executor.cpp 33.6 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hjchen2 已提交
15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <utility>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
21
#include "framework/context.h"
L
liuruilong 已提交
22
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
23 24
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
25
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
26 27 28 29
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
H
hjchen2 已提交
30
#include "memory/t_malloc.h"
H
hjchen2 已提交
31
#include "pass/memory_optimize.h"
L
update  
liuruilong 已提交
32 33 34
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif
W
wangliu 已提交
35 36

namespace paddle_mobile {
37
namespace framework {
38

W
wangliu 已提交
39 40
#pragma mark - executor

41 42 43 44 45
template <typename Device, typename T>
void Executor<Device, T>::SetThreadNum(int threads) {
  set_global_num_threads(threads);
}

46
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
47 48 49 50
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
51
    : program_(program),
H
hjchen2 已提交
52 53
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
54 55
      lod_mode_(lod_mode),
      config_(config) {
56 57
  DLOG << "executor in lod mode: " << lod_mode_;

W
wangliu 已提交
58
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
59
  variable_ptr->SetValue<int>(batch_size);
60 61

  program_desc_ =
Refine  
陈后江 已提交
62
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
63 64
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
C
Chon 已提交
65 66
#if !defined(PADDLE_MOBILE_FPGA) && !defined(PADDLE_MOBILE_FPGA_KD) && \
    !defined(PADDLE_MOBILE_CL)
67
  pass::MemoryOptPass()(program_desc_.get(), program_.scope.get());
68
#endif
69 70 71 72
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
  const auto &blocks = program_desc_->Blocks();
73 74 75 76 77 78 79 80
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
81
        op_desc->GetAttrMap(), program_.scope.get());
82 83 84 85
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
86
    }
87
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
88
  }
89 90 91
#ifdef PADDLE_MOBILE_FPGA_V2
  InitQuantMemory();
#endif
W
wangliu 已提交
92
  if (program_.combined) {
L
liuruilong 已提交
93 94 95 96
    InitCombineMemory();
  } else {
    InitMemory();
  }
97 98

  int count = 0;
99 100 101
  for (auto &op_handler : ops_of_block0_) {
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
    op_handler->Init();
L
liuruilong 已提交
102
  }
W
wangliu 已提交
103 104
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

132
template <typename T>
133
static void LoadMemInternal(void **data, LoDTensor *tensor,
134
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
135
  char **data_buf = reinterpret_cast<char **>(data);
136
  int64_t size = tensor->numel();
137
  T *tensor_data = tensor->mutable_data<T>();
138 139
  if (quant_uint8) {
    // should be moved into operator init function
140 141
    float min_value;
    float max_value;
142 143 144
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
145
    const float factor = (max_value - min_value) / 255.0;
146
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
147 148
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
149
    }
150
    *data_buf += size * sizeof(uint8_t);
151
  } else {
152 153
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
154
  }
155
}
W
wangliu 已提交
156

157 158 159 160
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
161
  char **data_buf = reinterpret_cast<char **>(data);
162
  // version
163
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
164
  *data_buf += sizeof(uint32_t);
165
  // lod information
H
hjchen2 已提交
166 167
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
168
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
169
  *data_buf += sizeof(uint64_t);
170 171 172 173

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
174
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
175
    *data_buf += sizeof(uint64_t);
176
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
177
    memory::Copy(tmp_dim.data(), *data_buf, size);
178
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
179
    *data_buf += size;
W
wangliu 已提交
180
  }
181
  // tensor version
182
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
183
  *data_buf += sizeof(uint32_t);
184
  // tensor desc size
185
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
186
  *data_buf += sizeof(int32_t);
187
  // skip tensor desc
Refine  
陈后江 已提交
188
  *data_buf += tensor_desc_size;
189

190 191
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
192 193
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
194
    case VARTYPE_TYPE_FP32:
195 196
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
197
      break;
198
    case VARTYPE_TYPE_INT8:
199
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
200
      break;
201
    case VARTYPE_TYPE_INT32:
202
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
203 204
      break;
    default:
205
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
206
  }
W
wangliu 已提交
207 208
}

209 210 211
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
212 213 214 215
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
216
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
217 218
          continue;
        }
H
hjchen2 已提交
219
        DLOG << "init persistable var: " << var_desc->Name();
Refine  
陈后江 已提交
220
        char *origin_data =
Refine  
陈后江 已提交
221
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
222
        char *data = origin_data;
H
update  
hjchen2 已提交
223
        auto tensor = var->template GetMutable<LoDTensor>();
224 225
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
226
      } else {
227
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
228
        varInputMemory(var_desc, var);
W
wangliu 已提交
229 230 231 232 233
      }
    }
  }
}

234 235
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
236
  char *origin_data = nullptr;
Refine  
陈后江 已提交
237
  bool self_alloc = false;
238
  if (program_.combined_params_buf && program_.combined_params_len) {
239 240
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
241
  } else {
Refine  
陈后江 已提交
242
    self_alloc = true;
Refine  
陈后江 已提交
243
    origin_data = ReadFileToBuff(program_.para_path);
244
  }
Refine  
陈后江 已提交
245 246
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
247
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
248 249 250 251
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
252
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
253 254
          continue;
        }
L
liuruilong 已提交
255 256

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
257
        auto tensor = var->template GetMutable<LoDTensor>();
258
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
259
      } else {
H
update  
hjchen2 已提交
260 261
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
262 263 264
      }
    }
  }
Refine  
陈后江 已提交
265
  if (self_alloc) {
266
    delete[] origin_data;
Refine  
陈后江 已提交
267 268
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
269
}
270

C
Chon 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284
static void ClearNoPersistableTensorArray(const framework::ProgramDesc *program,
                                          framework::Scope *scope) {
  for (const auto &block : program->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
        auto var = scope->Var(var_desc->Name());
        auto array = var->template GetMutable<framework::LoDTensorArray>();
        array->resize(1);
      }
    }
  }
}

L
liuruilong 已提交
285
template <typename Device, typename T>
L
liuruilong 已提交
286
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
L
liuruilong 已提交
287 288 289 290 291 292
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      auto tensor = var->template GetMutable<LoDTensor>();
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
293
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
294 295 296 297 298
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
299 300 301 302
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
L
liuruilong 已提交
303
          tensor->template mutable_data<T>();
H
update  
hjchen2 已提交
304 305 306
        } else {
          PADDLE_MOBILE_THROW_EXCEPTION("Unsupported var type `%d`",
                                        var_desc->Type());
L
liuruilong 已提交
307 308 309 310 311 312 313 314 315 316
        }
      }
    }
  }

  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<T>();
}

317 318
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
319
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
320
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
321
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
322
  tensor->init(type_id<float>().hash_code());
323 324
  return true;
#endif
H
update  
hjchen2 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
338
  }
H
update  
hjchen2 已提交
339
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
340
}
L
liuruilong 已提交
341

342 343 344 345 346
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
347
  }
348 349 350 351 352 353 354 355
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
356
  }
357
  return this->Predict();
W
wangliu 已提交
358
}
xiebaiyuan's avatar
xiebaiyuan 已提交
359

360 361 362
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
363 364 365 366 367 368 369
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
370
  Tensor feed_tensor(input, make_ddim(dims));
371
  SetInput(feed_tensor, input_name);
372 373
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
374 375
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
376 377 378 379 380 381
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
382

383 384 385
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
386
  int index = 0;
387
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
388
    index = feed_indices_.find(var_name)->second;
389
  }
H
hjchen2 已提交
390 391 392 393 394 395
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
396
}
xiebaiyuan's avatar
xiebaiyuan 已提交
397

398 399 400
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
401
  int index = 0;
402
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
403
    index = feed_indices_.find(var_name)->second;
404
  }
H
hjchen2 已提交
405 406 407 408 409 410 411
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
412 413 414 415 416
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
417 418 419 420 421 422 423 424 425
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
426

427 428 429 430 431 432 433
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
434
}
xiebaiyuan's avatar
xiebaiyuan 已提交
435

436 437
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
438 439 440
#if _OPENMP
  omp_set_num_threads(get_global_num_threads());
#endif
441 442 443 444
  // clear all no persistable tensor array since write_to_array
  // is always push back a new tensor in the array
  ClearNoPersistableTensorArray(program_desc_.get(), program_.scope.get());

xiebaiyuan's avatar
xiebaiyuan 已提交
445
#ifdef PADDLE_MOBILE_PROFILE
446
  std::vector<ProfInfo> profile(ops_of_block0_.size());
447 448
  struct timespec ts;
  int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
449
#endif
450
  for (auto &op_handler : ops_of_block0_) {
xiebaiyuan's avatar
xiebaiyuan 已提交
451
#ifdef PADDLE_MOBILE_PROFILE
452 453
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
454
#endif
H
hjchen2 已提交
455
    DLOG << "run op: " << op_handler->Type();
456 457 458 459
    if (lod_mode_) {
      op_handler->InferShape();
    }
    op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
460
#ifdef PADDLE_MOBILE_PROFILE
461 462 463
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
464 465 466 467 468 469 470
#endif
  }
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
471 472 473
    if (ops_of_block0_[i]->Type() == "conv2d" ||
        ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = ops_of_block0_[i]->Inputs();
474 475
      auto *filter =
          GetVarValue<LoDTensor>("Filter", inputs, *(program_.scope));
476
      int kernel_size = filter->dims()[2];
477 478
      _tp[ops_of_block0_[i]->Type() + "_" + std::to_string(kernel_size)] +=
          timeCost;
479
    } else {
480
      _tp[ops_of_block0_[i]->Type()] += timeCost;
481
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
482
  }
H
hjchen2 已提交
483
  printf("====================[ profile ]======================\n");
484
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
500
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
501
#endif
502
  return PMSuccess;
xiebaiyuan's avatar
xiebaiyuan 已提交
503 504
}

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
template <typename Device, typename T>
void Executor<Device, T>::FeedTensorData(const vector<framework::Tensor> &v) {
  auto input_size = v.size();
  auto *feed_var = program_.scope->Var("feed");

  PADDLE_MOBILE_ENFORCE(input_size == feed_indices_.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
    framework::LoDTensor &target =
        feed_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    target.ShareDataWith(v[input_size - i - 1]);
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
  auto *fetch_var = program_.scope->Var("fetch");
  auto output_size = fetch_indices_.size();
  for (int i = 0; i < output_size; i++) {
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    v->push_back(&target);
  }
}

531
#ifdef PADDLE_MOBILE_FPGA
532 533 534 535
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
536
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
537 538
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
539
}
540

541 542
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
543
  InjectVariable(t, "feed0");
544
}
545

546
template <typename Device, typename T>
547
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
548
  auto input_size = v.size();
Z
zhangyang0701 已提交
549 550
  int index = 0;
  auto vars = program_.scope->VarContain("feed", &index);
551 552 553
  PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
554
    auto var = program_.scope->Var("feed", i + index);
555 556 557 558 559 560 561 562 563
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
564 565
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
566 567
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
568

569
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
570
    auto var = program_.scope->Var("fetch", i + index);
571 572
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
573
  }
574
}
575

576
template <typename Device, typename T>
577 578 579 580
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
581
}
582

583 584
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
585
  auto &ops = ops_of_block0_;
586

Z
zhangyang 已提交
587 588 589 590 591
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
592 593 594
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
595
}
596

597 598
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
599
  auto &ops = ops_of_block0_;
600
  end = end < 0 ? static_cast<int>(ops.size()) : end;
601 602 603 604 605 606 607 608 609 610 611 612
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
613
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
614 615 616 617 618 619 620
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
621
}
622

623 624
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
625
  Predict_From_To(start);
626
}
627

628 629
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
630
  Predict_From_To(0, end);
631
}
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
#ifdef PADDLE_MOBILE_FPGA_V2
std::map<std::string, float> LoadQuantValFromFile(std::string filename) {
  std::map<std::string, float> quantValList;
  std::ifstream in;
  in.open(filename, std::ios::in);
  if (!in.is_open()) {
    std::cout << "open File Failed." << std::endl;
    exit(-1);
  }

  std::string line;
  while (getline(in, line)) {
    std::string splitStr = " : ";
    std::string::size_type pos;
    pos = line.find(splitStr);
    std::string subStr[2];
    subStr[0] = line.substr(0, pos);
    subStr[1] = line.substr(pos + splitStr.size(), line.size());
    quantValList.insert(std::make_pair(subStr[0], atof(subStr[1].c_str())));
  }
  in.close();
  return quantValList;
}
655

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
template <typename Device, typename T>
void Executor<Device, T>::InitQuantMemory() {
  std::string quantValFilePath;
  if (program_.combined) {
    quantValFilePath = program_.para_path;
    quantValFilePath =
        quantValFilePath.substr(0, (quantValFilePath.length() - 6));
    quantValFilePath = quantValFilePath + "scale";
  } else {
    quantValFilePath = program_.model_path + "/scale";
  }
  std::map<std::string, float> quantValList =
      LoadQuantValFromFile(quantValFilePath);
  auto ops = ops_of_block0_;
  for (int id = 0; id < ops.size(); id++) {
    auto op = ops[id];
    auto input_keys = op->GetInputKeys();
    auto inputs = op->Inputs();
    for (auto key = input_keys.begin(); key != input_keys.end(); key++) {
      auto inputs_vars = inputs[*key];
      int count = inputs_vars.size();
      for (int i = 0; i < count; i++) {
        auto tensor = GetTensorByName(inputs_vars[i]);
        tensor->scale[0] = quantValList[inputs_vars[i]];
        std::cout << "input variance name : " << inputs_vars[i]
                  << ", scale value : " << tensor->scale[0] << std::endl;
      }
    }
    auto output_keys = op->GetOutKeys();
    auto outputs = op->Outputs();
    for (auto key = output_keys.begin(); key != output_keys.end(); key++) {
      auto outputs_vars = outputs[*key];
      int count = outputs_vars.size();
      for (int i = 0; i < count; i++) {
        auto tensor = GetTensorByName(outputs_vars[i]);
        tensor->scale[0] = quantValList[outputs_vars[i]];
        std::cout << "output variance name : " << outputs_vars[i]
                  << ", scale value : " << tensor->scale[0] << std::endl;
      }
    }
  }
}
#endif
#endif
Y
yangfei 已提交
700
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
701 702
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
703
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      auto cl_image = var->template GetMutable<CLImage>();

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
735

xiebaiyuan's avatar
xiebaiyuan 已提交
736 737 738
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
739 740 741 742 743 744 745
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor *target_tensor =
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
746 747 748 749 750

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
  DLOG << "target_tensor->IsInitialized() " << target_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << target_tensor->dims();
  DLOG << "input.dims()   " << input.dims();
751
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
752
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
753
    if (input_dim_last_ != input.dims()) {
754 755 756
      DLOG << "SetInput ---- > resize1";
      target_tensor->Resize(input.dims());
      target_tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
757 758 759 760 761 762 763 764
      InitNoPersistableMemory(*target_tensor);
    }
  } else {
    DLOG << "SetInput ---- > resize2";
    target_tensor->Resize(input.dims());
    DLOG << "SetInput ---- > ShareDataWith";
  }
  target_tensor->ShareDataWith(input);
765 766
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
767 768
}

769 770 771
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
772

Y
yangfei 已提交
773
template <>
H
hjchen2 已提交
774 775
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

813
  const TensorDesc &desc = var_desc.Tensor_desc();
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
848

Y
yangfei 已提交
849
template <>
850 851
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
852 853 854
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
855
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
856
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
857
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
858
          continue;
L
liuruilong 已提交
859
        } else {
860
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
861
        }
L
liuruilong 已提交
862

Y
yangfei 已提交
863
        char *origin_data =
L
liuruilong 已提交
864
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
865
        char *data = origin_data;
Y
yangfei 已提交
866
        cl_context context = program_.scope->GetCLScpoe()->Context();
867
        const TensorDesc &desc = var_desc->Tensor_desc();
868 869 870 871 872
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
873
        float *tensorInput = static_cast<float *>(
874 875
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
876

877
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
878

L
liuruilong 已提交
879 880
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
881

882
        delete origin_data;
Y
yangfei 已提交
883
        paddle_mobile::memory::Free(tensorInput);
884
      } else {
885 886
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
887
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
888 889
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
890

891 892 893
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
894
          DLOG << var_desc->Name();
L
liuruilong 已提交
895
          cl_image->InitEmptyImage(context, command_queue, ddim);
896
        }
Y
yangfei 已提交
897 898 899 900
      }
    }
  }
}
901

Y
yangfei 已提交
902
template <>
903
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
904 905
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
906 907
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
908 909
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
910
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
Y
yangfei 已提交
911 912
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
913
    self_alloc = true;
L
liuruilong 已提交
914
    origin_data = ReadFileToBuff(program_.para_path);
Y
yangfei 已提交
915 916
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
917
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
918

919
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
920 921 922
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
923
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
924
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
925
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
926
          continue;
L
liuruilong 已提交
927
        } else {
928
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
929 930 931 932
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

933 934
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
935 936 937 938 939

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
940 941 942
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
943 944 945 946

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

947 948
        paddle_mobile::memory::Free(tensorInput);
      } else {
949
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
950
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
951 952
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
953 954 955
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
956
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
957 958 959
      }
    }
  }
Y
yangfei 已提交
960
  if (self_alloc) {
961
    delete data;
Y
yangfei 已提交
962
  }
Y
yangfei 已提交
963
  LOG(kLOG_INFO) << " end init combine memory ";
964
}
Y
yangfei 已提交
965 966 967

#endif

968
template class Executor<CPU, float>;
Y
yangfei 已提交
969

970
template class Executor<FPGA, float>;
W
wangliu 已提交
971

972
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
973

974
template class Executor<GPU_MALI, float>;
Y
yangfei 已提交
975 976

}  // namespace framework
W
wangliu 已提交
977
}  // namespace paddle_mobile