executor.cpp 34.9 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hjchen2 已提交
15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <unordered_map>
18
#include <utility>
W
wangliu 已提交
19
#include <vector>
L
liuruilong 已提交
20
#include "common/enforce.h"
L
liuruilong 已提交
21
#include "common/log.h"
22
#include "framework/context.h"
L
liuruilong 已提交
23
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
24 25
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
26
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
27 28 29 30
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
H
hjchen2 已提交
31
#include "memory/t_malloc.h"
H
hjchen2 已提交
32
#include "pass/memory_optimize.h"
L
update  
liuruilong 已提交
33 34 35
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif
W
wangliu 已提交
36 37

namespace paddle_mobile {
38
namespace framework {
39

W
wangliu 已提交
40 41
#pragma mark - executor

42
template <typename Device, typename T>
43 44
void Executor<Device, T>::SetThreadNum(int thread_num, PowerMode power_mode) {
  CPUContext::Context()->set_thread_num(thread_num, power_mode);
45 46
}

47
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
48 49 50 51
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
52
    : program_(program),
H
hjchen2 已提交
53 54
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
55 56
      lod_mode_(lod_mode),
      config_(config) {
57 58
  DLOG << "executor in lod mode: " << lod_mode_;

W
wangliu 已提交
59
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
60
  variable_ptr->SetValue<int>(batch_size);
61 62

  program_desc_ =
Refine  
陈后江 已提交
63
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
64 65
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
C
Chon 已提交
66 67
#if !defined(PADDLE_MOBILE_FPGA) && !defined(PADDLE_MOBILE_FPGA_KD) && \
    !defined(PADDLE_MOBILE_CL)
68 69 70
  if (config_.memory_optimization_level != NoMemoryOptimization) {
    pass::MemoryOptPass()(program_desc_.get(), program_.scope.get(),
                          config_.memory_optimization_level);
Y
Yanzhan Yang 已提交
71
  }
72
#endif
73 74 75 76
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
  const auto &blocks = program_desc_->Blocks();
77 78 79 80 81 82 83 84
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
85
        op_desc->GetAttrMap(), program_.scope.get());
86 87 88 89
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
90
    }
91
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
92
  }
93 94 95
#ifdef PADDLE_MOBILE_FPGA_V2
  InitQuantMemory();
#endif
W
wangliu 已提交
96
  if (program_.combined) {
L
liuruilong 已提交
97 98 99 100
    InitCombineMemory();
  } else {
    InitMemory();
  }
101
  int count = 0;
102 103 104
  for (auto &op_handler : ops_of_block0_) {
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
    op_handler->Init();
L
liuruilong 已提交
105
  }
W
wangliu 已提交
106 107
}

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

135
template <typename T>
136
static void LoadMemInternal(void **data, LoDTensor *tensor,
137
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
138
  char **data_buf = reinterpret_cast<char **>(data);
139
  int64_t size = tensor->numel();
140
  T *tensor_data = tensor->mutable_data<T>();
141 142
  if (quant_uint8) {
    // should be moved into operator init function
143 144
    float min_value;
    float max_value;
145 146 147
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
148
    const float factor = (max_value - min_value) / 255.0;
149
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
150 151
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
152
    }
153
    *data_buf += size * sizeof(uint8_t);
154
  } else {
155 156
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
157
  }
158
}
W
wangliu 已提交
159

160 161 162 163
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
164
  char **data_buf = reinterpret_cast<char **>(data);
165
  // version
166
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
167
  *data_buf += sizeof(uint32_t);
168
  // lod information
H
hjchen2 已提交
169 170
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
171
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
172
  *data_buf += sizeof(uint64_t);
173 174 175 176

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
177
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
178
    *data_buf += sizeof(uint64_t);
179
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
180
    memory::Copy(tmp_dim.data(), *data_buf, size);
181
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
182
    *data_buf += size;
W
wangliu 已提交
183
  }
184
  // tensor version
185
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
186
  *data_buf += sizeof(uint32_t);
187
  // tensor desc size
188
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
189
  *data_buf += sizeof(int32_t);
190
  // skip tensor desc
Refine  
陈后江 已提交
191
  *data_buf += tensor_desc_size;
192

193 194
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
195 196
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
197
    case VARTYPE_TYPE_FP32:
198 199
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
200
      break;
201
    case VARTYPE_TYPE_INT8:
202
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
203
      break;
204
    case VARTYPE_TYPE_INT32:
205
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
206 207
      break;
    default:
208
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
209
  }
W
wangliu 已提交
210 211
}

212 213 214
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
215 216 217 218
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
219
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
220 221
          continue;
        }
H
hjchen2 已提交
222
        DLOG << "init persistable var: " << var_desc->Name();
Refine  
陈后江 已提交
223
        char *origin_data =
Refine  
陈后江 已提交
224
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
225
        char *data = origin_data;
H
update  
hjchen2 已提交
226
        auto tensor = var->template GetMutable<LoDTensor>();
227 228
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
229
      } else {
230
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
231
        varInputMemory(var_desc, var);
W
wangliu 已提交
232 233 234 235 236
      }
    }
  }
}

237 238
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
239
  char *origin_data = nullptr;
Refine  
陈后江 已提交
240
  bool self_alloc = false;
241
  if (program_.combined_params_buf && program_.combined_params_len) {
242 243
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
244
  } else {
Refine  
陈后江 已提交
245
    self_alloc = true;
Refine  
陈后江 已提交
246
    origin_data = ReadFileToBuff(program_.para_path);
247
  }
Refine  
陈后江 已提交
248 249
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
250
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
251 252 253 254
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
255
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
256 257
          continue;
        }
L
liuruilong 已提交
258 259

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
260
        auto tensor = var->template GetMutable<LoDTensor>();
261
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
262
      } else {
H
update  
hjchen2 已提交
263 264
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
265 266 267
      }
    }
  }
Refine  
陈后江 已提交
268
  if (self_alloc) {
269
    delete[] origin_data;
Refine  
陈后江 已提交
270 271
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
272
}
273

C
Chon 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287
static void ClearNoPersistableTensorArray(const framework::ProgramDesc *program,
                                          framework::Scope *scope) {
  for (const auto &block : program->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
        auto var = scope->Var(var_desc->Name());
        auto array = var->template GetMutable<framework::LoDTensorArray>();
        array->resize(1);
      }
    }
  }
}

L
liuruilong 已提交
288
template <typename Device, typename T>
L
liuruilong 已提交
289
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
L
liuruilong 已提交
290 291 292 293 294 295
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      auto tensor = var->template GetMutable<LoDTensor>();
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
296
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
297 298 299 300 301
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
302 303 304 305
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
L
liuruilong 已提交
306
          tensor->template mutable_data<T>();
H
update  
hjchen2 已提交
307 308 309
        } else {
          PADDLE_MOBILE_THROW_EXCEPTION("Unsupported var type `%d`",
                                        var_desc->Type());
L
liuruilong 已提交
310 311 312 313 314 315 316 317 318 319
        }
      }
    }
  }

  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<T>();
}

320 321
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
322
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
323
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
324
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
325 326 327
#ifdef PADDLE_MOBILE_FPGA_V2
  tensor->init(type_id<int8_t>().hash_code());
#else
328
  tensor->init(type_id<float>().hash_code());
329
#endif
330 331
  return true;
#endif
H
update  
hjchen2 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
345
  }
H
update  
hjchen2 已提交
346
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
347
}
L
liuruilong 已提交
348

349 350 351 352 353
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
354
  }
355 356 357 358 359 360 361 362
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
363
  }
364
  return this->Predict();
W
wangliu 已提交
365
}
xiebaiyuan's avatar
xiebaiyuan 已提交
366

367 368 369
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
370 371 372 373 374 375 376
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
377
  Tensor feed_tensor(input, make_ddim(dims));
378
  SetInput(feed_tensor, input_name);
379 380
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
381 382
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
383 384 385 386 387 388
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
389

390 391 392
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
393
  int index = 0;
394
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
395
    index = feed_indices_.find(var_name)->second;
396
  }
H
hjchen2 已提交
397 398 399 400 401 402
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
403
}
xiebaiyuan's avatar
xiebaiyuan 已提交
404

405 406 407
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
408
  int index = 0;
409
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
410
    index = feed_indices_.find(var_name)->second;
411
  }
H
hjchen2 已提交
412 413 414 415 416 417 418
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
419 420 421 422 423
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
424 425 426 427 428 429 430 431 432
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
433

434 435 436 437 438 439 440
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
441
}
xiebaiyuan's avatar
xiebaiyuan 已提交
442

443 444
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
445
#if _OPENMP
446
  omp_set_num_threads(CPUContext::Context()->get_thread_num());
447
#endif
448 449 450 451
  // clear all no persistable tensor array since write_to_array
  // is always push back a new tensor in the array
  ClearNoPersistableTensorArray(program_desc_.get(), program_.scope.get());

xiebaiyuan's avatar
xiebaiyuan 已提交
452
#ifdef PADDLE_MOBILE_PROFILE
453
  std::vector<ProfInfo> profile(ops_of_block0_.size());
454 455
  struct timespec ts;
  int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
456
#endif
457
  for (auto &op_handler : ops_of_block0_) {
xiebaiyuan's avatar
xiebaiyuan 已提交
458
#ifdef PADDLE_MOBILE_PROFILE
459 460
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
461
#endif
H
hjchen2 已提交
462
    DLOG << "run op: " << op_handler->Type();
463 464 465 466
    if (lod_mode_) {
      op_handler->InferShape();
    }
    op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
467
#ifdef PADDLE_MOBILE_PROFILE
468 469 470
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
471 472
#endif
  }
473 474 475 476 477 478 479

#ifdef PADDLE_MOBILE_PROFILE
  PrintProfile(profile);
#endif
  return PMSuccess;
}

xiebaiyuan's avatar
xiebaiyuan 已提交
480
#ifdef PADDLE_MOBILE_PROFILE
481 482 483
template <typename Device, typename T>
void Executor<Device, T>::PrintProfile(
    const vector<Executor<Device, T>::ProfInfo> &profile) const {
xiebaiyuan's avatar
xiebaiyuan 已提交
484 485 486 487
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
488 489 490 491 492 493
    if (this->ops_of_block0_[i]->Type() == "conv2d" ||
        this->ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = this->ops_of_block0_[i]->Inputs();

      auto *filter = GetVarValue<ProfileTensorType>("Filter", inputs,
                                                    *(this->program_.scope));
494
      int kernel_size = filter->dims()[2];
495 496
      _tp[this->ops_of_block0_[i]->Type() + "_" +
          std::to_string(kernel_size)] += timeCost;
497
    } else {
498
      _tp[this->ops_of_block0_[i]->Type()] += timeCost;
499
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
500
  }
H
hjchen2 已提交
501
  printf("====================[ profile ]======================\n");
502
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
518
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
519
}
520
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
521

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
template <typename Device, typename T>
void Executor<Device, T>::FeedTensorData(const vector<framework::Tensor> &v) {
  auto input_size = v.size();
  auto *feed_var = program_.scope->Var("feed");

  PADDLE_MOBILE_ENFORCE(input_size == feed_indices_.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
    framework::LoDTensor &target =
        feed_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    target.ShareDataWith(v[input_size - i - 1]);
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
  auto *fetch_var = program_.scope->Var("fetch");
  auto output_size = fetch_indices_.size();
  for (int i = 0; i < output_size; i++) {
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    v->push_back(&target);
  }
}

548
#ifdef PADDLE_MOBILE_FPGA
549 550 551 552
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
553
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
554 555
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
556
}
557

558 559
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
560
  InjectVariable(t, "feed0");
561
}
562

563
template <typename Device, typename T>
564
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
565
  auto input_size = v.size();
Z
zhangyang0701 已提交
566
  int index = 0;
567 568 569
  // auto vars = program_.scope->VarContain("feed", &index);
  // PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
  //                    "input data number not correct");
570
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
571
    auto var = program_.scope->Var("feed", i + index);
572 573 574 575 576 577 578 579 580
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
581 582
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
583 584
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
585

586
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
587
    auto var = program_.scope->Var("fetch", i + index);
588 589
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
590
  }
591
}
592

593
template <typename Device, typename T>
594 595 596 597
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
598
}
599

600 601
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
602
  auto &ops = ops_of_block0_;
603

Z
zhangyang 已提交
604 605 606 607 608
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
609 610 611
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
612
}
613

614 615
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
616
  auto &ops = ops_of_block0_;
617
  end = end < 0 ? static_cast<int>(ops.size()) : end;
618 619 620 621 622 623 624 625 626 627 628 629
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
630
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
631 632 633 634 635 636 637
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
638
}
639

640 641
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
642
  Predict_From_To(start);
643
}
644

645 646
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
647
  Predict_From_To(0, end);
648
}
649 650 651 652 653 654
#ifdef PADDLE_MOBILE_FPGA_V2
std::map<std::string, float> LoadQuantValFromFile(std::string filename) {
  std::map<std::string, float> quantValList;
  std::ifstream in;
  in.open(filename, std::ios::in);
  if (!in.is_open()) {
655 656
    // std::cout << "open File Failed." << std::endl;
    DLOG << "open File Failed.";
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
    exit(-1);
  }

  std::string line;
  while (getline(in, line)) {
    std::string splitStr = " : ";
    std::string::size_type pos;
    pos = line.find(splitStr);
    std::string subStr[2];
    subStr[0] = line.substr(0, pos);
    subStr[1] = line.substr(pos + splitStr.size(), line.size());
    quantValList.insert(std::make_pair(subStr[0], atof(subStr[1].c_str())));
  }
  in.close();
  return quantValList;
}
673

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
template <typename Device, typename T>
void Executor<Device, T>::InitQuantMemory() {
  std::string quantValFilePath;
  if (program_.combined) {
    quantValFilePath = program_.para_path;
    quantValFilePath =
        quantValFilePath.substr(0, (quantValFilePath.length() - 6));
    quantValFilePath = quantValFilePath + "scale";
  } else {
    quantValFilePath = program_.model_path + "/scale";
  }
  std::map<std::string, float> quantValList =
      LoadQuantValFromFile(quantValFilePath);
  auto ops = ops_of_block0_;
  for (int id = 0; id < ops.size(); id++) {
    auto op = ops[id];
    auto input_keys = op->GetInputKeys();
    auto inputs = op->Inputs();
    for (auto key = input_keys.begin(); key != input_keys.end(); key++) {
      auto inputs_vars = inputs[*key];
      int count = inputs_vars.size();
      for (int i = 0; i < count; i++) {
696 697 698 699 700 701
        if (inputs_vars[i] != "feed") {
          auto tensor = GetTensorByName(inputs_vars[i]);
          tensor->scale[0] = quantValList[inputs_vars[i]];
          DLOG << "input variance name : " << inputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
702 703 704 705 706 707 708 709
      }
    }
    auto output_keys = op->GetOutKeys();
    auto outputs = op->Outputs();
    for (auto key = output_keys.begin(); key != output_keys.end(); key++) {
      auto outputs_vars = outputs[*key];
      int count = outputs_vars.size();
      for (int i = 0; i < count; i++) {
710 711 712 713 714 715
        if (outputs_vars[i] != "fetch") {
          auto tensor = GetTensorByName(outputs_vars[i]);
          tensor->scale[0] = quantValList[outputs_vars[i]];
          DLOG << "output variance name : " << outputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
716 717 718 719 720 721
      }
    }
  }
}
#endif
#endif
Y
yangfei 已提交
722
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
723 724
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
725
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
726 727 728 729 730 731 732
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
733
          var->template GetMutable<framework::LoDTensorArray>();
xiebaiyuan's avatar
xiebaiyuan 已提交
734 735 736 737
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
738
          auto cl_image = var->template GetMutable<CLImage>();
xiebaiyuan's avatar
xiebaiyuan 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
757

xiebaiyuan's avatar
xiebaiyuan 已提交
758 759 760
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
761 762 763 764 765 766 767
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor *target_tensor =
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
768 769 770 771 772

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
  DLOG << "target_tensor->IsInitialized() " << target_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << target_tensor->dims();
  DLOG << "input.dims()   " << input.dims();
773
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
774
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
775
    if (input_dim_last_ != input.dims()) {
776 777 778
      DLOG << "SetInput ---- > resize1";
      target_tensor->Resize(input.dims());
      target_tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
779 780 781 782 783 784 785 786
      InitNoPersistableMemory(*target_tensor);
    }
  } else {
    DLOG << "SetInput ---- > resize2";
    target_tensor->Resize(input.dims());
    DLOG << "SetInput ---- > ShareDataWith";
  }
  target_tensor->ShareDataWith(input);
787 788
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
789 790
}

791 792 793
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
794

Y
yangfei 已提交
795
template <>
H
hjchen2 已提交
796 797
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

835
  const TensorDesc &desc = var_desc.Tensor_desc();
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
870

Y
yangfei 已提交
871
template <>
872 873
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
874 875 876
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
877
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
878
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
879
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
880
          continue;
L
liuruilong 已提交
881
        } else {
882
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
883
        }
L
liuruilong 已提交
884

Y
yangfei 已提交
885
        char *origin_data =
L
liuruilong 已提交
886
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
887
        char *data = origin_data;
Y
yangfei 已提交
888
        cl_context context = program_.scope->GetCLScpoe()->Context();
889
        const TensorDesc &desc = var_desc->Tensor_desc();
890 891 892 893 894
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
895
        float *tensorInput = static_cast<float *>(
896 897
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
898

899
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
900

L
liuruilong 已提交
901 902
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
903

904
        delete origin_data;
Y
yangfei 已提交
905
        paddle_mobile::memory::Free(tensorInput);
906
      } else {
907 908
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
909
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
910 911
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
912

913 914 915
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
916
          DLOG << var_desc->Name();
L
liuruilong 已提交
917
          cl_image->InitEmptyImage(context, command_queue, ddim);
918
        }
Y
yangfei 已提交
919 920 921 922
      }
    }
  }
}
923

Y
yangfei 已提交
924
template <>
925
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
926 927
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
928 929
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
930 931
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
932
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
Y
yangfei 已提交
933 934
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
935
    self_alloc = true;
L
liuruilong 已提交
936
    origin_data = ReadFileToBuff(program_.para_path);
Y
yangfei 已提交
937 938
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
939
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
940

941
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
942 943 944
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
945
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
946
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
947
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
948
          continue;
L
liuruilong 已提交
949
        } else {
950
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
951 952 953 954
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

955 956
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
957 958 959 960 961

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
962 963 964
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
965 966 967 968

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

969 970
        paddle_mobile::memory::Free(tensorInput);
      } else {
971
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
972
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
973 974
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
975 976
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
        bool shouldResize = true;
        if (ddim.size() > 4) {
          for (int i = 0; i < ddim.size() - 4; ++i) {
            if (ddim[i] != 0) {
              shouldResize = false;
              break;
            }
          }
          if (shouldResize) {
            std::vector<int64_t> temp_intput_dims;
            temp_intput_dims.reserve(static_cast<size_t>(4));
            for (int i = ddim.size() - 4; i < ddim.size(); ++i) {
              temp_intput_dims.push_back(ddim[i]);
            }
            ddim = framework::make_ddim(temp_intput_dims);
          }
        }
994
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
995
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
996 997 998
      }
    }
  }
Y
yangfei 已提交
999
  if (self_alloc) {
1000
    delete data;
Y
yangfei 已提交
1001
  }
Y
yangfei 已提交
1002
  LOG(kLOG_INFO) << " end init combine memory ";
1003
}
Y
yangfei 已提交
1004 1005 1006

#endif

1007
template class Executor<CPU, float>;
Y
yangfei 已提交
1008

1009
template class Executor<FPGA, float>;
W
wangliu 已提交
1010

1011
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
1012

1013
template class Executor<GPU_MALI, float>;
Y
yangfei 已提交
1014 1015

}  // namespace framework
W
wangliu 已提交
1016
}  // namespace paddle_mobile