executor.cpp 37.2 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hjchen2 已提交
15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <unordered_map>
18
#include <utility>
W
wangliu 已提交
19
#include <vector>
L
liuruilong 已提交
20
#include "common/enforce.h"
L
liuruilong 已提交
21
#include "common/log.h"
22
#include "framework/context.h"
L
liuruilong 已提交
23
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
24 25
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
26
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
27 28 29 30
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
H
hjchen2 已提交
31
#include "memory/t_malloc.h"
32
#include "pass/memory_optimize.h"
33
#include "pass/model_obfuscate.h"
L
update  
liuruilong 已提交
34 35
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
36
#include "pass/memory_optimize_super.h"
L
update  
liuruilong 已提交
37
#endif
W
wangliu 已提交
38 39

namespace paddle_mobile {
40
namespace framework {
41

W
wangliu 已提交
42 43
#pragma mark - executor

44
template <typename Device, typename T>
45 46
void Executor<Device, T>::SetThreadNum(int thread_num, PowerMode power_mode) {
  CPUContext::Context()->set_thread_num(thread_num, power_mode);
47 48
}

49
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
50 51 52 53
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
54
    : program_(program),
H
hjchen2 已提交
55 56
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
57 58
      lod_mode_(lod_mode),
      config_(config) {
59
  DLOG << "executor in lod mode: " << lod_mode;
60

W
wangliu 已提交
61
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
62
  variable_ptr->SetValue<int>(batch_size);
63 64

  program_desc_ =
Refine  
陈后江 已提交
65
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
66 67
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
C
Chon 已提交
68 69
#if !defined(PADDLE_MOBILE_FPGA) && !defined(PADDLE_MOBILE_FPGA_KD) && \
    !defined(PADDLE_MOBILE_CL)
70
  if (config_.memory_optimization_level != NoMemoryOptimization) {
71 72
    pass::MemoryOptPass()(program_desc_.get(), program_.scope.get(),
                          config_.memory_optimization_level);
Y
Yanzhan Yang 已提交
73
  }
74
#endif
75 76 77 78
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
  const auto &blocks = program_desc_->Blocks();
79 80 81 82 83 84 85 86
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
87
        op_desc->GetAttrMap(), program_.scope.get());
88 89 90 91
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
92
    }
93
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
94
  }
95 96 97
#ifdef PADDLE_MOBILE_FPGA_V2
  InitQuantMemory();
#endif
W
wangliu 已提交
98
  if (program_.combined) {
L
liuruilong 已提交
99 100 101 102
    InitCombineMemory();
  } else {
    InitMemory();
  }
103
  int count = 0;
104 105 106
  for (auto &op_handler : ops_of_block0_) {
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
    op_handler->Init();
L
liuruilong 已提交
107
  }
W
wangliu 已提交
108 109
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

137
template <typename T>
138
static void LoadMemInternal(void **data, LoDTensor *tensor,
139
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
140
  char **data_buf = reinterpret_cast<char **>(data);
141
  int64_t size = tensor->numel();
142
  T *tensor_data = tensor->mutable_data<T>();
143 144
  if (quant_uint8) {
    // should be moved into operator init function
145 146
    float min_value;
    float max_value;
147 148 149
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
150
    const float factor = (max_value - min_value) / 255.0;
151
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
152 153
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
154
    }
155
    *data_buf += size * sizeof(uint8_t);
156
  } else {
157 158
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
159
  }
160
}
W
wangliu 已提交
161

162 163 164 165
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
166
  char **data_buf = reinterpret_cast<char **>(data);
167
  // version
168
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
169
  *data_buf += sizeof(uint32_t);
170
  // lod information
H
hjchen2 已提交
171 172
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
173
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
174
  *data_buf += sizeof(uint64_t);
175 176 177 178

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
179
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
180
    *data_buf += sizeof(uint64_t);
181
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
182
    memory::Copy(tmp_dim.data(), *data_buf, size);
183
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
184
    *data_buf += size;
W
wangliu 已提交
185
  }
186
  // tensor version
187
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
188
  *data_buf += sizeof(uint32_t);
189
  // tensor desc size
190
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
191
  *data_buf += sizeof(int32_t);
192
  // skip tensor desc
Refine  
陈后江 已提交
193
  *data_buf += tensor_desc_size;
194

195 196
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
197 198
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
199
    case VARTYPE_TYPE_FP32:
200 201
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
202
      break;
203
    case VARTYPE_TYPE_INT8:
204
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
205
      break;
206
    case VARTYPE_TYPE_INT32:
207
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
208 209
      break;
    default:
210
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
211
  }
W
wangliu 已提交
212 213
}

214 215 216
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
217 218 219 220
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
221
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
222 223
          continue;
        }
H
hjchen2 已提交
224
        DLOG << "init persistable var: " << var_desc->Name();
Refine  
陈后江 已提交
225
        char *origin_data =
Refine  
陈后江 已提交
226
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
227
        char *data = origin_data;
H
update  
hjchen2 已提交
228
        auto tensor = var->template GetMutable<LoDTensor>();
229 230
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
231
      } else {
232
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
233
        varInputMemory(var_desc, var);
W
wangliu 已提交
234 235 236 237 238
      }
    }
  }
}

239 240
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
241
  char *origin_data = nullptr;
Refine  
陈后江 已提交
242
  bool self_alloc = false;
243
  if (program_.combined_params_buf && program_.combined_params_len) {
244 245
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
246 247 248 249
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, program_.combined_params_len);
    }
250
  } else {
Refine  
陈后江 已提交
251
    self_alloc = true;
Refine  
陈后江 已提交
252
    origin_data = ReadFileToBuff(program_.para_path);
253 254 255 256
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, GetFileLength(program_.para_path));
    }
257
  }
Refine  
陈后江 已提交
258 259
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
260
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
261 262 263 264
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
265
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
266 267
          continue;
        }
L
liuruilong 已提交
268 269

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
270
        auto tensor = var->template GetMutable<LoDTensor>();
271
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
272
      } else {
H
update  
hjchen2 已提交
273 274
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
275 276 277
      }
    }
  }
Refine  
陈后江 已提交
278
  if (self_alloc) {
279
    delete[] origin_data;
Refine  
陈后江 已提交
280 281
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
282
}
283

C
Chon 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297
static void ClearNoPersistableTensorArray(const framework::ProgramDesc *program,
                                          framework::Scope *scope) {
  for (const auto &block : program->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
        auto var = scope->Var(var_desc->Name());
        auto array = var->template GetMutable<framework::LoDTensorArray>();
        array->resize(1);
      }
    }
  }
}

L
liuruilong 已提交
298
template <typename Device, typename T>
L
liuruilong 已提交
299
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
300 301 302
  if (input_tensor.dims().size() != 4) {
    return;
  }
L
liuruilong 已提交
303 304 305
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
306 307 308 309 310 311
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
        DLOG << "InitNoPersistableMemory var " << var_desc->Name();
        auto tensor = var->template GetMutable<LoDTensor>();
        if (tensor->IsInitialized() && tensor->dims().size() == 4) {
          DLOG << "var's tensor is Initialized or dims size != 4";
L
liuruilong 已提交
312
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
313 314 315 316
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
317 318 319
          tensor->template mutable_data_new<T>();
          DLOG << "var's tensor dims " << tensor_dim;
          DLOG << "var's tensor new dims " << new_dim;
H
update  
hjchen2 已提交
320
        } else {
321
          DLOG << "var's tensor is not Initialized ???";
L
liuruilong 已提交
322 323 324 325 326 327
        }
      }
    }
  }
}

328 329
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
330
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
331
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
332
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
333 334 335
#ifdef PADDLE_MOBILE_FPGA_V2
  tensor->init(type_id<int8_t>().hash_code());
#else
336
  tensor->init(type_id<float>().hash_code());
337
#endif
338 339
  return true;
#endif
H
update  
hjchen2 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
353
  }
H
update  
hjchen2 已提交
354
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
355
}
L
liuruilong 已提交
356

357 358 359 360 361
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
362
  }
363 364 365 366 367 368 369 370
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
371
  }
372
  return this->Predict();
W
wangliu 已提交
373
}
xiebaiyuan's avatar
xiebaiyuan 已提交
374

375 376 377
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
378 379 380 381 382 383 384
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
385
  Tensor feed_tensor(input, make_ddim(dims));
386
  SetInput(feed_tensor, input_name);
387 388
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
389 390
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
391 392 393 394 395 396
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
397

398 399 400
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
401
  int index = 0;
402
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
403
    index = feed_indices_.find(var_name)->second;
404
  }
H
hjchen2 已提交
405 406 407 408 409 410
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
411 412
  if (feed_indices_.size() == 1) {
    auto &dim = input.dims();
413 414 415
    if (lod_mode_ && product(dim) < 0.9 * product(input_dim_last_)) {
      InitNoPersistableMemory(target);
    }
416 417 418
    input_dim_has_changed_ = input_dim_last_ != dim;
    input_dim_last_ = static_cast<DDim>(dim);
  }
419
}
xiebaiyuan's avatar
xiebaiyuan 已提交
420

421 422 423
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
424
  int index = 0;
425
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
426
    index = feed_indices_.find(var_name)->second;
427
  }
H
hjchen2 已提交
428 429 430 431 432 433 434
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
435 436
  if (feed_indices_.size() == 1) {
    auto &dim = input.dims();
437 438 439
    if (lod_mode_ && product(dim) < 0.9 * product(input_dim_last_)) {
      InitNoPersistableMemory(target);
    }
440 441 442
    input_dim_has_changed_ = input_dim_last_ != dim;
    input_dim_last_ = static_cast<DDim>(dim);
  }
443 444 445 446 447
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
448 449 450 451 452 453 454 455 456
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
457

458 459 460 461 462 463 464
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
465
}
xiebaiyuan's avatar
xiebaiyuan 已提交
466

467 468 469 470 471 472 473 474 475 476 477 478 479 480
#ifdef PADDLE_MOBILE_CL
template <typename Device, typename T>
const CLImage *Executor<Device, T>::GetOutputImage(
    const std::string &var_name) {
  auto var = program_.scope->FindVar(var_name);
  if (var->IsInitialized() && var->template IsType<framework::CLImage>()) {
    const CLImage *cl_image = var->template Get<framework::CLImage>();
    return cl_image;
  } else {
    return nullptr;
  }
}
#endif

481 482
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
483
#if _OPENMP
484
  omp_set_num_threads(CPUContext::Context()->get_thread_num());
485
#endif
486 487 488
  // clear all no persistable tensor array since write_to_array
  // is always push back a new tensor in the array
  ClearNoPersistableTensorArray(program_desc_.get(), program_.scope.get());
489

xiebaiyuan's avatar
xiebaiyuan 已提交
490
#ifdef PADDLE_MOBILE_PROFILE
491
  std::vector<ProfInfo> profile(ops_of_block0_.size());
492 493
  struct timespec ts;
  int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
494
#endif
Z
zp7 已提交
495 496
  for (int i = 0; i < ops_of_block0_.size(); ++i) {
    auto &op_handler = ops_of_block0_[i];
xiebaiyuan's avatar
xiebaiyuan 已提交
497
#ifdef PADDLE_MOBILE_PROFILE
498 499
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
500
#endif
Z
zp7 已提交
501 502
    DLOG << i << "th, "
         << "run op: " << op_handler->Type();
503 504 505
    if (lod_mode_ && input_dim_has_changed_) {
      op_handler->InferShape();
    }
506
    op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
507
#ifdef PADDLE_MOBILE_PROFILE
508 509 510
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
511 512
#endif
  }
513 514 515
  if (feed_indices_.size() == 1) {
    input_dim_has_changed_ = false;
  }
516 517 518 519 520 521 522

#ifdef PADDLE_MOBILE_PROFILE
  PrintProfile(profile);
#endif
  return PMSuccess;
}

xiebaiyuan's avatar
xiebaiyuan 已提交
523
#ifdef PADDLE_MOBILE_PROFILE
524 525 526
template <typename Device, typename T>
void Executor<Device, T>::PrintProfile(
    const vector<Executor<Device, T>::ProfInfo> &profile) const {
xiebaiyuan's avatar
xiebaiyuan 已提交
527 528 529 530
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
531 532 533 534 535 536
    if (this->ops_of_block0_[i]->Type() == "conv2d" ||
        this->ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = this->ops_of_block0_[i]->Inputs();

      auto *filter = GetVarValue<ProfileTensorType>("Filter", inputs,
                                                    *(this->program_.scope));
537
      int kernel_size = filter->dims()[2];
538 539
      _tp[this->ops_of_block0_[i]->Type() + "_" +
          std::to_string(kernel_size)] += timeCost;
540
    } else {
541
      _tp[this->ops_of_block0_[i]->Type()] += timeCost;
542
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
543
  }
H
hjchen2 已提交
544
  printf("====================[ profile ]======================\n");
545
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
561
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
562
}
563
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
564

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
template <typename Device, typename T>
void Executor<Device, T>::FeedTensorData(const vector<framework::Tensor> &v) {
  auto input_size = v.size();
  auto *feed_var = program_.scope->Var("feed");

  PADDLE_MOBILE_ENFORCE(input_size == feed_indices_.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
    framework::LoDTensor &target =
        feed_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    target.ShareDataWith(v[input_size - i - 1]);
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
  auto *fetch_var = program_.scope->Var("fetch");
  auto output_size = fetch_indices_.size();
  for (int i = 0; i < output_size; i++) {
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    v->push_back(&target);
  }
}

591
#ifdef PADDLE_MOBILE_FPGA
592 593 594 595
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
596
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
597 598
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
599
}
600

601 602
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
603
  InjectVariable(t, "feed0");
604
}
605

606
template <typename Device, typename T>
607
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
608
  auto input_size = v.size();
Z
zhangyang0701 已提交
609
  int index = 0;
610 611 612
  // auto vars = program_.scope->VarContain("feed", &index);
  // PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
  //                    "input data number not correct");
613
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
614
    auto var = program_.scope->Var("feed", i + index);
615 616 617 618 619 620 621 622 623
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
624 625
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
626 627
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
628

629
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
630
    auto var = program_.scope->Var("fetch", i + index);
631 632
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
633
  }
634
}
635

636
template <typename Device, typename T>
637 638 639 640
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
641
}
642

643 644
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
645
  auto &ops = ops_of_block0_;
646

Z
zhangyang 已提交
647 648 649 650 651
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
652 653 654
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
655
}
656

657 658
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
659
  auto &ops = ops_of_block0_;
660
  end = end < 0 ? static_cast<int>(ops.size()) : end;
661 662 663 664 665 666 667 668 669 670 671 672
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
673
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
674 675 676 677 678 679 680
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
681
}
682

683 684
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
685
  Predict_From_To(start);
686
}
687

688 689
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
690
  Predict_From_To(0, end);
691
}
692 693 694 695 696 697
#ifdef PADDLE_MOBILE_FPGA_V2
std::map<std::string, float> LoadQuantValFromFile(std::string filename) {
  std::map<std::string, float> quantValList;
  std::ifstream in;
  in.open(filename, std::ios::in);
  if (!in.is_open()) {
698 699
    // std::cout << "open File Failed." << std::endl;
    DLOG << "open File Failed.";
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
    exit(-1);
  }

  std::string line;
  while (getline(in, line)) {
    std::string splitStr = " : ";
    std::string::size_type pos;
    pos = line.find(splitStr);
    std::string subStr[2];
    subStr[0] = line.substr(0, pos);
    subStr[1] = line.substr(pos + splitStr.size(), line.size());
    quantValList.insert(std::make_pair(subStr[0], atof(subStr[1].c_str())));
  }
  in.close();
  return quantValList;
}
716

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
template <typename Device, typename T>
void Executor<Device, T>::InitQuantMemory() {
  std::string quantValFilePath;
  if (program_.combined) {
    quantValFilePath = program_.para_path;
    quantValFilePath =
        quantValFilePath.substr(0, (quantValFilePath.length() - 6));
    quantValFilePath = quantValFilePath + "scale";
  } else {
    quantValFilePath = program_.model_path + "/scale";
  }
  std::map<std::string, float> quantValList =
      LoadQuantValFromFile(quantValFilePath);
  auto ops = ops_of_block0_;
  for (int id = 0; id < ops.size(); id++) {
    auto op = ops[id];
    auto input_keys = op->GetInputKeys();
    auto inputs = op->Inputs();
    for (auto key = input_keys.begin(); key != input_keys.end(); key++) {
      auto inputs_vars = inputs[*key];
      int count = inputs_vars.size();
      for (int i = 0; i < count; i++) {
739 740 741 742 743 744
        if (inputs_vars[i] != "feed") {
          auto tensor = GetTensorByName(inputs_vars[i]);
          tensor->scale[0] = quantValList[inputs_vars[i]];
          DLOG << "input variance name : " << inputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
745 746 747 748 749 750 751 752
      }
    }
    auto output_keys = op->GetOutKeys();
    auto outputs = op->Outputs();
    for (auto key = output_keys.begin(); key != output_keys.end(); key++) {
      auto outputs_vars = outputs[*key];
      int count = outputs_vars.size();
      for (int i = 0; i < count; i++) {
753 754 755 756 757 758
        if (outputs_vars[i] != "fetch") {
          auto tensor = GetTensorByName(outputs_vars[i]);
          tensor->scale[0] = quantValList[outputs_vars[i]];
          DLOG << "output variance name : " << outputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
759 760 761 762 763 764
      }
    }
  }
}
#endif
#endif
Y
yangfei 已提交
765
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
766 767
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
768
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
769 770 771 772 773 774 775
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
776
          var->template GetMutable<framework::LoDTensorArray>();
xiebaiyuan's avatar
xiebaiyuan 已提交
777 778 779 780
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
781
          auto cl_image = var->template GetMutable<CLImage>();
xiebaiyuan's avatar
xiebaiyuan 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
800

xiebaiyuan's avatar
xiebaiyuan 已提交
801 802 803
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
804 805 806 807 808
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
809
  framework::LoDTensor *input_tensor =
H
hjchen2 已提交
810
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
811 812

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
813 814
  DLOG << "target_tensor->IsInitialized() " << input_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << input_tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
815
  DLOG << "input.dims()   " << input.dims();
816
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
817
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
818
    if (input_dim_last_ != input.dims()) {
819
      DLOG << "SetInput ---- > resize1";
820 821 822 823 824 825
      input_tensor->Resize(input.dims());
      input_tensor->mutable_data<float>();
      //     InitNoPersistableMemory(*input_tensor);
      pass::MemoryOptPassSuper()(program_desc_.get(), program_.scope.get(),
                                 config_.memory_optimization_level,
                                 input.dims());
xiebaiyuan's avatar
xiebaiyuan 已提交
826 827 828
    }
  } else {
    DLOG << "SetInput ---- > resize2";
829
    input_tensor->Resize(input.dims());
xiebaiyuan's avatar
xiebaiyuan 已提交
830 831
    DLOG << "SetInput ---- > ShareDataWith";
  }
832
  input_tensor->ShareDataWith(input);
833 834 835
  if (feed_indices_.size() == 1) {
    input_dim_has_changed_ = input_dim_last_ != input.dims();
  }
836 837
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
838 839
}

840 841 842
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
843

Y
yangfei 已提交
844
template <>
H
hjchen2 已提交
845 846
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

884
  const TensorDesc &desc = var_desc.Tensor_desc();
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
919

Y
yangfei 已提交
920
template <>
921 922
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
923 924 925
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
926
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
927
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
928
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
929
          continue;
L
liuruilong 已提交
930
        } else {
931
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
932
        }
L
liuruilong 已提交
933

Y
yangfei 已提交
934
        char *origin_data =
L
liuruilong 已提交
935
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
936
        char *data = origin_data;
Y
yangfei 已提交
937
        cl_context context = program_.scope->GetCLScpoe()->Context();
938
        const TensorDesc &desc = var_desc->Tensor_desc();
939 940 941 942 943
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
944
        float *tensorInput = static_cast<float *>(
945 946
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
947

948
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
949

L
liuruilong 已提交
950 951
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
952

953
        delete origin_data;
Y
yangfei 已提交
954
        paddle_mobile::memory::Free(tensorInput);
955
      } else {
956 957
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
958
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
959 960
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
961

962 963 964
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
965
          DLOG << var_desc->Name();
L
liuruilong 已提交
966
          cl_image->InitEmptyImage(context, command_queue, ddim);
967
        }
Y
yangfei 已提交
968 969 970 971
      }
    }
  }
}
972

Y
yangfei 已提交
973
template <>
974
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
975 976
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
977 978
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
979 980
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
981
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
982 983 984 985
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, program_.combined_params_len);
    }
Y
yangfei 已提交
986 987
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
988
    self_alloc = true;
L
liuruilong 已提交
989
    origin_data = ReadFileToBuff(program_.para_path);
990 991 992 993
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, GetFileLength(program_.para_path));
    }
Y
yangfei 已提交
994 995
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
996
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
997

998
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
999 1000 1001
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
1002
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
1003
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
1004
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
1005
          continue;
L
liuruilong 已提交
1006
        } else {
1007
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
1008 1009 1010 1011
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

1012 1013
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
1014 1015 1016 1017 1018

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
1019 1020 1021
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
1022 1023 1024 1025

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

1026 1027
        paddle_mobile::memory::Free(tensorInput);
      } else {
1028
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
1029
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
1030 1031
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
1032 1033
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
1034 1035 1036
        bool shouldResize = true;
        if (ddim.size() > 4) {
          for (int i = 0; i < ddim.size() - 4; ++i) {
1037
            if (ddim[i] != 0 && ddim[i] != 1) {
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
              shouldResize = false;
              break;
            }
          }
          if (shouldResize) {
            std::vector<int64_t> temp_intput_dims;
            temp_intput_dims.reserve(static_cast<size_t>(4));
            for (int i = ddim.size() - 4; i < ddim.size(); ++i) {
              temp_intput_dims.push_back(ddim[i]);
            }
            ddim = framework::make_ddim(temp_intput_dims);
          }
        }
1051
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
1052
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
1053 1054 1055
      }
    }
  }
Y
yangfei 已提交
1056
  if (self_alloc) {
1057
    delete data;
Y
yangfei 已提交
1058
  }
Y
yangfei 已提交
1059
  LOG(kLOG_INFO) << " end init combine memory ";
1060
}
Y
yangfei 已提交
1061 1062 1063

#endif

1064
template class Executor<CPU, float>;
Y
yangfei 已提交
1065

1066
template class Executor<FPGA, float>;
W
wangliu 已提交
1067

1068
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
1069 1070

}  // namespace framework
W
wangliu 已提交
1071
}  // namespace paddle_mobile