executor.cpp 30.7 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <utility>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
21
#include "framework/context.h"
L
liuruilong 已提交
22
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
23 24
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
25
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
26 27 28 29
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
Z
zhangyang 已提交
30
#include "memory/t_malloc.h"
L
update  
liuruilong 已提交
31 32 33 34

#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif
W
wangliu 已提交
35 36

namespace paddle_mobile {
37
namespace framework {
38

W
wangliu 已提交
39 40
#pragma mark - executor

41 42 43 44 45
template <typename Device, typename T>
void Executor<Device, T>::SetThreadNum(int threads) {
  set_global_num_threads(threads);
}

46
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
47 48 49 50
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
51
    : program_(program),
H
hjchen2 已提交
52 53
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
54 55
      lod_mode_(lod_mode),
      config_(config) {
56 57
  DLOG << "executor in lod mode: " << lod_mode_;

W
wangliu 已提交
58
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
59
  variable_ptr->SetValue<int>(batch_size);
60 61

  program_desc_ =
Refine  
陈后江 已提交
62
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
63 64
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
65 66 67
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
68

69
  const auto &blocks = program_desc_->Blocks();
70 71 72 73 74 75 76 77
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
78
        op_desc->GetAttrMap(), program_.scope.get());
79 80 81 82
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
83
    }
84
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
85
  }
W
wangliu 已提交
86
  if (program_.combined) {
L
liuruilong 已提交
87 88 89 90
    InitCombineMemory();
  } else {
    InitMemory();
  }
91

92 93 94 95 96
#ifdef PADDLE_MOBILE_FPGA
  program_.scope->EraseVars({"feed", "fetch"});
  program_.scope->print_vars();
#endif

97
  int count = 0;
98 99 100
  for (auto &op_handler : ops_of_block0_) {
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
    op_handler->Init();
L
liuruilong 已提交
101
  }
W
wangliu 已提交
102 103
}

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

131
template <typename T>
132
static void LoadMemInternal(void **data, LoDTensor *tensor,
133
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
134
  char **data_buf = reinterpret_cast<char **>(data);
135
  int64_t size = tensor->numel();
136
  T *tensor_data = tensor->mutable_data<T>();
137 138
  if (quant_uint8) {
    // should be moved into operator init function
139 140
    float min_value;
    float max_value;
141 142 143
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
144
    const float factor = (max_value - min_value) / 255.0;
145
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
146 147
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
148
    }
149
    *data_buf += size * sizeof(uint8_t);
150
  } else {
151 152
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
153
  }
154
}
W
wangliu 已提交
155

156 157 158 159
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
160
  char **data_buf = reinterpret_cast<char **>(data);
161
  // version
162
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
163
  *data_buf += sizeof(uint32_t);
164
  // lod information
H
hjchen2 已提交
165 166
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
167
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
168
  *data_buf += sizeof(uint64_t);
169 170 171 172

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
173
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
174
    *data_buf += sizeof(uint64_t);
175
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
176
    memory::Copy(tmp_dim.data(), *data_buf, size);
177
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
178
    *data_buf += size;
W
wangliu 已提交
179
  }
180
  // tensor version
181
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
182
  *data_buf += sizeof(uint32_t);
183
  // tensor desc size
184
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
185
  *data_buf += sizeof(int32_t);
186
  // skip tensor desc
Refine  
陈后江 已提交
187
  *data_buf += tensor_desc_size;
188

189 190
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
191 192
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
193
    case VARTYPE_TYPE_FP32:
194 195
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
196
      break;
197
    case VARTYPE_TYPE_INT8:
198
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
199
      break;
200
    case VARTYPE_TYPE_INT32:
201
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
202 203
      break;
    default:
204
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
205
  }
W
wangliu 已提交
206 207
}

208 209 210
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
211 212 213 214
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
215
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
216 217
          continue;
        }
Refine  
陈后江 已提交
218
        char *origin_data =
Refine  
陈后江 已提交
219
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
220
        char *data = origin_data;
H
update  
hjchen2 已提交
221
        auto tensor = var->template GetMutable<LoDTensor>();
222 223
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
224
      } else {
225
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
226
        varInputMemory(var_desc, var);
W
wangliu 已提交
227 228 229 230 231
      }
    }
  }
}

232 233
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
234
  char *origin_data = nullptr;
Refine  
陈后江 已提交
235
  bool self_alloc = false;
236
  if (program_.combined_params_buf && program_.combined_params_len) {
237 238
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
239
  } else {
Refine  
陈后江 已提交
240
    self_alloc = true;
Refine  
陈后江 已提交
241
    origin_data = ReadFileToBuff(program_.para_path);
242
  }
Refine  
陈后江 已提交
243 244
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
245
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
246 247 248 249
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
250
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
251 252
          continue;
        }
L
liuruilong 已提交
253 254

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
255
        auto tensor = var->template GetMutable<LoDTensor>();
256
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
257
      } else {
H
update  
hjchen2 已提交
258 259
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
260 261 262
      }
    }
  }
Refine  
陈后江 已提交
263
  if (self_alloc) {
264
    delete[] origin_data;
Refine  
陈后江 已提交
265 266
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
267
}
268

L
liuruilong 已提交
269
template <typename Device, typename T>
L
liuruilong 已提交
270
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
L
liuruilong 已提交
271 272 273 274 275 276
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      auto tensor = var->template GetMutable<LoDTensor>();
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
277
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
278 279 280 281 282
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
283 284 285 286
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
L
liuruilong 已提交
287
          tensor->template mutable_data<T>();
H
update  
hjchen2 已提交
288 289 290
        } else {
          PADDLE_MOBILE_THROW_EXCEPTION("Unsupported var type `%d`",
                                        var_desc->Type());
L
liuruilong 已提交
291 292 293 294 295 296 297 298 299 300
        }
      }
    }
  }

  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<T>();
}

301 302
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
303
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
304
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
305
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
306 307 308
  tensor->init(typeid(float));
  return true;
#endif
H
update  
hjchen2 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
  auto TypeId = [](const VarType_Type &type) -> std::type_index {
    switch (type) {
      case VARTYPE_TYPE_BOOL:
        return typeid(bool);
      case VARTYPE_TYPE_FP32:
        return typeid(float);
      case VARTYPE_TYPE_INT8:
        return typeid(int8_t);
      case VARTYPE_TYPE_INT32:
        return typeid(int);
      case VARTYPE_TYPE_INT64:
        return typeid(int64_t);
      default:
        PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
    }
  };

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
    tensor->mutable_data(TypeId(data_type));
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
339
  }
H
update  
hjchen2 已提交
340
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
341
}
L
liuruilong 已提交
342

343 344 345 346 347
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
348
  }
349 350 351 352 353 354 355 356
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
357
  }
358
  return this->Predict();
W
wangliu 已提交
359
}
xiebaiyuan's avatar
xiebaiyuan 已提交
360

361 362 363
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
364 365 366 367 368 369 370
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
371
  Tensor feed_tensor(input, make_ddim(dims));
372
  SetInput(feed_tensor, input_name);
373 374
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
375 376
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
377 378 379 380 381 382
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
383

384 385 386
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
387
  int index = 0;
388
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
389
    index = feed_indices_.find(var_name)->second;
390
  }
H
hjchen2 已提交
391 392 393 394
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

L
liuruilong 已提交
395
  if (config_.load_when_predict) {
Z
zhaojiaying01 已提交
396 397 398
    if (input_dim_last_ != input.dims()) {
      InitNoPersistableMemory(input);
      input_dim_last_ = input.dims();
L
liuruilong 已提交
399 400 401
    }
  }

H
hjchen2 已提交
402 403
  target.Resize(input.dims());
  target.ShareDataWith(input);
404
}
xiebaiyuan's avatar
xiebaiyuan 已提交
405

406 407 408
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
409
  int index = 0;
410
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
411
    index = feed_indices_.find(var_name)->second;
412
  }
H
hjchen2 已提交
413 414 415 416
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

L
liuruilong 已提交
417
  if (config_.load_when_predict) {
Z
zhaojiaying01 已提交
418
    if (input_dim_last_ != input.dims()) {
419
      InitNoPersistableMemory(input);
Z
zhaojiaying01 已提交
420
      input_dim_last_ = input.dims();
L
liuruilong 已提交
421 422 423
    }
  }

H
hjchen2 已提交
424 425 426
  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
427 428 429 430 431
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
432 433 434 435 436 437 438 439 440
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
441

442 443 444 445 446 447 448
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
449
}
xiebaiyuan's avatar
xiebaiyuan 已提交
450

451 452
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
453 454 455
#if _OPENMP
  omp_set_num_threads(get_global_num_threads());
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
456
#ifdef PADDLE_MOBILE_PROFILE
457
  std::vector<ProfInfo> profile(ops_of_block0_.size());
458 459
  struct timespec ts;
  int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
460
#endif
461
  for (auto &op_handler : ops_of_block0_) {
xiebaiyuan's avatar
xiebaiyuan 已提交
462
#ifdef PADDLE_MOBILE_PROFILE
463 464
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
465
#endif
466 467 468 469
    if (lod_mode_) {
      op_handler->InferShape();
    }
    op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
470
#ifdef PADDLE_MOBILE_PROFILE
471 472 473
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
474 475 476 477 478 479 480
#endif
  }
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
481 482 483
    if (ops_of_block0_[i]->Type() == "conv2d" ||
        ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = ops_of_block0_[i]->Inputs();
484 485
      auto *filter =
          GetVarValue<LoDTensor>("Filter", inputs, *(program_.scope));
486
      int kernel_size = filter->dims()[2];
487 488
      _tp[ops_of_block0_[i]->Type() + "_" + std::to_string(kernel_size)] +=
          timeCost;
489
    } else {
490
      _tp[ops_of_block0_[i]->Type()] += timeCost;
491
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
492
  }
H
hjchen2 已提交
493
  printf("====================[ profile ]======================\n");
494
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
510
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
511
#endif
512
  return PMSuccess;
xiebaiyuan's avatar
xiebaiyuan 已提交
513 514
}

515
#ifdef PADDLE_MOBILE_FPGA
516 517 518 519
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
520
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
521 522
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
523
}
524

525 526
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
527
  InjectVariable(t, "feed0");
528
}
529

530
template <typename Device, typename T>
531
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
532
  auto input_size = v.size();
Z
zhangyang0701 已提交
533 534
  int index = 0;
  auto vars = program_.scope->VarContain("feed", &index);
535 536 537
  PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
538
    auto var = program_.scope->Var("feed", i + index);
539 540 541 542 543 544 545 546 547
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
548 549
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
550 551
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
552

553
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
554
    auto var = program_.scope->Var("fetch", i + index);
555 556
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
557
  }
558
}
559

560
template <typename Device, typename T>
561 562
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
Z
zhangyang0701 已提交
563 564
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
565
  auto output_size = vars.size();
566
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
567
    auto var = program_.scope->Var("fetch", i + index);
568
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
569
    v->push_back(fetch_tensor);
570 571 572
  }
}

573 574 575 576 577
template <typename Device, typename T>
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
578
}
579

580 581
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
582
  auto &ops = ops_of_block0_;
583

Z
zhangyang 已提交
584 585 586 587 588
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
589 590 591
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
592
}
593

594 595
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
596
  auto &ops = ops_of_block0_;
597
  end = end < 0 ? static_cast<int>(ops.size()) : end;
598 599 600 601 602 603 604 605 606 607 608 609
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
610
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
611 612 613 614 615 616 617
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
618
}
619

620 621
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
622
  Predict_From_To(start);
623
}
624

625 626
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
627
  Predict_From_To(0, end);
628
}
629 630
#endif

Y
yangfei 已提交
631
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
632 633
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
634
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      auto cl_image = var->template GetMutable<CLImage>();

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
666

xiebaiyuan's avatar
xiebaiyuan 已提交
667 668 669
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
670 671 672 673 674 675 676
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor *target_tensor =
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
677 678 679 680 681

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
  DLOG << "target_tensor->IsInitialized() " << target_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << target_tensor->dims();
  DLOG << "input.dims()   " << input.dims();
682
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
683
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
684
    if (input_dim_last_ != input.dims()) {
685 686 687
      DLOG << "SetInput ---- > resize1";
      target_tensor->Resize(input.dims());
      target_tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
688 689 690 691 692 693 694 695
      InitNoPersistableMemory(*target_tensor);
    }
  } else {
    DLOG << "SetInput ---- > resize2";
    target_tensor->Resize(input.dims());
    DLOG << "SetInput ---- > ShareDataWith";
  }
  target_tensor->ShareDataWith(input);
696 697
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
698 699
}

700 701 702
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
703

Y
yangfei 已提交
704
template <>
H
hjchen2 已提交
705 706
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

744
  const TensorDesc &desc = var_desc.Tensor_desc();
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
779

Y
yangfei 已提交
780
template <>
781 782
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
783 784 785
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
786
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
787
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
788
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
789
          continue;
L
liuruilong 已提交
790
        } else {
791
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
792
        }
L
liuruilong 已提交
793

Y
yangfei 已提交
794
        char *origin_data =
L
liuruilong 已提交
795
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
796
        char *data = origin_data;
Y
yangfei 已提交
797
        cl_context context = program_.scope->GetCLScpoe()->Context();
798
        const TensorDesc &desc = var_desc->Tensor_desc();
799 800 801 802 803
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
804
        float *tensorInput = static_cast<float *>(
805 806
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
807

808
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
809

L
liuruilong 已提交
810 811
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
812

813
        delete origin_data;
Y
yangfei 已提交
814
        paddle_mobile::memory::Free(tensorInput);
815
      } else {
816 817
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
818
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
819 820
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
821

822 823 824
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
825
          DLOG << var_desc->Name();
L
liuruilong 已提交
826
          cl_image->InitEmptyImage(context, command_queue, ddim);
827
        }
Y
yangfei 已提交
828 829 830 831
      }
    }
  }
}
832

Y
yangfei 已提交
833
template <>
834
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
835 836
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
837 838
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
839 840
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
841
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
Y
yangfei 已提交
842 843
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
844
    self_alloc = true;
L
liuruilong 已提交
845
    origin_data = ReadFileToBuff(program_.para_path);
Y
yangfei 已提交
846 847
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
848
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
849

850
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
851 852 853
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
854
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
855
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
856
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
857
          continue;
L
liuruilong 已提交
858
        } else {
859
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
860 861 862 863
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

864 865
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
866 867 868 869 870

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
871 872 873
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
874 875 876 877

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

878 879
        paddle_mobile::memory::Free(tensorInput);
      } else {
880
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
881
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
882 883
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
884 885 886
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
887
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
888 889 890
      }
    }
  }
Y
yangfei 已提交
891
  if (self_alloc) {
892
    delete data;
Y
yangfei 已提交
893
  }
Y
yangfei 已提交
894
  LOG(kLOG_INFO) << " end init combine memory ";
895
}
Y
yangfei 已提交
896 897 898

#endif

899
template class Executor<CPU, float>;
Y
yangfei 已提交
900

901
template class Executor<FPGA, float>;
W
wangliu 已提交
902

903
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
904

905
template class Executor<GPU_MALI, float>;
Y
yangfei 已提交
906 907

}  // namespace framework
W
wangliu 已提交
908
}  // namespace paddle_mobile