executor.cpp 34.8 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hjchen2 已提交
15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <unordered_map>
18
#include <utility>
W
wangliu 已提交
19
#include <vector>
L
liuruilong 已提交
20
#include "common/enforce.h"
L
liuruilong 已提交
21
#include "common/log.h"
22
#include "framework/context.h"
L
liuruilong 已提交
23
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
24 25
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
26
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
27 28 29 30
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
H
hjchen2 已提交
31
#include "memory/t_malloc.h"
H
hjchen2 已提交
32
#include "pass/memory_optimize.h"
L
update  
liuruilong 已提交
33 34 35
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif
W
wangliu 已提交
36 37

namespace paddle_mobile {
38
namespace framework {
39

W
wangliu 已提交
40 41
#pragma mark - executor

42
template <typename Device, typename T>
43 44
void Executor<Device, T>::SetThreadNum(int thread_num, PowerMode power_mode) {
  CPUContext::Context()->set_thread_num(thread_num, power_mode);
45 46
}

47
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
48 49 50 51
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
52
    : program_(program),
H
hjchen2 已提交
53 54
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
55 56
      lod_mode_(lod_mode),
      config_(config) {
57 58
  DLOG << "executor in lod mode: " << lod_mode_;

W
wangliu 已提交
59
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
60
  variable_ptr->SetValue<int>(batch_size);
61 62

  program_desc_ =
Refine  
陈后江 已提交
63
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
64 65
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
C
Chon 已提交
66 67
#if !defined(PADDLE_MOBILE_FPGA) && !defined(PADDLE_MOBILE_FPGA_KD) && \
    !defined(PADDLE_MOBILE_CL)
68
  pass::MemoryOptPass()(program_desc_.get(), program_.scope.get());
69
#endif
70 71 72 73
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
  const auto &blocks = program_desc_->Blocks();
74 75 76 77 78 79 80 81
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
82
        op_desc->GetAttrMap(), program_.scope.get());
83 84 85 86
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
87
    }
88
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
89
  }
90 91 92
#ifdef PADDLE_MOBILE_FPGA_V2
  InitQuantMemory();
#endif
W
wangliu 已提交
93
  if (program_.combined) {
L
liuruilong 已提交
94 95 96 97
    InitCombineMemory();
  } else {
    InitMemory();
  }
98
  int count = 0;
99 100 101
  for (auto &op_handler : ops_of_block0_) {
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
    op_handler->Init();
L
liuruilong 已提交
102
  }
W
wangliu 已提交
103 104
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

132
template <typename T>
133
static void LoadMemInternal(void **data, LoDTensor *tensor,
134
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
135
  char **data_buf = reinterpret_cast<char **>(data);
136
  int64_t size = tensor->numel();
137
  T *tensor_data = tensor->mutable_data<T>();
138 139
  if (quant_uint8) {
    // should be moved into operator init function
140 141
    float min_value;
    float max_value;
142 143 144
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
145
    const float factor = (max_value - min_value) / 255.0;
146
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
147 148
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
149
    }
150
    *data_buf += size * sizeof(uint8_t);
151
  } else {
152 153
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
154
  }
155
}
W
wangliu 已提交
156

157 158 159 160
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
161
  char **data_buf = reinterpret_cast<char **>(data);
162
  // version
163
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
164
  *data_buf += sizeof(uint32_t);
165
  // lod information
H
hjchen2 已提交
166 167
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
168
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
169
  *data_buf += sizeof(uint64_t);
170 171 172 173

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
174
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
175
    *data_buf += sizeof(uint64_t);
176
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
177
    memory::Copy(tmp_dim.data(), *data_buf, size);
178
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
179
    *data_buf += size;
W
wangliu 已提交
180
  }
181
  // tensor version
182
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
183
  *data_buf += sizeof(uint32_t);
184
  // tensor desc size
185
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
186
  *data_buf += sizeof(int32_t);
187
  // skip tensor desc
Refine  
陈后江 已提交
188
  *data_buf += tensor_desc_size;
189

190 191
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
192 193
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
194
    case VARTYPE_TYPE_FP32:
195 196
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
197
      break;
198
    case VARTYPE_TYPE_INT8:
199
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
200
      break;
201
    case VARTYPE_TYPE_INT32:
202
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
203 204
      break;
    default:
205
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
206
  }
W
wangliu 已提交
207 208
}

209 210 211
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
212 213 214 215
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
216
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
217 218
          continue;
        }
H
hjchen2 已提交
219
        DLOG << "init persistable var: " << var_desc->Name();
Refine  
陈后江 已提交
220
        char *origin_data =
Refine  
陈后江 已提交
221
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
222
        char *data = origin_data;
H
update  
hjchen2 已提交
223
        auto tensor = var->template GetMutable<LoDTensor>();
224 225
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
226
      } else {
227
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
228
        varInputMemory(var_desc, var);
W
wangliu 已提交
229 230 231 232 233
      }
    }
  }
}

234 235
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
236
  char *origin_data = nullptr;
Refine  
陈后江 已提交
237
  bool self_alloc = false;
238
  if (program_.combined_params_buf && program_.combined_params_len) {
239 240
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
241
  } else {
Refine  
陈后江 已提交
242
    self_alloc = true;
Refine  
陈后江 已提交
243
    origin_data = ReadFileToBuff(program_.para_path);
244
  }
Refine  
陈后江 已提交
245 246
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
247
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
248 249 250 251
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
252
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
253 254
          continue;
        }
L
liuruilong 已提交
255 256

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
257
        auto tensor = var->template GetMutable<LoDTensor>();
258
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
259
      } else {
H
update  
hjchen2 已提交
260 261
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
262 263 264
      }
    }
  }
Refine  
陈后江 已提交
265
  if (self_alloc) {
266
    delete[] origin_data;
Refine  
陈后江 已提交
267 268
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
269
}
270

C
Chon 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284
static void ClearNoPersistableTensorArray(const framework::ProgramDesc *program,
                                          framework::Scope *scope) {
  for (const auto &block : program->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
        auto var = scope->Var(var_desc->Name());
        auto array = var->template GetMutable<framework::LoDTensorArray>();
        array->resize(1);
      }
    }
  }
}

L
liuruilong 已提交
285
template <typename Device, typename T>
L
liuruilong 已提交
286
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
L
liuruilong 已提交
287 288 289 290 291 292
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      auto tensor = var->template GetMutable<LoDTensor>();
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
293
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
294 295 296 297 298
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
299 300 301 302
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
L
liuruilong 已提交
303
          tensor->template mutable_data<T>();
H
update  
hjchen2 已提交
304 305 306
        } else {
          PADDLE_MOBILE_THROW_EXCEPTION("Unsupported var type `%d`",
                                        var_desc->Type());
L
liuruilong 已提交
307 308 309 310 311 312 313 314 315 316
        }
      }
    }
  }

  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<T>();
}

317 318
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
319
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
320
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
321
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
322 323 324
#ifdef PADDLE_MOBILE_FPGA_V2
  tensor->init(type_id<int8_t>().hash_code());
#else
325
  tensor->init(type_id<float>().hash_code());
326
#endif
327 328
  return true;
#endif
H
update  
hjchen2 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
342
  }
H
update  
hjchen2 已提交
343
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
344
}
L
liuruilong 已提交
345

346 347 348 349 350
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
351
  }
352 353 354 355 356 357 358 359
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
360
  }
361
  return this->Predict();
W
wangliu 已提交
362
}
xiebaiyuan's avatar
xiebaiyuan 已提交
363

364 365 366
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
367 368 369 370 371 372 373
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
374
  Tensor feed_tensor(input, make_ddim(dims));
375
  SetInput(feed_tensor, input_name);
376 377
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
378 379
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
380 381 382 383 384 385
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
386

387 388 389
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
390
  int index = 0;
391
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
392
    index = feed_indices_.find(var_name)->second;
393
  }
H
hjchen2 已提交
394 395 396 397 398 399
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
400
}
xiebaiyuan's avatar
xiebaiyuan 已提交
401

402 403 404
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
405
  int index = 0;
406
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
407
    index = feed_indices_.find(var_name)->second;
408
  }
H
hjchen2 已提交
409 410 411 412 413 414 415
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
416 417 418 419 420
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
421 422 423 424 425 426 427 428 429
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
430

431 432 433 434 435 436 437
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
438
}
xiebaiyuan's avatar
xiebaiyuan 已提交
439

440 441
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
442
#if _OPENMP
443
  omp_set_num_threads(CPUContext::Context()->get_thread_num());
444
#endif
445 446 447 448
  // clear all no persistable tensor array since write_to_array
  // is always push back a new tensor in the array
  ClearNoPersistableTensorArray(program_desc_.get(), program_.scope.get());

xiebaiyuan's avatar
xiebaiyuan 已提交
449
#ifdef PADDLE_MOBILE_PROFILE
450
  std::vector<ProfInfo> profile(ops_of_block0_.size());
451 452
  struct timespec ts;
  int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
453
#endif
454
  for (auto &op_handler : ops_of_block0_) {
xiebaiyuan's avatar
xiebaiyuan 已提交
455
#ifdef PADDLE_MOBILE_PROFILE
456 457
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
458
#endif
H
hjchen2 已提交
459
    DLOG << "run op: " << op_handler->Type();
460 461 462 463
    if (lod_mode_) {
      op_handler->InferShape();
    }
    op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
464
#ifdef PADDLE_MOBILE_PROFILE
465 466 467
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
468 469
#endif
  }
470 471 472 473 474 475 476

#ifdef PADDLE_MOBILE_PROFILE
  PrintProfile(profile);
#endif
  return PMSuccess;
}

xiebaiyuan's avatar
xiebaiyuan 已提交
477
#ifdef PADDLE_MOBILE_PROFILE
478 479 480
template <typename Device, typename T>
void Executor<Device, T>::PrintProfile(
    const vector<Executor<Device, T>::ProfInfo> &profile) const {
xiebaiyuan's avatar
xiebaiyuan 已提交
481 482 483 484
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
485 486 487 488 489 490
    if (this->ops_of_block0_[i]->Type() == "conv2d" ||
        this->ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = this->ops_of_block0_[i]->Inputs();

      auto *filter = GetVarValue<ProfileTensorType>("Filter", inputs,
                                                    *(this->program_.scope));
491
      int kernel_size = filter->dims()[2];
492 493
      _tp[this->ops_of_block0_[i]->Type() + "_" +
          std::to_string(kernel_size)] += timeCost;
494
    } else {
495
      _tp[this->ops_of_block0_[i]->Type()] += timeCost;
496
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
497
  }
H
hjchen2 已提交
498
  printf("====================[ profile ]======================\n");
499
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
515
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
516
}
517
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
518

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
template <typename Device, typename T>
void Executor<Device, T>::FeedTensorData(const vector<framework::Tensor> &v) {
  auto input_size = v.size();
  auto *feed_var = program_.scope->Var("feed");

  PADDLE_MOBILE_ENFORCE(input_size == feed_indices_.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
    framework::LoDTensor &target =
        feed_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    target.ShareDataWith(v[input_size - i - 1]);
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
  auto *fetch_var = program_.scope->Var("fetch");
  auto output_size = fetch_indices_.size();
  for (int i = 0; i < output_size; i++) {
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    v->push_back(&target);
  }
}

545
#ifdef PADDLE_MOBILE_FPGA
546 547 548 549
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
550
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
551 552
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
553
}
554

555 556
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
557
  InjectVariable(t, "feed0");
558
}
559

560
template <typename Device, typename T>
561
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
562
  auto input_size = v.size();
Z
zhangyang0701 已提交
563 564
  int index = 0;
  auto vars = program_.scope->VarContain("feed", &index);
565 566 567
  PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
568
    auto var = program_.scope->Var("feed", i + index);
569 570 571 572 573 574 575 576 577
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
578 579
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
580 581
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
582

583
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
584
    auto var = program_.scope->Var("fetch", i + index);
585 586
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
587
  }
588
}
589

590
template <typename Device, typename T>
591 592 593 594
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
595
}
596

597 598
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
599
  auto &ops = ops_of_block0_;
600

Z
zhangyang 已提交
601 602 603 604 605
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
606 607 608
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
609
}
610

611 612
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
613
  auto &ops = ops_of_block0_;
614
  end = end < 0 ? static_cast<int>(ops.size()) : end;
615 616 617 618 619 620 621 622 623 624 625 626
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
627
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
628 629 630 631 632 633 634
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
635
}
636

637 638
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
639
  Predict_From_To(start);
640
}
641

642 643
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
644
  Predict_From_To(0, end);
645
}
646 647 648 649 650 651
#ifdef PADDLE_MOBILE_FPGA_V2
std::map<std::string, float> LoadQuantValFromFile(std::string filename) {
  std::map<std::string, float> quantValList;
  std::ifstream in;
  in.open(filename, std::ios::in);
  if (!in.is_open()) {
652 653
    // std::cout << "open File Failed." << std::endl;
    DLOG << "open File Failed.";
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
    exit(-1);
  }

  std::string line;
  while (getline(in, line)) {
    std::string splitStr = " : ";
    std::string::size_type pos;
    pos = line.find(splitStr);
    std::string subStr[2];
    subStr[0] = line.substr(0, pos);
    subStr[1] = line.substr(pos + splitStr.size(), line.size());
    quantValList.insert(std::make_pair(subStr[0], atof(subStr[1].c_str())));
  }
  in.close();
  return quantValList;
}
670

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
template <typename Device, typename T>
void Executor<Device, T>::InitQuantMemory() {
  std::string quantValFilePath;
  if (program_.combined) {
    quantValFilePath = program_.para_path;
    quantValFilePath =
        quantValFilePath.substr(0, (quantValFilePath.length() - 6));
    quantValFilePath = quantValFilePath + "scale";
  } else {
    quantValFilePath = program_.model_path + "/scale";
  }
  std::map<std::string, float> quantValList =
      LoadQuantValFromFile(quantValFilePath);
  auto ops = ops_of_block0_;
  for (int id = 0; id < ops.size(); id++) {
    auto op = ops[id];
    auto input_keys = op->GetInputKeys();
    auto inputs = op->Inputs();
    for (auto key = input_keys.begin(); key != input_keys.end(); key++) {
      auto inputs_vars = inputs[*key];
      int count = inputs_vars.size();
      for (int i = 0; i < count; i++) {
693 694 695 696 697 698
        if (inputs_vars[i] != "feed") {
          auto tensor = GetTensorByName(inputs_vars[i]);
          tensor->scale[0] = quantValList[inputs_vars[i]];
          DLOG << "input variance name : " << inputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
699 700 701 702 703 704 705 706
      }
    }
    auto output_keys = op->GetOutKeys();
    auto outputs = op->Outputs();
    for (auto key = output_keys.begin(); key != output_keys.end(); key++) {
      auto outputs_vars = outputs[*key];
      int count = outputs_vars.size();
      for (int i = 0; i < count; i++) {
707 708 709 710 711 712
        if (outputs_vars[i] != "fetch") {
          auto tensor = GetTensorByName(outputs_vars[i]);
          tensor->scale[0] = quantValList[outputs_vars[i]];
          DLOG << "output variance name : " << outputs_vars[i]
               << ", scale value : " << tensor->scale[0];
        }
713 714 715 716 717 718
      }
    }
  }
}
#endif
#endif
Y
yangfei 已提交
719
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
720 721
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
722
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
723 724 725 726 727 728 729
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
730
          var->template GetMutable<framework::LoDTensorArray>();
xiebaiyuan's avatar
xiebaiyuan 已提交
731 732 733 734
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
735
          auto cl_image = var->template GetMutable<CLImage>();
xiebaiyuan's avatar
xiebaiyuan 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
754

xiebaiyuan's avatar
xiebaiyuan 已提交
755 756 757
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
758 759 760 761 762 763 764
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor *target_tensor =
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
765 766 767 768 769

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
  DLOG << "target_tensor->IsInitialized() " << target_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << target_tensor->dims();
  DLOG << "input.dims()   " << input.dims();
770
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
771
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
772
    if (input_dim_last_ != input.dims()) {
773 774 775
      DLOG << "SetInput ---- > resize1";
      target_tensor->Resize(input.dims());
      target_tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
776 777 778 779 780 781 782 783
      InitNoPersistableMemory(*target_tensor);
    }
  } else {
    DLOG << "SetInput ---- > resize2";
    target_tensor->Resize(input.dims());
    DLOG << "SetInput ---- > ShareDataWith";
  }
  target_tensor->ShareDataWith(input);
784 785
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
786 787
}

788 789 790
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
791

Y
yangfei 已提交
792
template <>
H
hjchen2 已提交
793 794
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

832
  const TensorDesc &desc = var_desc.Tensor_desc();
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
867

Y
yangfei 已提交
868
template <>
869 870
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
871 872 873
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
874
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
875
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
876
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
877
          continue;
L
liuruilong 已提交
878
        } else {
879
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
880
        }
L
liuruilong 已提交
881

Y
yangfei 已提交
882
        char *origin_data =
L
liuruilong 已提交
883
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
884
        char *data = origin_data;
Y
yangfei 已提交
885
        cl_context context = program_.scope->GetCLScpoe()->Context();
886
        const TensorDesc &desc = var_desc->Tensor_desc();
887 888 889 890 891
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
892
        float *tensorInput = static_cast<float *>(
893 894
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
895

896
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
897

L
liuruilong 已提交
898 899
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
900

901
        delete origin_data;
Y
yangfei 已提交
902
        paddle_mobile::memory::Free(tensorInput);
903
      } else {
904 905
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
906
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
907 908
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
909

910 911 912
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
913
          DLOG << var_desc->Name();
L
liuruilong 已提交
914
          cl_image->InitEmptyImage(context, command_queue, ddim);
915
        }
Y
yangfei 已提交
916 917 918 919
      }
    }
  }
}
920

Y
yangfei 已提交
921
template <>
922
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
923 924
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
925 926
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
927 928
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
929
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
Y
yangfei 已提交
930 931
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
932
    self_alloc = true;
L
liuruilong 已提交
933
    origin_data = ReadFileToBuff(program_.para_path);
Y
yangfei 已提交
934 935
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
936
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
937

938
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
939 940 941
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
942
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
943
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
944
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
945
          continue;
L
liuruilong 已提交
946
        } else {
947
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
948 949 950 951
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

952 953
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
954 955 956 957 958

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
959 960 961
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
962 963 964 965

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

966 967
        paddle_mobile::memory::Free(tensorInput);
      } else {
968
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
969
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
970 971
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
972 973
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
        bool shouldResize = true;
        if (ddim.size() > 4) {
          for (int i = 0; i < ddim.size() - 4; ++i) {
            if (ddim[i] != 0) {
              shouldResize = false;
              break;
            }
          }
          if (shouldResize) {
            std::vector<int64_t> temp_intput_dims;
            temp_intput_dims.reserve(static_cast<size_t>(4));
            for (int i = ddim.size() - 4; i < ddim.size(); ++i) {
              temp_intput_dims.push_back(ddim[i]);
            }
            ddim = framework::make_ddim(temp_intput_dims);
          }
        }
991
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
992
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
993 994 995
      }
    }
  }
Y
yangfei 已提交
996
  if (self_alloc) {
997
    delete data;
Y
yangfei 已提交
998
  }
Y
yangfei 已提交
999
  LOG(kLOG_INFO) << " end init combine memory ";
1000
}
Y
yangfei 已提交
1001 1002 1003

#endif

1004
template class Executor<CPU, float>;
Y
yangfei 已提交
1005

1006
template class Executor<FPGA, float>;
W
wangliu 已提交
1007

1008
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
1009

1010
template class Executor<GPU_MALI, float>;
Y
yangfei 已提交
1011 1012

}  // namespace framework
W
wangliu 已提交
1013
}  // namespace paddle_mobile