensor new dims " << new_dim;
H
update  
hjchen2 已提交
341
        } else {
342
          DLOG << "var's tensor is not Initialized ???";
L
liuruilong 已提交
343 344 345 346 347 348
        }
      }
    }
  }
}

349 350
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
351
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
352
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
353
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
354 355 356
#ifdef PADDLE_MOBILE_FPGA_V2
  tensor->init(type_id<int8_t>().hash_code());
#else
357
  tensor->init(type_id<float>().hash_code());
358
#endif
359 360
  return true;
#endif
H
update  
hjchen2 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
374
  }
H
update  
hjchen2 已提交
375
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
376
}
L
liuruilong 已提交
377

378 379 380 381 382
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
383
  }
384 385 386 387 388 389 390 391
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
392
  }
393
  return this->Predict();
W
wangliu 已提交
394
}
xiebaiyuan's avatar
xiebaiyuan 已提交
395

396 397 398
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
399 400 401 402 403 404 405
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
406
  Tensor feed_tensor(input, make_ddim(dims));
407
  SetInput(feed_tensor, input_name);
408 409
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
410 411
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
412 413 414 415 416 417
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
418

419 420 421
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
422
  int index = 0;
423
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
424
    index = feed_indices_.find(var_name)->second;
425
  }
H
hjchen2 已提交
426 427 428 429 430 431
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
432 433
  if (feed_indices_.size() == 1) {
    auto &dim = input.dims();
434 435 436
    if (lod_mode_ && product(dim) < 0.9 * product(input_dim_last_)) {
      InitNoPersistableMemory(target);
    }
437 438 439
    input_dim_has_changed_ = input_dim_last_ != dim;
    input_dim_last_ = static_cast<DDim>(dim);
  }
440
}
xiebaiyuan's avatar
xiebaiyuan 已提交
441

442 443 444
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
445
  int index = 0;
446
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
447
    index = feed_indices_.find(var_name)->second;
448
  }
H
hjchen2 已提交
449 450 451 452 453 454 455
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
456 457
  if (feed_indices_.size() == 1) {
    auto &dim = input.dims();
458 459 460
    if (lod_mode_ && product(dim) < 0.9 * product(input_dim_last_)) {
      InitNoPersistableMemory(target);
    }
461 462 463
    input_dim_has_changed_ = input_dim_last_ != dim;
    input_dim_last_ = static_cast<DDim>(dim);
  }
464 465 466 467 468
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
469 470 471 472 473 474 475 476 477
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
478

479 480 481 482 483 484 485
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
486
}
xiebaiyuan's avatar
xiebaiyuan 已提交
487

488 489 490 491 492 493 494 495 496 497 498 499 500 501
#ifdef PADDLE_MOBILE_CL
template <typename Device, typename T>
const CLImage *Executor<Device, T>::GetOutputImage(
    const std::string &var_name) {
  auto var = program_.scope->FindVar(var_name);
  if (var->IsInitialized() && var->template IsType<framework::CLImage>()) {
    const CLImage *cl_image = var->template Get<framework::CLImage>();
    return cl_image;
  } else {
    return nullptr;
  }
}
#endif

502 503
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
504
  try {
505
#if _OPENMP
506
    omp_set_num_threads(CPUContext::Context()->get_thread_num());
507
#endif
508 509 510
    // clear all no persistable tensor array since write_to_array
    // is always push back a new tensor in the array
    ClearNoPersistableTensorArray(program_desc_.get(), program_.scope.get());
511

xiebaiyuan's avatar
xiebaiyuan 已提交
512
#ifdef PADDLE_MOBILE_PROFILE
513 514 515
    std::vector<ProfInfo> profile(ops_of_block0_.size());
    struct timespec ts;
    int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
516
#endif
517 518
    for (int i = 0; i < ops_of_block0_.size(); ++i) {
      auto &op_handler = ops_of_block0_[i];
xiebaiyuan's avatar
xiebaiyuan 已提交
519
#ifdef PADDLE_MOBILE_PROFILE
520 521
      clock_gettime(CLOCK_MONOTONIC, &ts);
      profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
522
#endif
523 524 525 526 527 528
      DLOG << i << "th, "
           << "run op: " << op_handler->Type();
      if (lod_mode_ && input_dim_has_changed_) {
        op_handler->InferShape();
      }
      op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
529
#ifdef PADDLE_MOBILE_PROFILE
530 531 532
      clock_gettime(CLOCK_MONOTONIC, &ts);
      profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
      ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
533
#endif
534 535 536 537
    }
    if (feed_indices_.size() == 1) {
      input_dim_has_changed_ = false;
    }
538 539

#ifdef PADDLE_MOBILE_PROFILE
540
    PrintProfile(profile);
541
#endif
542 543 544 545 546 547 548 549
    return PMSuccess;
  } catch (PaddleMobileException &e) {
    exception_msg_ = e.what();
    return PMException;
  } catch (std::exception &e) {
    exception_msg_ = e.what();
    return PMException;
  }
550 551
}

xiebaiyuan's avatar
xiebaiyuan 已提交
552
#ifdef PADDLE_MOBILE_PROFILE
553 554 555
template <typename Device, typename T>
void Executor<Device, T>::PrintProfile(
    const vector<Executor<Device, T>::ProfInfo> &profile) const {
xiebaiyuan's avatar
xiebaiyuan 已提交
556 557 558 559
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
560 561 562 563 564 565
    if (this->ops_of_block0_[i]->Type() == "conv2d" ||
        this->ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = this->ops_of_block0_[i]->Inputs();

      auto *filter = GetVarValue<ProfileTensorType>("Filter", inputs,
                                                    *(this->program_.scope));
566
      int kernel_size = filter->dims()[2];
567 568
      _tp[this->ops_of_block0_[i]->Type() + "_" +
          std::to_string(kernel_size)] += timeCost;
569
    } else {
570
      _tp[this->ops_of_block0_[i]->Type()] += timeCost;
571
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
572
  }
H
hjchen2 已提交
573
  printf("====================[ profile ]======================\n");
574
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
590
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
591
}
592
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
593

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
template <typename Device, typename T>
void Executor<Device, T>::FeedTensorData(const vector<framework::Tensor> &v) {
  auto input_size = v.size();
  auto *feed_var = program_.scope->Var("feed");

  PADDLE_MOBILE_ENFORCE(input_size == feed_indices_.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
    framework::LoDTensor &target =
        feed_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    target.ShareDataWith(v[input_size - i - 1]);
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
  auto *fetch_var = program_.scope->Var("fetch");
  auto output_size = fetch_indices_.size();
  for (int i = 0; i < output_size; i++) {
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    v->push_back(&target);
  }
}

620 621 622 623 624
template <typename Device, typename T>
std::string Executor<Device, T>::GetExceptionMsg() {
  return exception_msg_;
}

625
#ifdef PADDLE_MOBILE_FPGA
626 627 628 629
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
630
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
631 632
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
633
}
634

635 636
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
637
  InjectVariable(t, "feed0");
638
}
639

640
template <typename Device, typename T>
641
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
642
  auto input_size = v.size();
Z
zhangyang0701 已提交
643
  int index = 0;
644 645 646
  // auto vars = program_.scope->VarContain("feed", &index);
  // PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
  //                    "input data number not correct");
647
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
648
    auto var = program_.scope->Var("feed", i + index);
649 650 651 652 653 654 655 656 657
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
658 659
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
660 661
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
662

663
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
664
    auto var = program_.scope->Var("fetch", i + index);
665 666
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
667
  }
668
}
669

670
template <typename Device, typename T>
671 672 673 674
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
675
}
676

677 678
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
679
  auto &ops = ops_of_block0_;
680

Z
zhangyang 已提交
681 682 683 684 685
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
686 687 688
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
689
}
690

691 692
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
693
  auto &ops = ops_of_block0_;
694
  end = end < 0 ? static_cast<int>(ops.size()) : end;
695 696 697 698 699 700 701 702 703 704 705 706
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
707
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
708 709 710 711 712 713 714
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
715
}
716

717 718
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
719
  Predict_From_To(start);
720
}
721

722 723
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
724
  Predict_From_To(0, end);
725
}
726 727 728 729 730 731
#ifdef PADDLE_MOBILE_FPGA_V2
std::map<std::string, float> LoadQuantValFromFile(std::string filename) {
  std::map<std::string, float> quantValList;
  std::ifstream in;
  in.open(filename, std::ios::in);
  if (!in.is_open()) {
732 733
    // std::cout << "open File Failed." << std::endl;
    DLOG << "open File Failed.";
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
    exit(-1);
  }

  std::string line;
  while (getline(in, line)) {
    std::string splitStr = " : ";
    std::string::size_type pos;
    pos = line.find(splitStr);
    std::string subStr[2];
    subStr[0] = line.substr(0, pos);
    subStr[1] = line.substr(pos + splitStr.size(), line.size());
    quantValList.insert(std::make_pair(subStr[0], atof(subStr[1].c_str())));
  }
  in.close();
  return quantValList;
}
750

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
template <typename Device, typename T>
void Executor<Device, T>::InitQuantMemory() {
  std::string quantValFilePath;
  if (program_.combined) {
    quantValFilePath = program_.para_path;
    quantValFilePath =
        quantValFilePath.substr(0, (quantValFilePath.length() - 6));
    quantValFilePath = quantValFilePath + "scale";
  } else {
    quantValFilePath = program_.model_path + "/scale";
  }
  std::map<std::string, float> quantValList =
      LoadQuantValFromFile(quantValFilePath);
  auto ops = ops_of_block0_;
  for (int id = 0; id < ops.size(); id++) {
    auto op = ops[id];
    auto input_keys = op->GetInputKeys();
    auto inputs = op->Inputs();
    for (auto key = input_keys.begin(); key != input_keys.end(); key++) {
      auto inputs_vars = inputs[*key];
      int count = inputs_vars.size();
      for (int i = 0; i < count; i++) {
773 774 775 776 777 778
        if (inputs_vars[i] != "feed") {
          auto tensor = GetTensorByName(inputs_vars[i]);
          tensor->scale[0] = quantValList[inputs_vars[i]];
          DLOG << "input variance name : " << inputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
779 780 781 782 783 784 785 786
      }
    }
    auto output_keys = op->GetOutKeys();
    auto outputs = op->Outputs();
    for (auto key = output_keys.begin(); key != output_keys.end(); key++) {
      auto outputs_vars = outputs[*key];
      int count = outputs_vars.size();
      for (int i = 0; i < count; i++) {
787 788 789 790 791 792
        if (outputs_vars[i] != "fetch") {
          auto tensor = GetTensorByName(outputs_vars[i]);
          tensor->scale[0] = quantValList[outputs_vars[i]];
          DLOG << "output variance name : " << outputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
793 794 795 796 797 798
      }
    }
  }
}
#endif
#endif
Y
yangfei 已提交
799
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
800 801
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
802
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
803 804 805 806 807 808 809
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
810
          var->template GetMutable<framework::LoDTensorArray>();
xiebaiyuan's avatar
xiebaiyuan 已提交
811 812 813 814
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
815
          auto cl_image = var->template GetMutable<CLImage>();
xiebaiyuan's avatar
xiebaiyuan 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
834

xiebaiyuan's avatar
xiebaiyuan 已提交
835 836 837
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
838 839 840 841 842
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
843
  framework::LoDTensor *input_tensor =
H
hjchen2 已提交
844
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
845 846

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
847 848
  DLOG << "target_tensor->IsInitialized() " << input_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << input_tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
849
  DLOG << "input.dims()   " << input.dims();
850
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
851
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
852
    if (input_dim_last_ != input.dims()) {
853
      DLOG << "SetInput ---- > resize1";
854 855 856 857 858 859
      input_tensor->Resize(input.dims());
      input_tensor->mutable_data<float>();
      //     InitNoPersistableMemory(*input_tensor);
      pass::MemoryOptPassSuper()(program_desc_.get(), program_.scope.get(),
                                 config_.memory_optimization_level,
                                 input.dims());
xiebaiyuan's avatar
xiebaiyuan 已提交
860 861 862
    }
  } else {
    DLOG << "SetInput ---- > resize2";
863
    input_tensor->Resize(input.dims());
xiebaiyuan's avatar
xiebaiyuan 已提交
864 865
    DLOG << "SetInput ---- > ShareDataWith";
  }
866
  input_tensor->ShareDataWith(input);
867 868 869
  if (feed_indices_.size() == 1) {
    input_dim_has_changed_ = input_dim_last_ != input.dims();
  }
870 871
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
872 873
}

874 875 876
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
877

Y
yangfei 已提交
878
template <>
H
hjchen2 已提交
879 880
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

918
  const TensorDesc &desc = var_desc.Tensor_desc();
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
953

Y
yangfei 已提交
954
template <>
955 956
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
957 958 959
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
960
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
961
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
962
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
963
          continue;
L
liuruilong 已提交
964
        } else {
965
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
966
        }
L
liuruilong 已提交
967

Y
yangfei 已提交
968
        char *origin_data =
L
liuruilong 已提交
969
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
970
        char *data = origin_data;
Y
yangfei 已提交
971
        cl_context context = program_.scope->GetCLScpoe()->Context();
972
        const TensorDesc &desc = var_desc->Tensor_desc();
973 974 975 976 977
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
978
        float *tensorInput = static_cast<float *>(
979 980
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
981

982
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
983

L
liuruilong 已提交
984 985
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
986

987
        delete origin_data;
Y
yangfei 已提交
988
        paddle_mobile::memory::Free(tensorInput);
989
      } else {
990 991
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
992
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
993 994
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
995

996 997 998
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
999
          DLOG << var_desc->Name();
L
liuruilong 已提交
1000
          cl_image->InitEmptyImage(context, command_queue, ddim);
1001
        }
Y
yangfei 已提交
1002 1003 1004 1005
      }
    }
  }
}
1006

Y
yangfei 已提交
1007
template <>
1008
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
1009 1010
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
1011 1012
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
1013 1014
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
1015
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
1016 1017 1018 1019
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, program_.combined_params_len);
    }
Y
yangfei 已提交
1020 1021
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
1022
    self_alloc = true;
L
liuruilong 已提交
1023
    origin_data = ReadFileToBuff(program_.para_path);
1024 1025 1026 1027
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, GetFileLength(program_.para_path));
    }
Y
yangfei 已提交
1028 1029
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
1030
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
1031

1032
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
1033 1034 1035
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
1036
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
1037
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
1038
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
1039
          continue;
L
liuruilong 已提交
1040
        } else {
1041
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
1042 1043 1044 1045
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

1046 1047
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
1048 1049 1050 1051 1052

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
1053 1054 1055
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
1056 1057 1058 1059

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

1060 1061
        paddle_mobile::memory::Free(tensorInput);
      } else {
1062
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
1063
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
1064 1065
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
1066 1067
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
1068 1069 1070
        bool shouldResize = true;
        if (ddim.size() > 4) {
          for (int i = 0; i < ddim.size() - 4; ++i) {
1071
            if (ddim[i] != 0 && ddim[i] != 1) {
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
              shouldResize = false;
              break;
            }
          }
          if (shouldResize) {
            std::vector<int64_t> temp_intput_dims;
            temp_intput_dims.reserve(static_cast<size_t>(4));
            for (int i = ddim.size() - 4; i < ddim.size(); ++i) {
              temp_intput_dims.push_back(ddim[i]);
            }
            ddim = framework::make_ddim(temp_intput_dims);
          }
        }
1085
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
1086
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
1087 1088 1089
      }
    }
  }
Y
yangfei 已提交
1090
  if (self_alloc) {
1091
    delete data;
Y
yangfei 已提交
1092
  }
Y
yangfei 已提交
1093
  LOG(kLOG_INFO) << " end init combine memory ";
1094
}
Y
yangfei 已提交
1095 1096 1097

#endif

1098
template class Executor<CPU, float>;
Y
yangfei 已提交
1099

1100
template class Executor<FPGA, float>;
W
wangliu 已提交
1101

1102
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
1103 1104

}  // namespace framework
W
wangliu 已提交
1105
}  // namespace paddle_mobile