executor.cpp 37.5 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hjchen2 已提交
15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <unordered_map>
18
#include <utility>
W
wangliu 已提交
19
#include <vector>
L
liuruilong 已提交
20
#include "common/enforce.h"
L
liuruilong 已提交
21
#include "common/log.h"
22
#include "framework/context.h"
L
liuruilong 已提交
23
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
24 25
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
26
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
27 28 29 30
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
H
hjchen2 已提交
31
#include "memory/t_malloc.h"
32
#include "pass/memory_optimize.h"
33
#include "pass/model_obfuscate.h"
L
update  
liuruilong 已提交
34 35
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
36
#include "pass/memory_optimize_super.h"
L
update  
liuruilong 已提交
37
#endif
W
wangliu 已提交
38 39

namespace paddle_mobile {
40
namespace framework {
41

W
wangliu 已提交
42 43
#pragma mark - executor

44
template <typename Device, typename T>
45 46
void Executor<Device, T>::SetThreadNum(int thread_num, PowerMode power_mode) {
  CPUContext::Context()->set_thread_num(thread_num, power_mode);
47 48
}

49
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
50 51 52 53
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
54
    : program_(program),
H
hjchen2 已提交
55 56
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
57 58
      lod_mode_(lod_mode),
      config_(config) {
59
  DLOG << "executor in lod mode: " << lod_mode;
60

W
wangliu 已提交
61
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
62
  variable_ptr->SetValue<int>(batch_size);
63 64

  program_desc_ =
Refine  
陈后江 已提交
65
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
66 67
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
C
Chon 已提交
68 69
#if !defined(PADDLE_MOBILE_FPGA) && !defined(PADDLE_MOBILE_FPGA_KD) && \
    !defined(PADDLE_MOBILE_CL)
70
  if (config_.memory_optimization_level != NoMemoryOptimization) {
71 72
    pass::MemoryOptPass()(program_desc_.get(), program_.scope.get(),
                          config_.memory_optimization_level);
Y
Yanzhan Yang 已提交
73
  }
74
#endif
75 76 77 78
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
  const auto &blocks = program_desc_->Blocks();
79 80 81 82 83 84 85 86
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
87
        op_desc->GetAttrMap(), program_.scope.get());
88 89 90 91
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
92
    }
93
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
94
  }
95 96 97
#ifdef PADDLE_MOBILE_FPGA_V2
  InitQuantMemory();
#endif
W
wangliu 已提交
98
  if (program_.combined) {
L
liuruilong 已提交
99 100 101 102
    InitCombineMemory();
  } else {
    InitMemory();
  }
103
  int count = 0;
104 105 106
  for (auto &op_handler : ops_of_block0_) {
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
    op_handler->Init();
L
liuruilong 已提交
107
  }
W
wangliu 已提交
108 109
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

137
template <typename T>
138
static void LoadMemInternal(void **data, LoDTensor *tensor,
139
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
140
  char **data_buf = reinterpret_cast<char **>(data);
141
  int64_t size = tensor->numel();
142
  T *tensor_data = tensor->mutable_data<T>();
143 144
  if (quant_uint8) {
    // should be moved into operator init function
145 146
    float min_value;
    float max_value;
147 148 149
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
150
    const float factor = (max_value - min_value) / 255.0;
151
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
152 153
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
154
    }
155
    *data_buf += size * sizeof(uint8_t);
156
  } else {
157 158
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
159
  }
160
}
W
wangliu 已提交
161

162 163 164 165
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
166
  char **data_buf = reinterpret_cast<char **>(data);
167
  // version
168
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
169
  *data_buf += sizeof(uint32_t);
170
  // lod information
H
hjchen2 已提交
171 172
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
173
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
174
  *data_buf += sizeof(uint64_t);
175 176 177 178

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
179
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
180
    *data_buf += sizeof(uint64_t);
181
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
182
    memory::Copy(tmp_dim.data(), *data_buf, size);
183
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
184
    *data_buf += size;
W
wangliu 已提交
185
  }
186
  // tensor version
187
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
188
  *data_buf += sizeof(uint32_t);
189
  // tensor desc size
190
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
191
  *data_buf += sizeof(int32_t);
192
  // skip tensor desc
Refine  
陈后江 已提交
193
  *data_buf += tensor_desc_size;
194

195 196
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
197 198
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
199
    case VARTYPE_TYPE_FP32:
200 201
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
202
      break;
203
    case VARTYPE_TYPE_INT8:
204
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
205
      break;
206
    case VARTYPE_TYPE_INT32:
207
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
208 209
      break;
    default:
210
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
211
  }
W
wangliu 已提交
212 213
}

214 215 216
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
217 218 219 220
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
221
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
222 223
          continue;
        }
H
hjchen2 已提交
224
        DLOG << "init persistable var: " << var_desc->Name();
Refine  
陈后江 已提交
225
        char *origin_data =
Refine  
陈后江 已提交
226
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
227
        char *data = origin_data;
H
update  
hjchen2 已提交
228
        auto tensor = var->template GetMutable<LoDTensor>();
229 230
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
231
      } else {
232
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
233
        varInputMemory(var_desc, var);
W
wangliu 已提交
234 235 236 237 238
      }
    }
  }
}

239 240
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
241
  char *origin_data = nullptr;
Refine  
陈后江 已提交
242
  bool self_alloc = false;
243
  if (program_.combined_params_buf && program_.combined_params_len) {
244 245
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
246 247 248 249
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, program_.combined_params_len);
    }
250
  } else {
Refine  
陈后江 已提交
251
    self_alloc = true;
Refine  
陈后江 已提交
252
    origin_data = ReadFileToBuff(program_.para_path);
253 254 255 256
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, GetFileLength(program_.para_path));
    }
257
  }
Refine  
陈后江 已提交
258 259
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
260
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
261 262 263 264
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
265
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
266 267
          continue;
        }
L
liuruilong 已提交
268 269

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
270
        auto tensor = var->template GetMutable<LoDTensor>();
271
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
272
      } else {
H
update  
hjchen2 已提交
273 274
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
275 276 277
      }
    }
  }
Refine  
陈后江 已提交
278
  if (self_alloc) {
279
    delete[] origin_data;
Refine  
陈后江 已提交
280 281
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
282
}
283

C
Chon 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297
static void ClearNoPersistableTensorArray(const framework::ProgramDesc *program,
                                          framework::Scope *scope) {
  for (const auto &block : program->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
        auto var = scope->Var(var_desc->Name());
        auto array = var->template GetMutable<framework::LoDTensorArray>();
        array->resize(1);
      }
    }
  }
}

L
liuruilong 已提交
298
template <typename Device, typename T>
L
liuruilong 已提交
299
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
300 301 302
  if (input_tensor.dims().size() != 4) {
    return;
  }
L
liuruilong 已提交
303 304 305
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
306 307 308 309 310 311
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
        DLOG << "InitNoPersistableMemory var " << var_desc->Name();
        auto tensor = var->template GetMutable<LoDTensor>();
        if (tensor->IsInitialized() && tensor->dims().size() == 4) {
          DLOG << "var's tensor is Initialized or dims size != 4";
L
liuruilong 已提交
312
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
313 314 315 316
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
317 318 319
          tensor->template mutable_data_new<T>();
          DLOG << "var's tensor dims " << tensor_dim;
          DLOG << "var's tensor new dims " << new_dim;
H
update  
hjchen2 已提交
320
        } else {
321
          DLOG << "var's tensor is not Initialized ???";
L
liuruilong 已提交
322 323 324 325 326 327
        }
      }
    }
  }
}

328 329
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
330
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
331
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
332
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
333 334 335
#ifdef PADDLE_MOBILE_FPGA_V2
  tensor->init(type_id<int8_t>().hash_code());
#else
336
  tensor->init(type_id<float>().hash_code());
337
#endif
338 339
  return true;
#endif
H
update  
hjchen2 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
353
  }
H
update  
hjchen2 已提交
354
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
355
}
L
liuruilong 已提交
356

357 358 359 360 361
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
362
  }
363 364 365 366 367 368 369 370
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
371
  }
372
  return this->Predict();
W
wangliu 已提交
373
}
xiebaiyuan's avatar
xiebaiyuan 已提交
374

375 376 377
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
378 379 380 381 382 383 384
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
385
  Tensor feed_tensor(input, make_ddim(dims));
386
  SetInput(feed_tensor, input_name);
387 388
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
389 390
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
391 392 393 394 395 396
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
397

398 399 400
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
401
  int index = 0;
402
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
403
    index = feed_indices_.find(var_name)->second;
404
  }
H
hjchen2 已提交
405 406 407 408 409 410
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
411 412
  if (feed_indices_.size() == 1) {
    auto &dim = input.dims();
413 414 415
    if (lod_mode_ && product(dim) < 0.9 * product(input_dim_last_)) {
      InitNoPersistableMemory(target);
    }
416 417 418
    input_dim_has_changed_ = input_dim_last_ != dim;
    input_dim_last_ = static_cast<DDim>(dim);
  }
419
}
xiebaiyuan's avatar
xiebaiyuan 已提交
420

421 422 423
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
424
  int index = 0;
425
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
426
    index = feed_indices_.find(var_name)->second;
427
  }
H
hjchen2 已提交
428 429 430 431 432 433 434
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
435 436
  if (feed_indices_.size() == 1) {
    auto &dim = input.dims();
437 438 439
    if (lod_mode_ && product(dim) < 0.9 * product(input_dim_last_)) {
      InitNoPersistableMemory(target);
    }
440 441 442
    input_dim_has_changed_ = input_dim_last_ != dim;
    input_dim_last_ = static_cast<DDim>(dim);
  }
443 444 445 446 447
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
448 449 450 451 452 453 454 455 456
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
457

458 459 460 461 462 463 464
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
465
}
xiebaiyuan's avatar
xiebaiyuan 已提交
466

467 468 469 470 471 472 473 474 475 476 477 478 479 480
#ifdef PADDLE_MOBILE_CL
template <typename Device, typename T>
const CLImage *Executor<Device, T>::GetOutputImage(
    const std::string &var_name) {
  auto var = program_.scope->FindVar(var_name);
  if (var->IsInitialized() && var->template IsType<framework::CLImage>()) {
    const CLImage *cl_image = var->template Get<framework::CLImage>();
    return cl_image;
  } else {
    return nullptr;
  }
}
#endif

481 482
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
483
  try {
484
#if _OPENMP
485
    omp_set_num_threads(CPUContext::Context()->get_thread_num());
486
#endif
487 488 489
    // clear all no persistable tensor array since write_to_array
    // is always push back a new tensor in the array
    ClearNoPersistableTensorArray(program_desc_.get(), program_.scope.get());
490

xiebaiyuan's avatar
xiebaiyuan 已提交
491
#ifdef PADDLE_MOBILE_PROFILE
492 493 494
    std::vector<ProfInfo> profile(ops_of_block0_.size());
    struct timespec ts;
    int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
495
#endif
496 497
    for (int i = 0; i < ops_of_block0_.size(); ++i) {
      auto &op_handler = ops_of_block0_[i];
xiebaiyuan's avatar
xiebaiyuan 已提交
498
#ifdef PADDLE_MOBILE_PROFILE
499 500
      clock_gettime(CLOCK_MONOTONIC, &ts);
      profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
501
#endif
502 503 504 505 506 507
      DLOG << i << "th, "
           << "run op: " << op_handler->Type();
      if (lod_mode_ && input_dim_has_changed_) {
        op_handler->InferShape();
      }
      op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
508
#ifdef PADDLE_MOBILE_PROFILE
509 510 511
      clock_gettime(CLOCK_MONOTONIC, &ts);
      profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
      ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
512
#endif
513 514 515 516
    }
    if (feed_indices_.size() == 1) {
      input_dim_has_changed_ = false;
    }
517 518

#ifdef PADDLE_MOBILE_PROFILE
519
    PrintProfile(profile);
520
#endif
521 522 523 524 525 526 527 528
    return PMSuccess;
  } catch (PaddleMobileException &e) {
    exception_msg_ = e.what();
    return PMException;
  } catch (std::exception &e) {
    exception_msg_ = e.what();
    return PMException;
  }
529 530
}

xiebaiyuan's avatar
xiebaiyuan 已提交
531
#ifdef PADDLE_MOBILE_PROFILE
532 533 534
template <typename Device, typename T>
void Executor<Device, T>::PrintProfile(
    const vector<Executor<Device, T>::ProfInfo> &profile) const {
xiebaiyuan's avatar
xiebaiyuan 已提交
535 536 537 538
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
539 540 541 542 543 544
    if (this->ops_of_block0_[i]->Type() == "conv2d" ||
        this->ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = this->ops_of_block0_[i]->Inputs();

      auto *filter = GetVarValue<ProfileTensorType>("Filter", inputs,
                                                    *(this->program_.scope));
545
      int kernel_size = filter->dims()[2];
546 547
      _tp[this->ops_of_block0_[i]->Type() + "_" +
          std::to_string(kernel_size)] += timeCost;
548
    } else {
549
      _tp[this->ops_of_block0_[i]->Type()] += timeCost;
550
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
551
  }
H
hjchen2 已提交
552
  printf("====================[ profile ]======================\n");
553
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
569
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
570
}
571
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
572

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
template <typename Device, typename T>
void Executor<Device, T>::FeedTensorData(const vector<framework::Tensor> &v) {
  auto input_size = v.size();
  auto *feed_var = program_.scope->Var("feed");

  PADDLE_MOBILE_ENFORCE(input_size == feed_indices_.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
    framework::LoDTensor &target =
        feed_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    target.ShareDataWith(v[input_size - i - 1]);
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
  auto *fetch_var = program_.scope->Var("fetch");
  auto output_size = fetch_indices_.size();
  for (int i = 0; i < output_size; i++) {
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    v->push_back(&target);
  }
}

599 600 601 602 603
template <typename Device, typename T>
std::string Executor<Device, T>::GetExceptionMsg() {
  return exception_msg_;
}

604
#ifdef PADDLE_MOBILE_FPGA
605 606 607 608
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
609
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
610 611
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
612
}
613

614 615
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
616
  InjectVariable(t, "feed0");
617
}
618

619
template <typename Device, typename T>
620
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
621
  auto input_size = v.size();
Z
zhangyang0701 已提交
622
  int index = 0;
623 624 625
  // auto vars = program_.scope->VarContain("feed", &index);
  // PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
  //                    "input data number not correct");
626
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
627
    auto var = program_.scope->Var("feed", i + index);
628 629 630 631 632 633 634 635 636
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
637 638
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
639 640
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
641

642
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
643
    auto var = program_.scope->Var("fetch", i + index);
644 645
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
646
  }
647
}
648

649
template <typename Device, typename T>
650 651 652 653
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
654
}
655

656 657
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
658
  auto &ops = ops_of_block0_;
659

Z
zhangyang 已提交
660 661 662 663 664
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
665 666 667
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
668
}
669

670 671
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
672
  auto &ops = ops_of_block0_;
673
  end = end < 0 ? static_cast<int>(ops.size()) : end;
674 675 676 677 678 679 680 681 682 683 684 685
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
686
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
687 688 689 690 691 692 693
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
694
}
695

696 697
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
698
  Predict_From_To(start);
699
}
700

701 702
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
703
  Predict_From_To(0, end);
704
}
705 706 707 708 709 710
#ifdef PADDLE_MOBILE_FPGA_V2
std::map<std::string, float> LoadQuantValFromFile(std::string filename) {
  std::map<std::string, float> quantValList;
  std::ifstream in;
  in.open(filename, std::ios::in);
  if (!in.is_open()) {
711 712
    // std::cout << "open File Failed." << std::endl;
    DLOG << "open File Failed.";
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
    exit(-1);
  }

  std::string line;
  while (getline(in, line)) {
    std::string splitStr = " : ";
    std::string::size_type pos;
    pos = line.find(splitStr);
    std::string subStr[2];
    subStr[0] = line.substr(0, pos);
    subStr[1] = line.substr(pos + splitStr.size(), line.size());
    quantValList.insert(std::make_pair(subStr[0], atof(subStr[1].c_str())));
  }
  in.close();
  return quantValList;
}
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
template <typename Device, typename T>
void Executor<Device, T>::InitQuantMemory() {
  std::string quantValFilePath;
  if (program_.combined) {
    quantValFilePath = program_.para_path;
    quantValFilePath =
        quantValFilePath.substr(0, (quantValFilePath.length() - 6));
    quantValFilePath = quantValFilePath + "scale";
  } else {
    quantValFilePath = program_.model_path + "/scale";
  }
  std::map<std::string, float> quantValList =
      LoadQuantValFromFile(quantValFilePath);
  auto ops = ops_of_block0_;
  for (int id = 0; id < ops.size(); id++) {
    auto op = ops[id];
    auto input_keys = op->GetInputKeys();
    auto inputs = op->Inputs();
    for (auto key = input_keys.begin(); key != input_keys.end(); key++) {
      auto inputs_vars = inputs[*key];
      int count = inputs_vars.size();
      for (int i = 0; i < count; i++) {
752 753 754 755 756 757
        if (inputs_vars[i] != "feed") {
          auto tensor = GetTensorByName(inputs_vars[i]);
          tensor->scale[0] = quantValList[inputs_vars[i]];
          DLOG << "input variance name : " << inputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
758 759 760 761 762 763 764 765
      }
    }
    auto output_keys = op->GetOutKeys();
    auto outputs = op->Outputs();
    for (auto key = output_keys.begin(); key != output_keys.end(); key++) {
      auto outputs_vars = outputs[*key];
      int count = outputs_vars.size();
      for (int i = 0; i < count; i++) {
766 767 768 769 770 771
        if (outputs_vars[i] != "fetch") {
          auto tensor = GetTensorByName(outputs_vars[i]);
          tensor->scale[0] = quantValList[outputs_vars[i]];
          DLOG << "output variance name : " << outputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
772 773 774 775 776 777
      }
    }
  }
}
#endif
#endif
Y
yangfei 已提交
778
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
779 780
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
781
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
782 783 784 785 786 787 788
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
789
          var->template GetMutable<framework::LoDTensorArray>();
xiebaiyuan's avatar
xiebaiyuan 已提交
790 791 792 793
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
794
          auto cl_image = var->template GetMutable<CLImage>();
xiebaiyuan's avatar
xiebaiyuan 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
813

xiebaiyuan's avatar
xiebaiyuan 已提交
814 815 816
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
817 818 819 820 821
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
822
  framework::LoDTensor *input_tensor =
H
hjchen2 已提交
823
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
824 825

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
826 827
  DLOG << "target_tensor->IsInitialized() " << input_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << input_tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
828
  DLOG << "input.dims()   " << input.dims();
829
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
830
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
831
    if (input_dim_last_ != input.dims()) {
832
      DLOG << "SetInput ---- > resize1";
833 834 835 836 837 838
      input_tensor->Resize(input.dims());
      input_tensor->mutable_data<float>();
      //     InitNoPersistableMemory(*input_tensor);
      pass::MemoryOptPassSuper()(program_desc_.get(), program_.scope.get(),
                                 config_.memory_optimization_level,
                                 input.dims());
xiebaiyuan's avatar
xiebaiyuan 已提交
839 840 841
    }
  } else {
    DLOG << "SetInput ---- > resize2";
842
    input_tensor->Resize(input.dims());
xiebaiyuan's avatar
xiebaiyuan 已提交
843 844
    DLOG << "SetInput ---- > ShareDataWith";
  }
845
  input_tensor->ShareDataWith(input);
846 847 848
  if (feed_indices_.size() == 1) {
    input_dim_has_changed_ = input_dim_last_ != input.dims();
  }
849 850
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
851 852
}

853 854 855
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
856

Y
yangfei 已提交
857
template <>
H
hjchen2 已提交
858 859
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

897
  const TensorDesc &desc = var_desc.Tensor_desc();
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
932

Y
yangfei 已提交
933
template <>
934 935
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
936 937 938
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
939
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
940
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
941
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
942
          continue;
L
liuruilong 已提交
943
        } else {
944
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
945
        }
L
liuruilong 已提交
946

Y
yangfei 已提交
947
        char *origin_data =
L
liuruilong 已提交
948
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
949
        char *data = origin_data;
Y
yangfei 已提交
950
        cl_context context = program_.scope->GetCLScpoe()->Context();
951
        const TensorDesc &desc = var_desc->Tensor_desc();
952 953 954 955 956
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
957
        float *tensorInput = static_cast<float *>(
958 959
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
960

961
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
962

L
liuruilong 已提交
963 964
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
965

966
        delete origin_data;
Y
yangfei 已提交
967
        paddle_mobile::memory::Free(tensorInput);
968
      } else {
969 970
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
971
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
972 973
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
974

975 976 977
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
978
          DLOG << var_desc->Name();
L
liuruilong 已提交
979
          cl_image->InitEmptyImage(context, command_queue, ddim);
980
        }
Y
yangfei 已提交
981 982 983 984
      }
    }
  }
}
985

Y
yangfei 已提交
986
template <>
987
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
988 989
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
990 991
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
992 993
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
994
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
995 996 997 998
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, program_.combined_params_len);
    }
Y
yangfei 已提交
999 1000
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
1001
    self_alloc = true;
L
liuruilong 已提交
1002
    origin_data = ReadFileToBuff(program_.para_path);
1003 1004 1005 1006
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, GetFileLength(program_.para_path));
    }
Y
yangfei 已提交
1007 1008
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
1009
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
1010

1011
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
1012 1013 1014
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
1015
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
1016
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
1017
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
1018
          continue;
L
liuruilong 已提交
1019
        } else {
1020
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
1021 1022 1023 1024
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

1025 1026
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
1027 1028 1029 1030 1031

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
1032 1033 1034
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
1035 1036 1037 1038

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

1039 1040
        paddle_mobile::memory::Free(tensorInput);
      } else {
1041
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
1042
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
1043 1044
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
1045 1046
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
1047 1048 1049
        bool shouldResize = true;
        if (ddim.size() > 4) {
          for (int i = 0; i < ddim.size() - 4; ++i) {
1050
            if (ddim[i] != 0 && ddim[i] != 1) {
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
              shouldResize = false;
              break;
            }
          }
          if (shouldResize) {
            std::vector<int64_t> temp_intput_dims;
            temp_intput_dims.reserve(static_cast<size_t>(4));
            for (int i = ddim.size() - 4; i < ddim.size(); ++i) {
              temp_intput_dims.push_back(ddim[i]);
            }
            ddim = framework::make_ddim(temp_intput_dims);
          }
        }
1064
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
1065
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
1066 1067 1068
      }
    }
  }
Y
yangfei 已提交
1069
  if (self_alloc) {
1070
    delete data;
Y
yangfei 已提交
1071
  }
Y
yangfei 已提交
1072
  LOG(kLOG_INFO) << " end init combine memory ";
1073
}
Y
yangfei 已提交
1074 1075 1076

#endif

1077
template class Executor<CPU, float>;
Y
yangfei 已提交
1078

1079
template class Executor<FPGA, float>;
W
wangliu 已提交
1080

1081
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
1082 1083

}  // namespace framework
W
wangliu 已提交
1084
}  // namespace paddle_mobile