executor.cpp 39.0 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hjchen2 已提交
15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <unordered_map>
18
#include <utility>
W
wangliu 已提交
19
#include <vector>
L
liuruilong 已提交
20
#include "common/enforce.h"
L
liuruilong 已提交
21
#include "common/log.h"
22
#include "framework/context.h"
L
liuruilong 已提交
23
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
24 25
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
26
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
27 28 29 30
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
H
hjchen2 已提交
31
#include "memory/t_malloc.h"
32
#include "pass/memory_optimize.h"
33
#include "pass/model_obfuscate.h"
L
update  
liuruilong 已提交
34 35
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
36
#include "pass/memory_optimize_cl.h"
L
update  
liuruilong 已提交
37
#endif
W
wangliu 已提交
38 39

namespace paddle_mobile {
40
namespace framework {
41

W
wangliu 已提交
42 43
#pragma mark - executor

44
template <typename Device, typename T>
45 46
void Executor<Device, T>::SetThreadNum(int thread_num, PowerMode power_mode) {
  CPUContext::Context()->set_thread_num(thread_num, power_mode);
47 48
}

49
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
50 51 52 53
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
54
    : program_(program),
H
hjchen2 已提交
55 56
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
57 58
      lod_mode_(lod_mode),
      config_(config) {
59
  DLOG << "executor in lod mode: " << lod_mode;
60

W
wangliu 已提交
61
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
62
  variable_ptr->SetValue<int>(batch_size);
63 64

  program_desc_ =
Refine  
陈后江 已提交
65
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
66 67
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
C
Chon 已提交
68 69
#if !defined(PADDLE_MOBILE_FPGA) && !defined(PADDLE_MOBILE_FPGA_KD) && \
    !defined(PADDLE_MOBILE_CL)
70
  if (config_.memory_optimization_level != NoMemoryOptimization) {
71 72
    pass::MemoryOptPass()(program_desc_.get(), program_.scope.get(),
                          config_.memory_optimization_level);
Y
Yanzhan Yang 已提交
73
  }
74
#endif
75 76 77 78
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
  const auto &blocks = program_desc_->Blocks();
79 80 81 82 83 84 85 86
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
87
        op_desc->GetAttrMap(), program_.scope.get());
88 89 90 91
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
92
    }
93
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
94
  }
95 96 97
#ifdef PADDLE_MOBILE_FPGA_V2
  InitQuantMemory();
#endif
W
wangliu 已提交
98
  if (program_.combined) {
L
liuruilong 已提交
99 100 101 102
    InitCombineMemory();
  } else {
    InitMemory();
  }
103
  int count = 0;
Z
zp7 已提交
104
#ifdef PADDLE_MOBILE_PROFILE
105 106 107
  std::vector<ProfInfo> profile(ops_of_block0_.size());
  struct timespec ts;
  int op_index = 0;
Z
zp7 已提交
108
#endif
109
  for (auto &op_handler : ops_of_block0_) {
Z
zp7 已提交
110 111 112 113
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
114
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
115 116 117
    if (op_handler->Type() == "feed" || op_handler->Type() == "fetch") {
      op_handler->setPrePostType(config_.pre_post_type);
    }
118
    op_handler->Init();
Z
zp7 已提交
119 120
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
121 122
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
Z
zp7 已提交
123
#endif
L
liuruilong 已提交
124
  }
Z
zp7 已提交
125 126 127 128
#ifdef PADDLE_MOBILE_PROFILE
  printf("================[ op init profile ]==================\n");
  PrintProfile(profile);
#endif
129 130 131 132 133 134
  ApplyMemoryOptimise(config, lod_mode);
}

template <typename Device, typename T>
void Executor<Device, T>::ApplyMemoryOptimise(
    const PaddleMobileConfigInternal &config, const bool lod_mode) const {}
135 136

#ifdef PADDLE_MOBILE_CL
137 138 139
template <>
void Executor<GPU_CL, float>::ApplyMemoryOptimise(
    const PaddleMobileConfigInternal &config, const bool lod_mode) const {
140 141 142 143 144
  if (!config.load_when_predict && !lod_mode &&
      config_.memory_optimization_level != NoMemoryOptimization) {
    pass::MemoryOptPassCl()(program_desc_.get(), program_.scope.get(),
                            config_.memory_optimization_level);
  }
W
wangliu 已提交
145
}
146
#endif
W
wangliu 已提交
147

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

175
template <typename T>
176 177 178 179
static void LoadMemInternal(void **in_data, void *out_data, int64_t size,
                            bool quant_uint8 = false, int quant_fold = 1) {
  char **data_buf = reinterpret_cast<char **>(in_data);
  T *tensor_data = reinterpret_cast<T *>(out_data);
180
  if (quant_uint8) {
181 182
    const int minimal_fold_size = 2;
    quant_fold = fmin(fmax(1, size / minimal_fold_size), quant_fold);
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    int step = fmax(size / quant_fold, 1);
    int visited_fold = 0;
    while (visited_fold * step < size) {
      // should be moved into operator init function
      float min_value;
      float max_value;
      memory::Copy(&min_value, *data_buf, sizeof(float));
      memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
      *data_buf += 2 * sizeof(float);
      const float factor = (max_value - min_value) / 255.0;
      const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
      int k = 0;
      for (; k < step; ++k) {
        int tensor_data_idx = visited_fold * step + k;
        if (tensor_data_idx >= size) {
          break;
        }
        tensor_data[tensor_data_idx] = uint8_data[k] * factor + min_value;
      }
      *data_buf += k * sizeof(uint8_t);
      visited_fold++;
W
wangliu 已提交
204
    }
205
  } else {
206 207
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
208
  }
209
}
W
wangliu 已提交
210

211 212 213 214
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
215
  char **data_buf = reinterpret_cast<char **>(data);
216
  // version
217
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
218
  *data_buf += sizeof(uint32_t);
219
  // lod information
H
hjchen2 已提交
220 221
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
222
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
223
  *data_buf += sizeof(uint64_t);
224 225 226 227

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
228
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
229
    *data_buf += sizeof(uint64_t);
230
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
231
    memory::Copy(tmp_dim.data(), *data_buf, size);
232
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
233
    *data_buf += size;
W
wangliu 已提交
234
  }
235
  // tensor version
236
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
237
  *data_buf += sizeof(uint32_t);
238
  // tensor desc size
239
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
240
  *data_buf += sizeof(int32_t);
241
  // skip tensor desc
Refine  
陈后江 已提交
242
  *data_buf += tensor_desc_size;
243

244 245
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
246 247
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
248
    case VARTYPE_TYPE_FP32:
249 250 251 252
      LoadMemInternal<float>(
          reinterpret_cast<void **>(data_buf),
          reinterpret_cast<void *>(tensor->mutable_data<T>()), tensor->numel(),
          program_.quantification, program_.quantification_fold);
W
wangliu 已提交
253
      break;
254
    case VARTYPE_TYPE_INT8:
255 256 257
      LoadMemInternal<int8_t>(
          reinterpret_cast<void **>(data_buf),
          reinterpret_cast<void *>(tensor->mutable_data<T>()), tensor->numel());
W
wangliu 已提交
258
      break;
259
    case VARTYPE_TYPE_INT32:
260 261 262
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf),
                           reinterpret_cast<void *>(tensor->mutable_data<T>()),
                           tensor->numel());
W
wangliu 已提交
263 264
      break;
    default:
265
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
266
  }
W
wangliu 已提交
267 268
}

269 270 271
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
272 273 274 275
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
276
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
277 278
          continue;
        }
H
hjchen2 已提交
279
        DLOG << "init persistable var: " << var_desc->Name();
Refine  
陈后江 已提交
280
        char *origin_data =
Refine  
陈后江 已提交
281
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
282
        char *data = origin_data;
H
update  
hjchen2 已提交
283
        auto tensor = var->template GetMutable<LoDTensor>();
284 285
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
286
      } else {
287
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
288
        varInputMemory(var_desc, var);
W
wangliu 已提交
289 290 291 292 293
      }
    }
  }
}

294 295
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
296
  char *origin_data = nullptr;
Refine  
陈后江 已提交
297
  bool self_alloc = false;
298
  if (program_.combined_params_buf && program_.combined_params_len) {
299 300
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
301 302 303 304
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, program_.combined_params_len);
    }
305
  } else {
Refine  
陈后江 已提交
306
    self_alloc = true;
Refine  
陈后江 已提交
307
    origin_data = ReadFileToBuff(program_.para_path);
308 309 310 311
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, GetFileLength(program_.para_path));
    }
312
  }
Refine  
陈后江 已提交
313 314
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
315
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
316 317 318 319
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
320
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
321 322
          continue;
        }
L
liuruilong 已提交
323 324

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
325
        auto tensor = var->template GetMutable<LoDTensor>();
326
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
327
      } else {
H
update  
hjchen2 已提交
328 329
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
330 331 332
      }
    }
  }
Refine  
陈后江 已提交
333
  if (self_alloc) {
334
    delete[] origin_data;
Refine  
陈后江 已提交
335 336
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
337
}
338

C
Chon 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352
static void ClearNoPersistableTensorArray(const framework::ProgramDesc *program,
                                          framework::Scope *scope) {
  for (const auto &block : program->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
        auto var = scope->Var(var_desc->Name());
        auto array = var->template GetMutable<framework::LoDTensorArray>();
        array->resize(1);
      }
    }
  }
}

L
liuruilong 已提交
353
template <typename Device, typename T>
L
liuruilong 已提交
354
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
355 356 357
  if (input_tensor.dims().size() != 4) {
    return;
  }
L
liuruilong 已提交
358 359 360
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
361 362 363 364 365 366
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
        DLOG << "InitNoPersistableMemory var " << var_desc->Name();
        auto tensor = var->template GetMutable<LoDTensor>();
        if (tensor->IsInitialized() && tensor->dims().size() == 4) {
          DLOG << "var's tensor is Initialized or dims size != 4";
L
liuruilong 已提交
367
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
368 369 370 371
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
372 373 374
          tensor->template mutable_data_new<T>();
          DLOG << "var's tensor dims " << tensor_dim;
          DLOG << "var's tensor new dims " << new_dim;
H
update  
hjchen2 已提交
375
        } else {
376
          DLOG << "var's tensor is not Initialized ???";
L
liuruilong 已提交
377 378 379 380 381 382
        }
      }
    }
  }
}

383 384
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
385
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
386
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
387
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
388 389 390
#ifdef PADDLE_MOBILE_FPGA_V2
  tensor->init(type_id<int8_t>().hash_code());
#else
391
  tensor->init(type_id<float>().hash_code());
392
#endif
393 394
  return true;
#endif
H
update  
hjchen2 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
408
  }
H
update  
hjchen2 已提交
409
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
410
}
L
liuruilong 已提交
411

412 413 414 415 416
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
417
  }
418 419 420 421 422 423 424 425
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
426
  }
427
  return this->Predict();
W
wangliu 已提交
428
}
xiebaiyuan's avatar
xiebaiyuan 已提交
429

430 431 432
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
433 434 435 436 437 438 439
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
440
  Tensor feed_tensor(input, make_ddim(dims));
441
  SetInput(feed_tensor, input_name);
442 443
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
444 445
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
446 447 448 449 450 451
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
452

453 454 455
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
456
  int index = 0;
457
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
458
    index = feed_indices_.find(var_name)->second;
459
  }
H
hjchen2 已提交
460 461 462 463 464 465
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
466 467
  if (feed_indices_.size() == 1) {
    auto &dim = input.dims();
468 469 470
    if (lod_mode_ && product(dim) < 0.9 * product(input_dim_last_)) {
      InitNoPersistableMemory(target);
    }
471 472 473
    input_dim_has_changed_ = input_dim_last_ != dim;
    input_dim_last_ = static_cast<DDim>(dim);
  }
474
}
xiebaiyuan's avatar
xiebaiyuan 已提交
475

476 477 478
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
479
  int index = 0;
480
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
481
    index = feed_indices_.find(var_name)->second;
482
  }
H
hjchen2 已提交
483 484 485 486 487 488 489
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
490 491
  if (feed_indices_.size() == 1) {
    auto &dim = input.dims();
492 493 494
    if (lod_mode_ && product(dim) < 0.9 * product(input_dim_last_)) {
      InitNoPersistableMemory(target);
    }
495 496 497
    input_dim_has_changed_ = input_dim_last_ != dim;
    input_dim_last_ = static_cast<DDim>(dim);
  }
498 499 500 501 502
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
503 504 505 506 507 508 509 510 511
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
512

513 514 515 516 517 518 519
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
520
}
xiebaiyuan's avatar
xiebaiyuan 已提交
521

522 523 524 525 526 527 528 529 530 531 532 533 534 535
#ifdef PADDLE_MOBILE_CL
template <typename Device, typename T>
const CLImage *Executor<Device, T>::GetOutputImage(
    const std::string &var_name) {
  auto var = program_.scope->FindVar(var_name);
  if (var->IsInitialized() && var->template IsType<framework::CLImage>()) {
    const CLImage *cl_image = var->template Get<framework::CLImage>();
    return cl_image;
  } else {
    return nullptr;
  }
}
#endif

536 537
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
538
  try {
539
#if _OPENMP
540
    omp_set_num_threads(CPUContext::Context()->get_thread_num());
541
#endif
542 543 544
    // clear all no persistable tensor array since write_to_array
    // is always push back a new tensor in the array
    ClearNoPersistableTensorArray(program_desc_.get(), program_.scope.get());
545

xiebaiyuan's avatar
xiebaiyuan 已提交
546
#ifdef PADDLE_MOBILE_PROFILE
547 548 549
    std::vector<ProfInfo> profile(ops_of_block0_.size());
    struct timespec ts;
    int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
550
#endif
551 552
    for (int i = 0; i < ops_of_block0_.size(); ++i) {
      auto &op_handler = ops_of_block0_[i];
xiebaiyuan's avatar
xiebaiyuan 已提交
553
#ifdef PADDLE_MOBILE_PROFILE
554 555
      clock_gettime(CLOCK_MONOTONIC, &ts);
      profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
556
#endif
557 558
      LOG(paddle_mobile::kLOG_INFO) << i << "th, "
                                    << "run op: " << op_handler->Type();
559 560 561 562
      if (lod_mode_ && input_dim_has_changed_) {
        op_handler->InferShape();
      }
      op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
563
#ifdef PADDLE_MOBILE_PROFILE
564 565 566
      clock_gettime(CLOCK_MONOTONIC, &ts);
      profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
      ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
567
#endif
568 569 570 571
    }
    if (feed_indices_.size() == 1) {
      input_dim_has_changed_ = false;
    }
572 573

#ifdef PADDLE_MOBILE_PROFILE
574
    PrintProfile(profile);
575
#endif
576 577 578 579 580 581 582 583
    return PMSuccess;
  } catch (PaddleMobileException &e) {
    exception_msg_ = e.what();
    return PMException;
  } catch (std::exception &e) {
    exception_msg_ = e.what();
    return PMException;
  }
584 585
}

xiebaiyuan's avatar
xiebaiyuan 已提交
586
#ifdef PADDLE_MOBILE_PROFILE
587 588 589
template <typename Device, typename T>
void Executor<Device, T>::PrintProfile(
    const vector<Executor<Device, T>::ProfInfo> &profile) const {
xiebaiyuan's avatar
xiebaiyuan 已提交
590 591 592 593
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
594 595 596 597 598 599
    if (this->ops_of_block0_[i]->Type() == "conv2d" ||
        this->ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = this->ops_of_block0_[i]->Inputs();

      auto *filter = GetVarValue<ProfileTensorType>("Filter", inputs,
                                                    *(this->program_.scope));
600
      int kernel_size = filter->dims()[2];
601 602
      _tp[this->ops_of_block0_[i]->Type() + "_" +
          std::to_string(kernel_size)] += timeCost;
603
    } else {
604
      _tp[this->ops_of_block0_[i]->Type()] += timeCost;
605
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
606
  }
H
hjchen2 已提交
607
  printf("====================[ profile ]======================\n");
608
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
624
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
625
}
626
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
627

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
template <typename Device, typename T>
void Executor<Device, T>::FeedTensorData(const vector<framework::Tensor> &v) {
  auto input_size = v.size();
  auto *feed_var = program_.scope->Var("feed");

  PADDLE_MOBILE_ENFORCE(input_size == feed_indices_.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
    framework::LoDTensor &target =
        feed_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    target.ShareDataWith(v[input_size - i - 1]);
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
  auto *fetch_var = program_.scope->Var("fetch");
  auto output_size = fetch_indices_.size();
  for (int i = 0; i < output_size; i++) {
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    v->push_back(&target);
  }
}

654 655 656 657 658
template <typename Device, typename T>
std::string Executor<Device, T>::GetExceptionMsg() {
  return exception_msg_;
}

659
#ifdef PADDLE_MOBILE_FPGA
660 661 662 663
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
664
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
665 666
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
667
}
668

669 670
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
671
  InjectVariable(t, "feed0");
672
}
673

674
template <typename Device, typename T>
675
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
676
  auto input_size = v.size();
Z
zhangyang0701 已提交
677
  int index = 0;
678 679 680
  // auto vars = program_.scope->VarContain("feed", &index);
  // PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
  //                    "input data number not correct");
681
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
682
    auto var = program_.scope->Var("feed", i + index);
683 684 685 686 687 688 689 690 691
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
692 693
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
694 695
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
696

697
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
698
    auto var = program_.scope->Var("fetch", i + index);
699 700
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
701
  }
702
}
703

704
template <typename Device, typename T>
705 706 707 708
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
709
}
710

711 712
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
713
  auto &ops = ops_of_block0_;
714

Z
zhangyang 已提交
715 716 717 718 719
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
720 721 722
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
723
}
724

725 726
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
727
  auto &ops = ops_of_block0_;
728
  end = end < 0 ? static_cast<int>(ops.size()) : end;
729 730 731 732 733 734 735 736 737 738 739 740
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
741
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
742 743 744 745 746 747 748
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
749
}
750

751 752
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
753
  Predict_From_To(start);
754
}
755

756 757
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
758
  Predict_From_To(0, end);
759
}
760 761 762 763 764 765
#ifdef PADDLE_MOBILE_FPGA_V2
std::map<std::string, float> LoadQuantValFromFile(std::string filename) {
  std::map<std::string, float> quantValList;
  std::ifstream in;
  in.open(filename, std::ios::in);
  if (!in.is_open()) {
766 767
    // std::cout << "open File Failed." << std::endl;
    DLOG << "open File Failed.";
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
    exit(-1);
  }

  std::string line;
  while (getline(in, line)) {
    std::string splitStr = " : ";
    std::string::size_type pos;
    pos = line.find(splitStr);
    std::string subStr[2];
    subStr[0] = line.substr(0, pos);
    subStr[1] = line.substr(pos + splitStr.size(), line.size());
    quantValList.insert(std::make_pair(subStr[0], atof(subStr[1].c_str())));
  }
  in.close();
  return quantValList;
}
784

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
template <typename Device, typename T>
void Executor<Device, T>::InitQuantMemory() {
  std::string quantValFilePath;
  if (program_.combined) {
    quantValFilePath = program_.para_path;
    quantValFilePath =
        quantValFilePath.substr(0, (quantValFilePath.length() - 6));
    quantValFilePath = quantValFilePath + "scale";
  } else {
    quantValFilePath = program_.model_path + "/scale";
  }
  std::map<std::string, float> quantValList =
      LoadQuantValFromFile(quantValFilePath);
  auto ops = ops_of_block0_;
  for (int id = 0; id < ops.size(); id++) {
    auto op = ops[id];
    auto input_keys = op->GetInputKeys();
    auto inputs = op->Inputs();
    for (auto key = input_keys.begin(); key != input_keys.end(); key++) {
      auto inputs_vars = inputs[*key];
      int count = inputs_vars.size();
      for (int i = 0; i < count; i++) {
807 808 809 810 811 812
        if (inputs_vars[i] != "feed") {
          auto tensor = GetTensorByName(inputs_vars[i]);
          tensor->scale[0] = quantValList[inputs_vars[i]];
          DLOG << "input variance name : " << inputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
813 814 815 816 817 818 819 820
      }
    }
    auto output_keys = op->GetOutKeys();
    auto outputs = op->Outputs();
    for (auto key = output_keys.begin(); key != output_keys.end(); key++) {
      auto outputs_vars = outputs[*key];
      int count = outputs_vars.size();
      for (int i = 0; i < count; i++) {
821 822 823 824 825 826
        if (outputs_vars[i] != "fetch") {
          auto tensor = GetTensorByName(outputs_vars[i]);
          tensor->scale[0] = quantValList[outputs_vars[i]];
          DLOG << "output variance name : " << outputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
827 828 829 830 831 832
      }
    }
  }
}
#endif
#endif
Y
yangfei 已提交
833
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
834 835
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
836
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
837 838 839 840 841 842 843
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
844
          var->template GetMutable<framework::LoDTensorArray>();
xiebaiyuan's avatar
xiebaiyuan 已提交
845 846 847 848
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
849
          auto cl_image = var->template GetMutable<CLImage>();
xiebaiyuan's avatar
xiebaiyuan 已提交
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
868

xiebaiyuan's avatar
xiebaiyuan 已提交
869 870 871
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
872 873 874 875 876
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
877
  framework::LoDTensor *input_tensor =
H
hjchen2 已提交
878
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
879 880

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
881 882
  DLOG << "target_tensor->IsInitialized() " << input_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << input_tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
883
  DLOG << "input.dims()   " << input.dims();
884
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
885
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
886
    if (input_dim_last_ != input.dims()) {
887
      DLOG << "SetInput ---- > resize1";
888 889
      input_tensor->Resize(input.dims());
      input_tensor->mutable_data<float>();
890 891 892 893 894 895 896
      if (config_.memory_optimization_level == NoMemoryOptimization) {
        InitNoPersistableMemory(*input_tensor);
      } else {
        pass::MemoryOptPassCl()(program_desc_.get(), program_.scope.get(),
                                config_.memory_optimization_level,
                                input.dims());
      }
xiebaiyuan's avatar
xiebaiyuan 已提交
897 898 899
    }
  } else {
    DLOG << "SetInput ---- > resize2";
900
    input_tensor->Resize(input.dims());
xiebaiyuan's avatar
xiebaiyuan 已提交
901 902
    DLOG << "SetInput ---- > ShareDataWith";
  }
903
  input_tensor->ShareDataWith(input);
904 905 906
  if (feed_indices_.size() == 1) {
    input_dim_has_changed_ = input_dim_last_ != input.dims();
  }
907 908
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
909 910
}

911 912 913
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
914

Y
yangfei 已提交
915
template <>
H
hjchen2 已提交
916 917
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

955
  const TensorDesc &desc = var_desc.Tensor_desc();
956 957 958 959 960 961 962 963
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
964 965 966 967

  LoadMemInternal<float>(reinterpret_cast<void **>(data),
                         reinterpret_cast<void *>(memory), memory_size,
                         program_.quantification, program_.quantification_fold);
968
}
969

Y
yangfei 已提交
970
template <>
971 972
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
973 974 975
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
976
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
977
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
978
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
979
          continue;
L
liuruilong 已提交
980
        } else {
981
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
982
        }
L
liuruilong 已提交
983

Y
yangfei 已提交
984
        char *origin_data =
L
liuruilong 已提交
985
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
986
        char *data = origin_data;
Y
yangfei 已提交
987
        cl_context context = program_.scope->GetCLScpoe()->Context();
988
        const TensorDesc &desc = var_desc->Tensor_desc();
989 990 991 992 993
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
994
        float *tensorInput = static_cast<float *>(
995 996
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
997

998
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
999

L
liuruilong 已提交
1000 1001
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
1002

1003
        delete origin_data;
Y
yangfei 已提交
1004
        paddle_mobile::memory::Free(tensorInput);
1005
      } else {
1006 1007
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
1008
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
1009 1010
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
1011

1012 1013 1014
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
1015
          DLOG << var_desc->Name();
L
liuruilong 已提交
1016
          cl_image->InitEmptyImage(context, command_queue, ddim);
1017
        }
Y
yangfei 已提交
1018 1019 1020 1021
      }
    }
  }
}
1022

Y
yangfei 已提交
1023
template <>
1024
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
1025 1026
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
1027 1028
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
1029 1030
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
1031
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
1032 1033 1034 1035
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, program_.combined_params_len);
    }
Y
yangfei 已提交
1036 1037
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
1038
    self_alloc = true;
L
liuruilong 已提交
1039
    origin_data = ReadFileToBuff(program_.para_path);
1040 1041 1042 1043
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, GetFileLength(program_.para_path));
    }
Y
yangfei 已提交
1044 1045
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
1046
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
1047

1048
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
1049 1050 1051
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
1052
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
1053
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
1054
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
1055
          continue;
L
liuruilong 已提交
1056
        } else {
1057
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
1058 1059 1060 1061
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

1062 1063
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
1064 1065 1066 1067 1068

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
1069 1070 1071
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
1072 1073 1074 1075

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

1076 1077
        paddle_mobile::memory::Free(tensorInput);
      } else {
1078
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
1079
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
1080 1081
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
1082 1083
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
1084 1085 1086
        bool shouldResize = true;
        if (ddim.size() > 4) {
          for (int i = 0; i < ddim.size() - 4; ++i) {
1087
            if (ddim[i] != 0 && ddim[i] != 1) {
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
              shouldResize = false;
              break;
            }
          }
          if (shouldResize) {
            std::vector<int64_t> temp_intput_dims;
            temp_intput_dims.reserve(static_cast<size_t>(4));
            for (int i = ddim.size() - 4; i < ddim.size(); ++i) {
              temp_intput_dims.push_back(ddim[i]);
            }
            ddim = framework::make_ddim(temp_intput_dims);
          }
        }
1101
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
1102
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
1103 1104 1105
      }
    }
  }
Y
yangfei 已提交
1106
  if (self_alloc) {
1107
    delete data;
Y
yangfei 已提交
1108
  }
Y
yangfei 已提交
1109
  LOG(kLOG_INFO) << " end init combine memory ";
1110
}
Y
yangfei 已提交
1111 1112 1113

#endif

1114
template class Executor<CPU, float>;
Y
yangfei 已提交
1115

1116
template class Executor<FPGA, float>;
W
wangliu 已提交
1117

1118
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
1119 1120

}  // namespace framework
W
wangliu 已提交
1121
}  // namespace paddle_mobile