executor.cpp 38.9 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hjchen2 已提交
15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <unordered_map>
18
#include <utility>
W
wangliu 已提交
19
#include <vector>
L
liuruilong 已提交
20
#include "common/enforce.h"
L
liuruilong 已提交
21
#include "common/log.h"
22
#include "framework/context.h"
L
liuruilong 已提交
23
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
24 25
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
26
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
27 28 29 30
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
H
hjchen2 已提交
31
#include "memory/t_malloc.h"
32
#include "pass/memory_optimize.h"
33
#include "pass/model_obfuscate.h"
L
update  
liuruilong 已提交
34 35
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
36
#include "pass/memory_optimize_cl.h"
L
update  
liuruilong 已提交
37
#endif
W
wangliu 已提交
38 39

namespace paddle_mobile {
40
namespace framework {
41

W
wangliu 已提交
42 43
#pragma mark - executor

44
template <typename Device, typename T>
45 46
void Executor<Device, T>::SetThreadNum(int thread_num, PowerMode power_mode) {
  CPUContext::Context()->set_thread_num(thread_num, power_mode);
47 48
}

49
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
50 51 52 53
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
54
    : program_(program),
H
hjchen2 已提交
55 56
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
57 58
      lod_mode_(lod_mode),
      config_(config) {
59
  DLOG << "executor in lod mode: " << lod_mode;
60

W
wangliu 已提交
61
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
62
  variable_ptr->SetValue<int>(batch_size);
63 64

  program_desc_ =
Refine  
陈后江 已提交
65
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
66 67
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
C
Chon 已提交
68 69
#if !defined(PADDLE_MOBILE_FPGA) && !defined(PADDLE_MOBILE_FPGA_KD) && \
    !defined(PADDLE_MOBILE_CL)
70
  if (config_.memory_optimization_level != NoMemoryOptimization) {
71 72
    pass::MemoryOptPass()(program_desc_.get(), program_.scope.get(),
                          config_.memory_optimization_level);
Y
Yanzhan Yang 已提交
73
  }
74
#endif
75 76 77 78
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
  const auto &blocks = program_desc_->Blocks();
79 80 81 82 83 84 85 86
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
87
        op_desc->GetAttrMap(), program_.scope.get());
88 89 90 91
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
92
    }
93
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
94
  }
95 96 97
#ifdef PADDLE_MOBILE_FPGA_V2
  InitQuantMemory();
#endif
W
wangliu 已提交
98
  if (program_.combined) {
L
liuruilong 已提交
99 100 101 102
    InitCombineMemory();
  } else {
    InitMemory();
  }
103
  int count = 0;
Z
zp7 已提交
104
#ifdef PADDLE_MOBILE_PROFILE
105 106 107
  std::vector<ProfInfo> profile(ops_of_block0_.size());
  struct timespec ts;
  int op_index = 0;
Z
zp7 已提交
108
#endif
109
  for (auto &op_handler : ops_of_block0_) {
Z
zp7 已提交
110 111 112 113
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
114
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
115 116 117
    if (op_handler->Type() == "feed" || op_handler->Type() == "fetch") {
      op_handler->setPrePostType(config_.pre_post_type);
    }
118
    op_handler->Init();
Z
zp7 已提交
119 120
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
121 122
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
Z
zp7 已提交
123
#endif
L
liuruilong 已提交
124
  }
Z
zp7 已提交
125 126 127 128
#ifdef PADDLE_MOBILE_PROFILE
  printf("================[ op init profile ]==================\n");
  PrintProfile(profile);
#endif
129 130 131 132 133 134
  ApplyMemoryOptimise(config, lod_mode);
}

template <typename Device, typename T>
void Executor<Device, T>::ApplyMemoryOptimise(
    const PaddleMobileConfigInternal &config, const bool lod_mode) const {}
135 136

#ifdef PADDLE_MOBILE_CL
137 138 139
template <>
void Executor<GPU_CL, float>::ApplyMemoryOptimise(
    const PaddleMobileConfigInternal &config, const bool lod_mode) const {
140 141 142 143 144
  if (!config.load_when_predict && !lod_mode &&
      config_.memory_optimization_level != NoMemoryOptimization) {
    pass::MemoryOptPassCl()(program_desc_.get(), program_.scope.get(),
                            config_.memory_optimization_level);
  }
W
wangliu 已提交
145
}
146
#endif
W
wangliu 已提交
147

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

175
template <typename T>
176 177 178 179
static void LoadMemInternal(void **in_data, void *out_data, int64_t size,
                            bool quant_uint8 = false, int quant_fold = 1) {
  char **data_buf = reinterpret_cast<char **>(in_data);
  T *tensor_data = reinterpret_cast<T *>(out_data);
180
  if (quant_uint8) {
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    int step = fmax(size / quant_fold, 1);
    int visited_fold = 0;
    while (visited_fold * step < size) {
      // should be moved into operator init function
      float min_value;
      float max_value;
      memory::Copy(&min_value, *data_buf, sizeof(float));
      memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
      *data_buf += 2 * sizeof(float);
      const float factor = (max_value - min_value) / 255.0;
      const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
      int k = 0;
      for (; k < step; ++k) {
        int tensor_data_idx = visited_fold * step + k;
        if (tensor_data_idx >= size) {
          break;
        }
        tensor_data[tensor_data_idx] = uint8_data[k] * factor + min_value;
      }
      *data_buf += k * sizeof(uint8_t);
      visited_fold++;
W
wangliu 已提交
202
    }
203
  } else {
204 205
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
206
  }
207
}
W
wangliu 已提交
208

209 210 211 212
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
213
  char **data_buf = reinterpret_cast<char **>(data);
214
  // version
215
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
216
  *data_buf += sizeof(uint32_t);
217
  // lod information
H
hjchen2 已提交
218 219
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
220
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
221
  *data_buf += sizeof(uint64_t);
222 223 224 225

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
226
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
227
    *data_buf += sizeof(uint64_t);
228
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
229
    memory::Copy(tmp_dim.data(), *data_buf, size);
230
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
231
    *data_buf += size;
W
wangliu 已提交
232
  }
233
  // tensor version
234
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
235
  *data_buf += sizeof(uint32_t);
236
  // tensor desc size
237
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
238
  *data_buf += sizeof(int32_t);
239
  // skip tensor desc
Refine  
陈后江 已提交
240
  *data_buf += tensor_desc_size;
241

242 243
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
244 245
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
246
    case VARTYPE_TYPE_FP32:
247 248 249 250
      LoadMemInternal<float>(
          reinterpret_cast<void **>(data_buf),
          reinterpret_cast<void *>(tensor->mutable_data<T>()), tensor->numel(),
          program_.quantification, program_.quantification_fold);
W
wangliu 已提交
251
      break;
252
    case VARTYPE_TYPE_INT8:
253 254 255
      LoadMemInternal<int8_t>(
          reinterpret_cast<void **>(data_buf),
          reinterpret_cast<void *>(tensor->mutable_data<T>()), tensor->numel());
W
wangliu 已提交
256
      break;
257
    case VARTYPE_TYPE_INT32:
258 259 260
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf),
                           reinterpret_cast<void *>(tensor->mutable_data<T>()),
                           tensor->numel());
W
wangliu 已提交
261 262
      break;
    default:
263
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
264
  }
W
wangliu 已提交
265 266
}

267 268 269
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
270 271 272 273
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
274
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
275 276
          continue;
        }
H
hjchen2 已提交
277
        DLOG << "init persistable var: " << var_desc->Name();
Refine  
陈后江 已提交
278
        char *origin_data =
Refine  
陈后江 已提交
279
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
280
        char *data = origin_data;
H
update  
hjchen2 已提交
281
        auto tensor = var->template GetMutable<LoDTensor>();
282 283
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
284
      } else {
285
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
286
        varInputMemory(var_desc, var);
W
wangliu 已提交
287 288 289 290 291
      }
    }
  }
}

292 293
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
294
  char *origin_data = nullptr;
Refine  
陈后江 已提交
295
  bool self_alloc = false;
296
  if (program_.combined_params_buf && program_.combined_params_len) {
297 298
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
299 300 301 302
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, program_.combined_params_len);
    }
303
  } else {
Refine  
陈后江 已提交
304
    self_alloc = true;
Refine  
陈后江 已提交
305
    origin_data = ReadFileToBuff(program_.para_path);
306 307 308 309
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, GetFileLength(program_.para_path));
    }
310
  }
Refine  
陈后江 已提交
311 312
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
313
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
314 315 316 317
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
318
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
319 320
          continue;
        }
L
liuruilong 已提交
321 322

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
323
        auto tensor = var->template GetMutable<LoDTensor>();
324
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
325
      } else {
H
update  
hjchen2 已提交
326 327
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
328 329 330
      }
    }
  }
Refine  
陈后江 已提交
331
  if (self_alloc) {
332
    delete[] origin_data;
Refine  
陈后江 已提交
333 334
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
335
}
336

C
Chon 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350
static void ClearNoPersistableTensorArray(const framework::ProgramDesc *program,
                                          framework::Scope *scope) {
  for (const auto &block : program->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
        auto var = scope->Var(var_desc->Name());
        auto array = var->template GetMutable<framework::LoDTensorArray>();
        array->resize(1);
      }
    }
  }
}

L
liuruilong 已提交
351
template <typename Device, typename T>
L
liuruilong 已提交
352
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
353 354 355
  if (input_tensor.dims().size() != 4) {
    return;
  }
L
liuruilong 已提交
356 357 358
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
359 360 361 362 363 364
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
        DLOG << "InitNoPersistableMemory var " << var_desc->Name();
        auto tensor = var->template GetMutable<LoDTensor>();
        if (tensor->IsInitialized() && tensor->dims().size() == 4) {
          DLOG << "var's tensor is Initialized or dims size != 4";
L
liuruilong 已提交
365
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
366 367 368 369
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
370 371 372
          tensor->template mutable_data_new<T>();
          DLOG << "var's tensor dims " << tensor_dim;
          DLOG << "var's tensor new dims " << new_dim;
H
update  
hjchen2 已提交
373
        } else {
374
          DLOG << "var's tensor is not Initialized ???";
L
liuruilong 已提交
375 376 377 378 379 380
        }
      }
    }
  }
}

381 382
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
383
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
384
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
385
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
386 387 388
#ifdef PADDLE_MOBILE_FPGA_V2
  tensor->init(type_id<int8_t>().hash_code());
#else
389
  tensor->init(type_id<float>().hash_code());
390
#endif
391 392
  return true;
#endif
H
update  
hjchen2 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
406
  }
H
update  
hjchen2 已提交
407
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
408
}
L
liuruilong 已提交
409

410 411 412 413 414
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
415
  }
416 417 418 419 420 421 422 423
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
424
  }
425
  return this->Predict();
W
wangliu 已提交
426
}
xiebaiyuan's avatar
xiebaiyuan 已提交
427

428 429 430
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
431 432 433 434 435 436 437
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
438
  Tensor feed_tensor(input, make_ddim(dims));
439
  SetInput(feed_tensor, input_name);
440 441
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
442 443
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
444 445 446 447 448 449
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
450

451 452 453
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
454
  int index = 0;
455
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
456
    index = feed_indices_.find(var_name)->second;
457
  }
H
hjchen2 已提交
458 459 460 461 462 463
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
464 465
  if (feed_indices_.size() == 1) {
    auto &dim = input.dims();
466 467 468
    if (lod_mode_ && product(dim) < 0.9 * product(input_dim_last_)) {
      InitNoPersistableMemory(target);
    }
469 470 471
    input_dim_has_changed_ = input_dim_last_ != dim;
    input_dim_last_ = static_cast<DDim>(dim);
  }
472
}
xiebaiyuan's avatar
xiebaiyuan 已提交
473

474 475 476
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
477
  int index = 0;
478
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
479
    index = feed_indices_.find(var_name)->second;
480
  }
H
hjchen2 已提交
481 482 483 484 485 486 487
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
488 489
  if (feed_indices_.size() == 1) {
    auto &dim = input.dims();
490 491 492
    if (lod_mode_ && product(dim) < 0.9 * product(input_dim_last_)) {
      InitNoPersistableMemory(target);
    }
493 494 495
    input_dim_has_changed_ = input_dim_last_ != dim;
    input_dim_last_ = static_cast<DDim>(dim);
  }
496 497 498 499 500
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
501 502 503 504 505 506 507 508 509
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
510

511 512 513 514 515 516 517
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
518
}
xiebaiyuan's avatar
xiebaiyuan 已提交
519

520 521 522 523 524 525 526 527 528 529 530 531 532 533
#ifdef PADDLE_MOBILE_CL
template <typename Device, typename T>
const CLImage *Executor<Device, T>::GetOutputImage(
    const std::string &var_name) {
  auto var = program_.scope->FindVar(var_name);
  if (var->IsInitialized() && var->template IsType<framework::CLImage>()) {
    const CLImage *cl_image = var->template Get<framework::CLImage>();
    return cl_image;
  } else {
    return nullptr;
  }
}
#endif

534 535
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
536
  try {
537
#if _OPENMP
538
    omp_set_num_threads(CPUContext::Context()->get_thread_num());
539
#endif
540 541 542
    // clear all no persistable tensor array since write_to_array
    // is always push back a new tensor in the array
    ClearNoPersistableTensorArray(program_desc_.get(), program_.scope.get());
543

xiebaiyuan's avatar
xiebaiyuan 已提交
544
#ifdef PADDLE_MOBILE_PROFILE
545 546 547
    std::vector<ProfInfo> profile(ops_of_block0_.size());
    struct timespec ts;
    int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
548
#endif
549 550
    for (int i = 0; i < ops_of_block0_.size(); ++i) {
      auto &op_handler = ops_of_block0_[i];
xiebaiyuan's avatar
xiebaiyuan 已提交
551
#ifdef PADDLE_MOBILE_PROFILE
552 553
      clock_gettime(CLOCK_MONOTONIC, &ts);
      profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
554
#endif
555 556 557 558 559 560
      DLOG << i << "th, "
           << "run op: " << op_handler->Type();
      if (lod_mode_ && input_dim_has_changed_) {
        op_handler->InferShape();
      }
      op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
561
#ifdef PADDLE_MOBILE_PROFILE
562 563 564
      clock_gettime(CLOCK_MONOTONIC, &ts);
      profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
      ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
565
#endif
566 567 568 569
    }
    if (feed_indices_.size() == 1) {
      input_dim_has_changed_ = false;
    }
570 571

#ifdef PADDLE_MOBILE_PROFILE
572
    PrintProfile(profile);
573
#endif
574 575 576 577 578 579 580 581
    return PMSuccess;
  } catch (PaddleMobileException &e) {
    exception_msg_ = e.what();
    return PMException;
  } catch (std::exception &e) {
    exception_msg_ = e.what();
    return PMException;
  }
582 583
}

xiebaiyuan's avatar
xiebaiyuan 已提交
584
#ifdef PADDLE_MOBILE_PROFILE
585 586 587
template <typename Device, typename T>
void Executor<Device, T>::PrintProfile(
    const vector<Executor<Device, T>::ProfInfo> &profile) const {
xiebaiyuan's avatar
xiebaiyuan 已提交
588 589 590 591
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
592 593 594 595 596 597
    if (this->ops_of_block0_[i]->Type() == "conv2d" ||
        this->ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = this->ops_of_block0_[i]->Inputs();

      auto *filter = GetVarValue<ProfileTensorType>("Filter", inputs,
                                                    *(this->program_.scope));
598
      int kernel_size = filter->dims()[2];
599 600
      _tp[this->ops_of_block0_[i]->Type() + "_" +
          std::to_string(kernel_size)] += timeCost;
601
    } else {
602
      _tp[this->ops_of_block0_[i]->Type()] += timeCost;
603
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
604
  }
H
hjchen2 已提交
605
  printf("====================[ profile ]======================\n");
606
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
622
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
623
}
624
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
625

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
template <typename Device, typename T>
void Executor<Device, T>::FeedTensorData(const vector<framework::Tensor> &v) {
  auto input_size = v.size();
  auto *feed_var = program_.scope->Var("feed");

  PADDLE_MOBILE_ENFORCE(input_size == feed_indices_.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
    framework::LoDTensor &target =
        feed_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    target.ShareDataWith(v[input_size - i - 1]);
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
  auto *fetch_var = program_.scope->Var("fetch");
  auto output_size = fetch_indices_.size();
  for (int i = 0; i < output_size; i++) {
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    v->push_back(&target);
  }
}

652 653 654 655 656
template <typename Device, typename T>
std::string Executor<Device, T>::GetExceptionMsg() {
  return exception_msg_;
}

657
#ifdef PADDLE_MOBILE_FPGA
658 659 660 661
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
662
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
663 664
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
665
}
666

667 668
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
669
  InjectVariable(t, "feed0");
670
}
671

672
template <typename Device, typename T>
673
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
674
  auto input_size = v.size();
Z
zhangyang0701 已提交
675
  int index = 0;
676 677 678
  // auto vars = program_.scope->VarContain("feed", &index);
  // PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
  //                    "input data number not correct");
679
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
680
    auto var = program_.scope->Var("feed", i + index);
681 682 683 684 685 686 687 688 689
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
690 691
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
692 693
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
694

695
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
696
    auto var = program_.scope->Var("fetch", i + index);
697 698
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
699
  }
700
}
701

702
template <typename Device, typename T>
703 704 705 706
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
707
}
708

709 710
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
711
  auto &ops = ops_of_block0_;
712

Z
zhangyang 已提交
713 714 715 716 717
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
718 719 720
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
721
}
722

723 724
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
725
  auto &ops = ops_of_block0_;
726
  end = end < 0 ? static_cast<int>(ops.size()) : end;
727 728 729 730 731 732 733 734 735 736 737 738
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
739
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
740 741 742 743 744 745 746
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
747
}
748

749 750
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
751
  Predict_From_To(start);
752
}
753

754 755
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
756
  Predict_From_To(0, end);
757
}
758 759 760 761 762 763
#ifdef PADDLE_MOBILE_FPGA_V2
std::map<std::string, float> LoadQuantValFromFile(std::string filename) {
  std::map<std::string, float> quantValList;
  std::ifstream in;
  in.open(filename, std::ios::in);
  if (!in.is_open()) {
764 765
    // std::cout << "open File Failed." << std::endl;
    DLOG << "open File Failed.";
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
    exit(-1);
  }

  std::string line;
  while (getline(in, line)) {
    std::string splitStr = " : ";
    std::string::size_type pos;
    pos = line.find(splitStr);
    std::string subStr[2];
    subStr[0] = line.substr(0, pos);
    subStr[1] = line.substr(pos + splitStr.size(), line.size());
    quantValList.insert(std::make_pair(subStr[0], atof(subStr[1].c_str())));
  }
  in.close();
  return quantValList;
}
782

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
template <typename Device, typename T>
void Executor<Device, T>::InitQuantMemory() {
  std::string quantValFilePath;
  if (program_.combined) {
    quantValFilePath = program_.para_path;
    quantValFilePath =
        quantValFilePath.substr(0, (quantValFilePath.length() - 6));
    quantValFilePath = quantValFilePath + "scale";
  } else {
    quantValFilePath = program_.model_path + "/scale";
  }
  std::map<std::string, float> quantValList =
      LoadQuantValFromFile(quantValFilePath);
  auto ops = ops_of_block0_;
  for (int id = 0; id < ops.size(); id++) {
    auto op = ops[id];
    auto input_keys = op->GetInputKeys();
    auto inputs = op->Inputs();
    for (auto key = input_keys.begin(); key != input_keys.end(); key++) {
      auto inputs_vars = inputs[*key];
      int count = inputs_vars.size();
      for (int i = 0; i < count; i++) {
805 806 807 808 809 810
        if (inputs_vars[i] != "feed") {
          auto tensor = GetTensorByName(inputs_vars[i]);
          tensor->scale[0] = quantValList[inputs_vars[i]];
          DLOG << "input variance name : " << inputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
811 812 813 814 815 816 817 818
      }
    }
    auto output_keys = op->GetOutKeys();
    auto outputs = op->Outputs();
    for (auto key = output_keys.begin(); key != output_keys.end(); key++) {
      auto outputs_vars = outputs[*key];
      int count = outputs_vars.size();
      for (int i = 0; i < count; i++) {
819 820 821 822 823 824
        if (outputs_vars[i] != "fetch") {
          auto tensor = GetTensorByName(outputs_vars[i]);
          tensor->scale[0] = quantValList[outputs_vars[i]];
          DLOG << "output variance name : " << outputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
825 826 827 828 829 830
      }
    }
  }
}
#endif
#endif
Y
yangfei 已提交
831
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
832 833
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
834
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
835 836 837 838 839 840 841
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
842
          var->template GetMutable<framework::LoDTensorArray>();
xiebaiyuan's avatar
xiebaiyuan 已提交
843 844 845 846
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
847
          auto cl_image = var->template GetMutable<CLImage>();
xiebaiyuan's avatar
xiebaiyuan 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
866

xiebaiyuan's avatar
xiebaiyuan 已提交
867 868 869
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
870 871 872 873 874
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
875
  framework::LoDTensor *input_tensor =
H
hjchen2 已提交
876
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
877 878

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
879 880
  DLOG << "target_tensor->IsInitialized() " << input_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << input_tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
881
  DLOG << "input.dims()   " << input.dims();
882
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
883
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
884
    if (input_dim_last_ != input.dims()) {
885
      DLOG << "SetInput ---- > resize1";
886 887
      input_tensor->Resize(input.dims());
      input_tensor->mutable_data<float>();
888 889 890 891 892 893 894
      if (config_.memory_optimization_level == NoMemoryOptimization) {
        InitNoPersistableMemory(*input_tensor);
      } else {
        pass::MemoryOptPassCl()(program_desc_.get(), program_.scope.get(),
                                config_.memory_optimization_level,
                                input.dims());
      }
xiebaiyuan's avatar
xiebaiyuan 已提交
895 896 897
    }
  } else {
    DLOG << "SetInput ---- > resize2";
898
    input_tensor->Resize(input.dims());
xiebaiyuan's avatar
xiebaiyuan 已提交
899 900
    DLOG << "SetInput ---- > ShareDataWith";
  }
901
  input_tensor->ShareDataWith(input);
902 903 904
  if (feed_indices_.size() == 1) {
    input_dim_has_changed_ = input_dim_last_ != input.dims();
  }
905 906
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
907 908
}

909 910 911
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
912

Y
yangfei 已提交
913
template <>
H
hjchen2 已提交
914 915
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

953
  const TensorDesc &desc = var_desc.Tensor_desc();
954 955 956 957 958 959 960 961
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
962 963 964 965

  LoadMemInternal<float>(reinterpret_cast<void **>(data),
                         reinterpret_cast<void *>(memory), memory_size,
                         program_.quantification, program_.quantification_fold);
966
}
967

Y
yangfei 已提交
968
template <>
969 970
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
971 972 973
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
974
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
975
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
976
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
977
          continue;
L
liuruilong 已提交
978
        } else {
979
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
980
        }
L
liuruilong 已提交
981

Y
yangfei 已提交
982
        char *origin_data =
L
liuruilong 已提交
983
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
984
        char *data = origin_data;
Y
yangfei 已提交
985
        cl_context context = program_.scope->GetCLScpoe()->Context();
986
        const TensorDesc &desc = var_desc->Tensor_desc();
987 988 989 990 991
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
992
        float *tensorInput = static_cast<float *>(
993 994
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
995

996
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
997

L
liuruilong 已提交
998 999
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
1000

1001
        delete origin_data;
Y
yangfei 已提交
1002
        paddle_mobile::memory::Free(tensorInput);
1003
      } else {
1004 1005
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
1006
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
1007 1008
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
1009

1010 1011 1012
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
1013
          DLOG << var_desc->Name();
L
liuruilong 已提交
1014
          cl_image->InitEmptyImage(context, command_queue, ddim);
1015
        }
Y
yangfei 已提交
1016 1017 1018 1019
      }
    }
  }
}
1020

Y
yangfei 已提交
1021
template <>
1022
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
1023 1024
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
1025 1026
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
1027 1028
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
1029
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
1030 1031 1032 1033
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, program_.combined_params_len);
    }
Y
yangfei 已提交
1034 1035
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
1036
    self_alloc = true;
L
liuruilong 已提交
1037
    origin_data = ReadFileToBuff(program_.para_path);
1038 1039 1040 1041
    if (config_.model_obfuscate_key != "") {
      auto obfuscator = pass::ModelObfuscatePass(config_.model_obfuscate_key);
      obfuscator.convert_data(origin_data, GetFileLength(program_.para_path));
    }
Y
yangfei 已提交
1042 1043
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
1044
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
1045

1046
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
1047 1048 1049
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
1050
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
1051
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
1052
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
1053
          continue;
L
liuruilong 已提交
1054
        } else {
1055
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
1056 1057 1058 1059
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

1060 1061
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
1062 1063 1064 1065 1066

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
1067 1068 1069
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
1070 1071 1072 1073

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

1074 1075
        paddle_mobile::memory::Free(tensorInput);
      } else {
1076
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
1077
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
1078 1079
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
1080 1081
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
1082 1083 1084
        bool shouldResize = true;
        if (ddim.size() > 4) {
          for (int i = 0; i < ddim.size() - 4; ++i) {
1085
            if (ddim[i] != 0 && ddim[i] != 1) {
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
              shouldResize = false;
              break;
            }
          }
          if (shouldResize) {
            std::vector<int64_t> temp_intput_dims;
            temp_intput_dims.reserve(static_cast<size_t>(4));
            for (int i = ddim.size() - 4; i < ddim.size(); ++i) {
              temp_intput_dims.push_back(ddim[i]);
            }
            ddim = framework::make_ddim(temp_intput_dims);
          }
        }
1099
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
1100
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
1101 1102 1103
      }
    }
  }
Y
yangfei 已提交
1104
  if (self_alloc) {
1105
    delete data;
Y
yangfei 已提交
1106
  }
Y
yangfei 已提交
1107
  LOG(kLOG_INFO) << " end init combine memory ";
1108
}
Y
yangfei 已提交
1109 1110 1111

#endif

1112
template class Executor<CPU, float>;
Y
yangfei 已提交
1113

1114
template class Executor<FPGA, float>;
W
wangliu 已提交
1115

1116
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
1117 1118

}  // namespace framework
W
wangliu 已提交
1119
}  // namespace paddle_mobile