executor.cpp 29.3 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <utility>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
L
liuruilong 已提交
21
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
22 23
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
24
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
25 26 27 28
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
Z
zhangyang 已提交
29
#include "memory/t_malloc.h"
L
update  
liuruilong 已提交
30 31 32 33

#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif
W
wangliu 已提交
34 35

namespace paddle_mobile {
36
namespace framework {
37

W
wangliu 已提交
38 39
#pragma mark - executor

40
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
41 42 43 44
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
45
    : program_(program),
H
hjchen2 已提交
46 47
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
48 49
      lod_mode_(lod_mode),
      config_(config) {
50 51
  DLOG << "executor in lod mode: " << lod_mode_;

W
wangliu 已提交
52
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
53
  variable_ptr->SetValue<int>(batch_size);
54 55

  program_desc_ =
Refine  
陈后江 已提交
56
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
57 58 59
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
  const auto &blocks = program_desc_->Blocks();
60 61 62 63 64 65 66 67 68

  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
69
        op_desc->GetAttrMap(), program_.scope.get());
70 71 72 73
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
74
    }
75
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
76
  }
77

W
wangliu 已提交
78
  if (program_.combined) {
L
liuruilong 已提交
79 80 81 82
    InitCombineMemory();
  } else {
    InitMemory();
  }
83 84
  // resize feed and fetch list
  InitFeedFetchList();
85

86 87 88 89 90
#ifdef PADDLE_MOBILE_FPGA
  program_.scope->EraseVars({"feed", "fetch"});
  program_.scope->print_vars();
#endif

91
  int count = 0;
92 93 94
  for (auto &op_handler : ops_of_block0_) {
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
    op_handler->Init();
L
liuruilong 已提交
95
  }
W
wangliu 已提交
96 97
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

125
template <typename T>
126
static void LoadMemInternal(void **data, LoDTensor *tensor,
127
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
128
  char **data_buf = reinterpret_cast<char **>(data);
129
  int64_t size = tensor->numel();
130
  T *tensor_data = tensor->mutable_data<T>();
131 132
  if (quant_uint8) {
    // should be moved into operator init function
133 134
    float min_value;
    float max_value;
135 136 137
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
138
    const float factor = (max_value - min_value) / 255.0;
139
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
140 141
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
142
    }
143
    *data_buf += size * sizeof(uint8_t);
144
  } else {
145 146
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
147
  }
148
}
W
wangliu 已提交
149

150 151 152 153
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
154
  char **data_buf = reinterpret_cast<char **>(data);
155
  // version
156
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
157
  *data_buf += sizeof(uint32_t);
158
  // lod information
H
hjchen2 已提交
159 160
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
161
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
162
  *data_buf += sizeof(uint64_t);
163 164 165 166

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
167
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
168
    *data_buf += sizeof(uint64_t);
169
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
170
    memory::Copy(tmp_dim.data(), *data_buf, size);
171
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
172
    *data_buf += size;
W
wangliu 已提交
173
  }
174
  // tensor version
175
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
176
  *data_buf += sizeof(uint32_t);
177
  // tensor desc size
178
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
179
  *data_buf += sizeof(int32_t);
180
  // skip tensor desc
Refine  
陈后江 已提交
181
  *data_buf += tensor_desc_size;
182

183 184
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
185 186
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
187
    case VARTYPE_TYPE_FP32:
188 189
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
190
      break;
191
    case VARTYPE_TYPE_INT8:
192
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
193
      break;
194
    case VARTYPE_TYPE_INT32:
195
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
196 197
      break;
    default:
198
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
199
  }
W
wangliu 已提交
200 201
}

202 203 204
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
205 206 207 208
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
209
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
210 211
          continue;
        }
Refine  
陈后江 已提交
212
        char *origin_data =
Refine  
陈后江 已提交
213
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
214
        char *data = origin_data;
H
update  
hjchen2 已提交
215
        auto tensor = var->template GetMutable<LoDTensor>();
216 217
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
218
      } else {
219
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
220
        varInputMemory(var_desc, var);
W
wangliu 已提交
221 222 223 224 225
      }
    }
  }
}

226 227
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
228
  char *origin_data = nullptr;
Refine  
陈后江 已提交
229
  bool self_alloc = false;
230
  if (program_.combined_params_buf && program_.combined_params_len) {
231 232
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
233
  } else {
Refine  
陈后江 已提交
234
    self_alloc = true;
Refine  
陈后江 已提交
235
    origin_data = ReadFileToBuff(program_.para_path);
236
  }
Refine  
陈后江 已提交
237 238
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
239
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
240 241 242 243
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
244
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
245 246
          continue;
        }
L
liuruilong 已提交
247 248

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
249
        auto tensor = var->template GetMutable<LoDTensor>();
250
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
251
      } else {
H
update  
hjchen2 已提交
252 253
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
254 255 256
      }
    }
  }
Refine  
陈后江 已提交
257
  if (self_alloc) {
258
    delete[] origin_data;
Refine  
陈后江 已提交
259 260
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
261
}
262

L
liuruilong 已提交
263
template <typename Device, typename T>
L
liuruilong 已提交
264
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
L
liuruilong 已提交
265 266 267 268 269 270
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      auto tensor = var->template GetMutable<LoDTensor>();
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
271
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
272 273 274 275 276
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
277 278 279 280
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
L
liuruilong 已提交
281
          tensor->template mutable_data<T>();
H
update  
hjchen2 已提交
282 283 284
        } else {
          PADDLE_MOBILE_THROW_EXCEPTION("Unsupported var type `%d`",
                                        var_desc->Type());
L
liuruilong 已提交
285 286 287 288 289 290 291 292 293 294
        }
      }
    }
  }

  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<T>();
}

295 296
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
297
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
298
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
299
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
300 301 302
  tensor->init(typeid(float));
  return true;
#endif
H
update  
hjchen2 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
  auto TypeId = [](const VarType_Type &type) -> std::type_index {
    switch (type) {
      case VARTYPE_TYPE_BOOL:
        return typeid(bool);
      case VARTYPE_TYPE_FP32:
        return typeid(float);
      case VARTYPE_TYPE_INT8:
        return typeid(int8_t);
      case VARTYPE_TYPE_INT32:
        return typeid(int);
      case VARTYPE_TYPE_INT64:
        return typeid(int64_t);
      default:
        PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
    }
  };

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
    tensor->mutable_data(TypeId(data_type));
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
333
  }
H
update  
hjchen2 已提交
334
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
335
}
L
liuruilong 已提交
336

337 338 339 340 341
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
342
  }
343 344 345 346 347 348 349 350
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
351
  }
352
  return this->Predict();
W
wangliu 已提交
353
}
xiebaiyuan's avatar
xiebaiyuan 已提交
354

355 356 357
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
358 359 360 361 362 363 364
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
365
  Tensor feed_tensor(input, make_ddim(dims));
366
  SetInput(feed_tensor, input_name);
367 368
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
369 370
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
371 372 373 374 375 376
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
377

378 379 380
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
381
  int index = 0;
382
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
383
    index = feed_indices_.find(var_name)->second;
384
  }
H
hjchen2 已提交
385 386 387 388
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

L
liuruilong 已提交
389
  if (config_.load_when_predict) {
Z
zhaojiaying01 已提交
390 391 392
    if (input_dim_last_ != input.dims()) {
      InitNoPersistableMemory(input);
      input_dim_last_ = input.dims();
L
liuruilong 已提交
393 394 395
    }
  }

H
hjchen2 已提交
396 397
  target.Resize(input.dims());
  target.ShareDataWith(input);
398
}
xiebaiyuan's avatar
xiebaiyuan 已提交
399

400 401 402
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
403
  int index = 0;
404
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
405
    index = feed_indices_.find(var_name)->second;
406
  }
H
hjchen2 已提交
407 408 409 410
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

L
liuruilong 已提交
411
  if (config_.load_when_predict) {
Z
zhaojiaying01 已提交
412
    if (input_dim_last_ != input.dims()) {
413
      InitNoPersistableMemory(input);
Z
zhaojiaying01 已提交
414
      input_dim_last_ = input.dims();
L
liuruilong 已提交
415 416 417
    }
  }

H
hjchen2 已提交
418 419 420
  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
421 422 423 424 425
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
H
hjchen2 已提交
426
  int index = 0;
427
  if (fetch_indices_.find(var_name) != fetch_indices_.end()) {
H
hjchen2 已提交
428
    index = fetch_indices_.find(var_name)->second;
429
  }
H
hjchen2 已提交
430 431 432 433 434
  auto *fetch_var = program_.scope->Var("fetch");
  framework::LoDTensor &target =
      fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  return std::make_shared<LoDTensor>(target);
435
}
xiebaiyuan's avatar
xiebaiyuan 已提交
436

437 438
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
xiebaiyuan's avatar
xiebaiyuan 已提交
439
#ifdef PADDLE_MOBILE_PROFILE
440
  std::vector<ProfInfo> profile(ops_of_block0_.size());
441 442
  struct timespec ts;
  int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
443
#endif
444
  for (auto &op_handler : ops_of_block0_) {
xiebaiyuan's avatar
xiebaiyuan 已提交
445
#ifdef PADDLE_MOBILE_PROFILE
446 447
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
448
#endif
449 450 451 452
    if (lod_mode_) {
      op_handler->InferShape();
    }
    op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
453
#ifdef PADDLE_MOBILE_PROFILE
454 455 456
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
457 458 459 460 461 462 463
#endif
  }
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
464 465 466
    if (ops_of_block0_[i]->Type() == "conv2d" ||
        ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = ops_of_block0_[i]->Inputs();
467 468
      auto *filter =
          GetVarValue<LoDTensor>("Filter", inputs, *(program_.scope));
469
      int kernel_size = filter->dims()[2];
470 471
      _tp[ops_of_block0_[i]->Type() + "_" + std::to_string(kernel_size)] +=
          timeCost;
472
    } else {
473
      _tp[ops_of_block0_[i]->Type()] += timeCost;
474
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
475
  }
H
hjchen2 已提交
476
  printf("====================[ profile ]======================\n");
477
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
493
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
494
#endif
495
  return PMSuccess;
xiebaiyuan's avatar
xiebaiyuan 已提交
496 497
}

498
#ifdef PADDLE_MOBILE_FPGA
499 500 501 502
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
503
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
504 505
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
506
}
507

508 509
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
510
  InjectVariable(t, "feed0");
511
}
512

513
template <typename Device, typename T>
514
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
515 516
  auto input_size = v.size();
  auto vars = program_.scope->VarContain("feed");
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
  PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
    auto var = program_.scope->Var("feed", i);
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
  auto vars = program_.scope->VarContain("fetch");
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
  for (int i = 0; i < output_size; i++) {
    auto var = program_.scope->Var("fetch", i);
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
537
  }
538
}
539

540 541
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
542
  auto &ops = ops_of_block0_;
543

Z
zhangyang 已提交
544 545 546 547 548
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
549 550 551
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
552
}
553

554 555
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
556
  auto &ops = ops_of_block0_;
557
  end = end < 0 ? static_cast<int>(ops.size()) : end;
558 559 560 561 562 563 564 565 566 567 568 569
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
570
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
571 572 573 574 575 576 577
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
578
}
579

580 581
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
582
  Predict_From_To(start);
583
}
584

585 586
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
587
  Predict_From_To(0, end);
588
}
589 590
#endif

Y
yangfei 已提交
591
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
592 593
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
594
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      auto cl_image = var->template GetMutable<CLImage>();

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
  auto *target_var = program_.scope->FindVar(var_name);
  PADDLE_MOBILE_ENFORCE(target_var != nullptr, "Variable %s is not exist",
                        var_name.c_str());

  auto *target_tensor = target_var->template GetMutable<LoDTensor>();
  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
  DLOG << "target_tensor->IsInitialized() " << target_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << target_tensor->dims();
  DLOG << "input.dims()   " << input.dims();
638
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
639
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
640
    if (input_dim_last_ != input.dims()) {
641 642 643
      DLOG << "SetInput ---- > resize1";
      target_tensor->Resize(input.dims());
      target_tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
644 645 646 647 648 649 650 651
      InitNoPersistableMemory(*target_tensor);
    }
  } else {
    DLOG << "SetInput ---- > resize2";
    target_tensor->Resize(input.dims());
    DLOG << "SetInput ---- > ShareDataWith";
  }
  target_tensor->ShareDataWith(input);
652 653
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
654 655
}

656 657 658
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
659

Y
yangfei 已提交
660
template <>
H
hjchen2 已提交
661 662
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

700
  const TensorDesc &desc = var_desc.Tensor_desc();
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
735

Y
yangfei 已提交
736
template <>
737 738
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
739 740 741
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
742
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
743
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
744
          var->template GetMutable<LoDTensor>();
Y
yangfei 已提交
745
          continue;
L
liuruilong 已提交
746
        } else {
747
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
748
        }
L
liuruilong 已提交
749

Y
yangfei 已提交
750
        char *origin_data =
L
liuruilong 已提交
751
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
752
        char *data = origin_data;
Y
yangfei 已提交
753
        cl_context context = program_.scope->GetCLScpoe()->Context();
754
        const TensorDesc &desc = var_desc->Tensor_desc();
755 756 757 758 759
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
760
        float *tensorInput = static_cast<float *>(
761 762
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
763

764
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
765

L
liuruilong 已提交
766 767
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
768

769
        delete origin_data;
Y
yangfei 已提交
770
        paddle_mobile::memory::Free(tensorInput);
771
      } else {
772 773
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
774
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
775 776
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
777

778 779 780
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
781
          DLOG << var_desc->Name();
L
liuruilong 已提交
782
          cl_image->InitEmptyImage(context, command_queue, ddim);
783
        }
Y
yangfei 已提交
784 785 786 787
      }
    }
  }
}
788

Y
yangfei 已提交
789
template <>
790
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
791 792
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
793 794
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
795 796
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
797
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
Y
yangfei 已提交
798 799
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
800
    self_alloc = true;
L
liuruilong 已提交
801
    origin_data = ReadFileToBuff(program_.para_path);
Y
yangfei 已提交
802 803
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
804
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
805

806
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
807 808 809
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
810
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
811
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
812
          var->template GetMutable<LoDTensor>();
Y
yangfei 已提交
813
          continue;
L
liuruilong 已提交
814
        } else {
815
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
816 817 818 819
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

820 821
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
822 823 824 825 826

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
827 828 829
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
830 831 832 833

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

834 835
        paddle_mobile::memory::Free(tensorInput);
      } else {
836
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
837
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
838 839
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
840 841 842
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
843
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
844 845 846
      }
    }
  }
Y
yangfei 已提交
847
  if (self_alloc) {
848
    delete data;
Y
yangfei 已提交
849
  }
Y
yangfei 已提交
850
  LOG(kLOG_INFO) << " end init combine memory ";
851
}
Y
yangfei 已提交
852 853 854

#endif

855
template class Executor<CPU, float>;
Y
yangfei 已提交
856

857
template class Executor<FPGA, float>;
W
wangliu 已提交
858

859
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
860

861
template class Executor<GPU_MALI, float>;
Y
yangfei 已提交
862 863

}  // namespace framework
W
wangliu 已提交
864
}  // namespace paddle_mobile