executor.cpp 31.2 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hjchen2 已提交
15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <utility>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
21
#include "framework/context.h"
L
liuruilong 已提交
22
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
23 24
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
25
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
26 27 28 29
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
H
hjchen2 已提交
30
#include "memory/t_malloc.h"
H
hjchen2 已提交
31
#include "pass/memory_optimize.h"
L
update  
liuruilong 已提交
32 33 34
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif
W
wangliu 已提交
35 36

namespace paddle_mobile {
37
namespace framework {
38

W
wangliu 已提交
39 40
#pragma mark - executor

41 42 43 44 45
template <typename Device, typename T>
void Executor<Device, T>::SetThreadNum(int threads) {
  set_global_num_threads(threads);
}

46
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
47 48 49 50
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
51
    : program_(program),
H
hjchen2 已提交
52 53
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
54 55
      lod_mode_(lod_mode),
      config_(config) {
56 57
  DLOG << "executor in lod mode: " << lod_mode_;

W
wangliu 已提交
58
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
59
  variable_ptr->SetValue<int>(batch_size);
60 61

  program_desc_ =
Refine  
陈后江 已提交
62
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
63 64
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
H
hjchen2 已提交
65
  pass::MemoryOptPass()(program_desc_.get(), program_.scope.get());
66 67 68
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
69

70
  const auto &blocks = program_desc_->Blocks();
71 72 73 74 75 76 77 78
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
79
        op_desc->GetAttrMap(), program_.scope.get());
80 81 82 83
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
84
    }
85
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
86
  }
W
wangliu 已提交
87
  if (program_.combined) {
L
liuruilong 已提交
88 89 90 91
    InitCombineMemory();
  } else {
    InitMemory();
  }
92 93

  int count = 0;
94 95 96
  for (auto &op_handler : ops_of_block0_) {
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
    op_handler->Init();
L
liuruilong 已提交
97
  }
W
wangliu 已提交
98 99
}

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

127
template <typename T>
128
static void LoadMemInternal(void **data, LoDTensor *tensor,
129
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
130
  char **data_buf = reinterpret_cast<char **>(data);
131
  int64_t size = tensor->numel();
132
  T *tensor_data = tensor->mutable_data<T>();
133 134
  if (quant_uint8) {
    // should be moved into operator init function
135 136
    float min_value;
    float max_value;
137 138 139
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
140
    const float factor = (max_value - min_value) / 255.0;
141
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
142 143
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
144
    }
145
    *data_buf += size * sizeof(uint8_t);
146
  } else {
147 148
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
149
  }
150
}
W
wangliu 已提交
151

152 153 154 155
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
156
  char **data_buf = reinterpret_cast<char **>(data);
157
  // version
158
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
159
  *data_buf += sizeof(uint32_t);
160
  // lod information
H
hjchen2 已提交
161 162
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
163
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
164
  *data_buf += sizeof(uint64_t);
165 166 167 168

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
169
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
170
    *data_buf += sizeof(uint64_t);
171
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
172
    memory::Copy(tmp_dim.data(), *data_buf, size);
173
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
174
    *data_buf += size;
W
wangliu 已提交
175
  }
176
  // tensor version
177
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
178
  *data_buf += sizeof(uint32_t);
179
  // tensor desc size
180
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
181
  *data_buf += sizeof(int32_t);
182
  // skip tensor desc
Refine  
陈后江 已提交
183
  *data_buf += tensor_desc_size;
184

185 186
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
187 188
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
189
    case VARTYPE_TYPE_FP32:
190 191
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
192
      break;
193
    case VARTYPE_TYPE_INT8:
194
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
195
      break;
196
    case VARTYPE_TYPE_INT32:
197
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
198 199
      break;
    default:
200
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
201
  }
W
wangliu 已提交
202 203
}

204 205 206
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
207 208 209 210
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
211
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
212 213
          continue;
        }
H
hjchen2 已提交
214
        DLOG << "init persistable var: " << var_desc->Name();
Refine  
陈后江 已提交
215
        char *origin_data =
Refine  
陈后江 已提交
216
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
217
        char *data = origin_data;
H
update  
hjchen2 已提交
218
        auto tensor = var->template GetMutable<LoDTensor>();
219 220
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
221
      } else {
222
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
223
        varInputMemory(var_desc, var);
W
wangliu 已提交
224 225 226 227 228
      }
    }
  }
}

229 230
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
231
  char *origin_data = nullptr;
Refine  
陈后江 已提交
232
  bool self_alloc = false;
233
  if (program_.combined_params_buf && program_.combined_params_len) {
234 235
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
236
  } else {
Refine  
陈后江 已提交
237
    self_alloc = true;
Refine  
陈后江 已提交
238
    origin_data = ReadFileToBuff(program_.para_path);
239
  }
Refine  
陈后江 已提交
240 241
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
242
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
243 244 245 246
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
247
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
248 249
          continue;
        }
L
liuruilong 已提交
250 251

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
252
        auto tensor = var->template GetMutable<LoDTensor>();
253
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
254
      } else {
H
update  
hjchen2 已提交
255 256
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
257 258 259
      }
    }
  }
Refine  
陈后江 已提交
260
  if (self_alloc) {
261
    delete[] origin_data;
Refine  
陈后江 已提交
262 263
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
264
}
265

L
liuruilong 已提交
266
template <typename Device, typename T>
L
liuruilong 已提交
267
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
L
liuruilong 已提交
268 269 270 271 272 273
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      auto tensor = var->template GetMutable<LoDTensor>();
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
274
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
275 276 277 278 279
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
280 281 282 283
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
L
liuruilong 已提交
284
          tensor->template mutable_data<T>();
H
update  
hjchen2 已提交
285 286 287
        } else {
          PADDLE_MOBILE_THROW_EXCEPTION("Unsupported var type `%d`",
                                        var_desc->Type());
L
liuruilong 已提交
288 289 290 291 292 293 294 295 296 297
        }
      }
    }
  }

  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<T>();
}

298 299
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
300
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
301
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
302
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
303 304 305
  tensor->init(typeid(float));
  return true;
#endif
H
update  
hjchen2 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
  auto TypeId = [](const VarType_Type &type) -> std::type_index {
    switch (type) {
      case VARTYPE_TYPE_BOOL:
        return typeid(bool);
      case VARTYPE_TYPE_FP32:
        return typeid(float);
      case VARTYPE_TYPE_INT8:
        return typeid(int8_t);
      case VARTYPE_TYPE_INT32:
        return typeid(int);
      case VARTYPE_TYPE_INT64:
        return typeid(int64_t);
      default:
        PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
    }
  };

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
335
  }
H
update  
hjchen2 已提交
336
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
337
}
L
liuruilong 已提交
338

339 340 341 342 343
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
344
  }
345 346 347 348 349 350 351 352
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
353
  }
354
  return this->Predict();
W
wangliu 已提交
355
}
xiebaiyuan's avatar
xiebaiyuan 已提交
356

357 358 359
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
360 361 362 363 364 365 366
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
367
  Tensor feed_tensor(input, make_ddim(dims));
368
  SetInput(feed_tensor, input_name);
369 370
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
371 372
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
373 374 375 376 377 378
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
379

380 381 382
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
383
  int index = 0;
384
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
385
    index = feed_indices_.find(var_name)->second;
386
  }
H
hjchen2 已提交
387 388 389 390
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

L
liuruilong 已提交
391
  if (config_.load_when_predict) {
Z
zhaojiaying01 已提交
392 393 394
    if (input_dim_last_ != input.dims()) {
      InitNoPersistableMemory(input);
      input_dim_last_ = input.dims();
L
liuruilong 已提交
395 396 397
    }
  }

H
hjchen2 已提交
398 399
  target.Resize(input.dims());
  target.ShareDataWith(input);
400
}
xiebaiyuan's avatar
xiebaiyuan 已提交
401

402 403 404
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
405
  int index = 0;
406
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
407
    index = feed_indices_.find(var_name)->second;
408
  }
H
hjchen2 已提交
409 410 411 412
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

L
liuruilong 已提交
413
  if (config_.load_when_predict) {
Z
zhaojiaying01 已提交
414
    if (input_dim_last_ != input.dims()) {
415
      InitNoPersistableMemory(input);
Z
zhaojiaying01 已提交
416
      input_dim_last_ = input.dims();
L
liuruilong 已提交
417 418 419
    }
  }

H
hjchen2 已提交
420 421 422
  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
423 424 425 426 427
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
428 429 430 431 432 433 434 435 436
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
437

438 439 440 441 442 443 444
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
445
}
xiebaiyuan's avatar
xiebaiyuan 已提交
446

447 448
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
449 450 451
#if _OPENMP
  omp_set_num_threads(get_global_num_threads());
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
452
#ifdef PADDLE_MOBILE_PROFILE
453
  std::vector<ProfInfo> profile(ops_of_block0_.size());
454 455
  struct timespec ts;
  int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
456
#endif
457
  for (auto &op_handler : ops_of_block0_) {
xiebaiyuan's avatar
xiebaiyuan 已提交
458
#ifdef PADDLE_MOBILE_PROFILE
459 460
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
461
#endif
H
hjchen2 已提交
462
    DLOG << "run op: " << op_handler->Type();
463 464 465 466
    if (lod_mode_) {
      op_handler->InferShape();
    }
    op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
467
#ifdef PADDLE_MOBILE_PROFILE
468 469 470
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
471 472 473 474 475 476 477
#endif
  }
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
478 479 480
    if (ops_of_block0_[i]->Type() == "conv2d" ||
        ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = ops_of_block0_[i]->Inputs();
481 482
      auto *filter =
          GetVarValue<LoDTensor>("Filter", inputs, *(program_.scope));
483
      int kernel_size = filter->dims()[2];
484 485
      _tp[ops_of_block0_[i]->Type() + "_" + std::to_string(kernel_size)] +=
          timeCost;
486
    } else {
487
      _tp[ops_of_block0_[i]->Type()] += timeCost;
488
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
489
  }
H
hjchen2 已提交
490
  printf("====================[ profile ]======================\n");
491
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
507
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
508
#endif
509
  return PMSuccess;
xiebaiyuan's avatar
xiebaiyuan 已提交
510 511
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
template <typename Device, typename T>
void Executor<Device, T>::FeedTensorData(const vector<framework::Tensor> &v) {
  auto input_size = v.size();
  auto *feed_var = program_.scope->Var("feed");

  PADDLE_MOBILE_ENFORCE(input_size == feed_indices_.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
    framework::LoDTensor &target =
        feed_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    target.ShareDataWith(v[input_size - i - 1]);
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
  auto *fetch_var = program_.scope->Var("fetch");
  auto output_size = fetch_indices_.size();
  for (int i = 0; i < output_size; i++) {
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    v->push_back(&target);
  }
}

538
#ifdef PADDLE_MOBILE_FPGA
539 540 541 542
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
543
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
544 545
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
546
}
547

548 549
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
550
  InjectVariable(t, "feed0");
551
}
552

553
template <typename Device, typename T>
554
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
555
  auto input_size = v.size();
Z
zhangyang0701 已提交
556 557
  int index = 0;
  auto vars = program_.scope->VarContain("feed", &index);
558 559 560
  PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
561
    auto var = program_.scope->Var("feed", i + index);
562 563 564 565 566 567 568 569 570
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
571 572
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
573 574
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
575

576
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
577
    auto var = program_.scope->Var("fetch", i + index);
578 579
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
580
  }
581
}
582

583
template <typename Device, typename T>
584 585 586 587
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
588
}
589

590 591
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
592
  auto &ops = ops_of_block0_;
593

Z
zhangyang 已提交
594 595 596 597 598
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
599 600 601
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
602
}
603

604 605
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
606
  auto &ops = ops_of_block0_;
607
  end = end < 0 ? static_cast<int>(ops.size()) : end;
608 609 610 611 612 613 614 615 616 617 618 619
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
620
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
621 622 623 624 625 626 627
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
628
}
629

630 631
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
632
  Predict_From_To(start);
633
}
634

635 636
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
637
  Predict_From_To(0, end);
638
}
639 640
#endif

Y
yangfei 已提交
641
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
642 643
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
644
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      auto cl_image = var->template GetMutable<CLImage>();

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
676

xiebaiyuan's avatar
xiebaiyuan 已提交
677 678 679
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
680 681 682 683 684 685 686
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor *target_tensor =
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
687 688 689 690 691

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
  DLOG << "target_tensor->IsInitialized() " << target_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << target_tensor->dims();
  DLOG << "input.dims()   " << input.dims();
692
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
693
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
694
    if (input_dim_last_ != input.dims()) {
695 696 697
      DLOG << "SetInput ---- > resize1";
      target_tensor->Resize(input.dims());
      target_tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
698 699 700 701 702 703 704 705
      InitNoPersistableMemory(*target_tensor);
    }
  } else {
    DLOG << "SetInput ---- > resize2";
    target_tensor->Resize(input.dims());
    DLOG << "SetInput ---- > ShareDataWith";
  }
  target_tensor->ShareDataWith(input);
706 707
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
708 709
}

710 711 712
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
713

Y
yangfei 已提交
714
template <>
H
hjchen2 已提交
715 716
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

754
  const TensorDesc &desc = var_desc.Tensor_desc();
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
789

Y
yangfei 已提交
790
template <>
791 792
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
793 794 795
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
796
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
797
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
798
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
799
          continue;
L
liuruilong 已提交
800
        } else {
801
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
802
        }
L
liuruilong 已提交
803

Y
yangfei 已提交
804
        char *origin_data =
L
liuruilong 已提交
805
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
806
        char *data = origin_data;
Y
yangfei 已提交
807
        cl_context context = program_.scope->GetCLScpoe()->Context();
808
        const TensorDesc &desc = var_desc->Tensor_desc();
809 810 811 812 813
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
814
        float *tensorInput = static_cast<float *>(
815 816
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
817

818
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
819

L
liuruilong 已提交
820 821
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
822

823
        delete origin_data;
Y
yangfei 已提交
824
        paddle_mobile::memory::Free(tensorInput);
825
      } else {
826 827
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
828
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
829 830
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
831

832 833 834
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
835
          DLOG << var_desc->Name();
L
liuruilong 已提交
836
          cl_image->InitEmptyImage(context, command_queue, ddim);
837
        }
Y
yangfei 已提交
838 839 840 841
      }
    }
  }
}
842

Y
yangfei 已提交
843
template <>
844
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
845 846
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
847 848
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
849 850
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
851
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
Y
yangfei 已提交
852 853
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
854
    self_alloc = true;
L
liuruilong 已提交
855
    origin_data = ReadFileToBuff(program_.para_path);
Y
yangfei 已提交
856 857
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
858
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
859

860
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
861 862 863
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
864
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
865
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
866
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
867
          continue;
L
liuruilong 已提交
868
        } else {
869
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
870 871 872 873
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

874 875
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
876 877 878 879 880

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
881 882 883
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
884 885 886 887

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

888 889
        paddle_mobile::memory::Free(tensorInput);
      } else {
890
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
891
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
892 893
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
894 895 896
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
897
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
898 899 900
      }
    }
  }
Y
yangfei 已提交
901
  if (self_alloc) {
902
    delete data;
Y
yangfei 已提交
903
  }
Y
yangfei 已提交
904
  LOG(kLOG_INFO) << " end init combine memory ";
905
}
Y
yangfei 已提交
906 907 908

#endif

909
template class Executor<CPU, float>;
Y
yangfei 已提交
910

911
template class Executor<FPGA, float>;
W
wangliu 已提交
912

913
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
914

915
template class Executor<GPU_MALI, float>;
Y
yangfei 已提交
916 917

}  // namespace framework
W
wangliu 已提交
918
}  // namespace paddle_mobile