executor.cpp 33.5 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hjchen2 已提交
15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <utility>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
21
#include "framework/context.h"
L
liuruilong 已提交
22
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
23 24
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
25
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
26 27 28 29
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
H
hjchen2 已提交
30
#include "memory/t_malloc.h"
H
hjchen2 已提交
31
#include "pass/memory_optimize.h"
L
update  
liuruilong 已提交
32 33 34
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif
W
wangliu 已提交
35 36

namespace paddle_mobile {
37
namespace framework {
38

W
wangliu 已提交
39 40
#pragma mark - executor

41 42 43 44 45
template <typename Device, typename T>
void Executor<Device, T>::SetThreadNum(int threads) {
  set_global_num_threads(threads);
}

46
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
47 48 49 50
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
51
    : program_(program),
H
hjchen2 已提交
52 53
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
54 55
      lod_mode_(lod_mode),
      config_(config) {
56 57
  DLOG << "executor in lod mode: " << lod_mode_;

W
wangliu 已提交
58
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
59
  variable_ptr->SetValue<int>(batch_size);
60 61

  program_desc_ =
Refine  
陈后江 已提交
62
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
63 64
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
65 66
#if !defined(PADDLE_MOBILE_FPGA) && !defined(PADDLE_MOBILE_CL)
  pass::MemoryOptPass()(program_desc_.get(), program_.scope.get());
67
#endif
68 69 70 71
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
  const auto &blocks = program_desc_->Blocks();
72 73 74 75 76 77 78 79
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
80
        op_desc->GetAttrMap(), program_.scope.get());
81 82 83 84
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
85
    }
86
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
87
  }
88 89 90
#ifdef PADDLE_MOBILE_FPGA_V2
  InitQuantMemory();
#endif
W
wangliu 已提交
91
  if (program_.combined) {
L
liuruilong 已提交
92 93 94 95
    InitCombineMemory();
  } else {
    InitMemory();
  }
96 97

  int count = 0;
98 99 100
  for (auto &op_handler : ops_of_block0_) {
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
    op_handler->Init();
L
liuruilong 已提交
101
  }
W
wangliu 已提交
102 103
}

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

131
template <typename T>
132
static void LoadMemInternal(void **data, LoDTensor *tensor,
133
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
134
  char **data_buf = reinterpret_cast<char **>(data);
135
  int64_t size = tensor->numel();
136
  T *tensor_data = tensor->mutable_data<T>();
137 138
  if (quant_uint8) {
    // should be moved into operator init function
139 140
    float min_value;
    float max_value;
141 142 143
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
144
    const float factor = (max_value - min_value) / 255.0;
145
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
146 147
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
148
    }
149
    *data_buf += size * sizeof(uint8_t);
150
  } else {
151 152
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
153
  }
154
}
W
wangliu 已提交
155

156 157 158 159
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
160
  char **data_buf = reinterpret_cast<char **>(data);
161
  // version
162
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
163
  *data_buf += sizeof(uint32_t);
164
  // lod information
H
hjchen2 已提交
165 166
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
167
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
168
  *data_buf += sizeof(uint64_t);
169 170 171 172

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
173
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
174
    *data_buf += sizeof(uint64_t);
175
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
176
    memory::Copy(tmp_dim.data(), *data_buf, size);
177
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
178
    *data_buf += size;
W
wangliu 已提交
179
  }
180
  // tensor version
181
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
182
  *data_buf += sizeof(uint32_t);
183
  // tensor desc size
184
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
185
  *data_buf += sizeof(int32_t);
186
  // skip tensor desc
Refine  
陈后江 已提交
187
  *data_buf += tensor_desc_size;
188

189 190
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
191 192
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
193
    case VARTYPE_TYPE_FP32:
194 195
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
196
      break;
197
    case VARTYPE_TYPE_INT8:
198
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
199
      break;
200
    case VARTYPE_TYPE_INT32:
201
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
202 203
      break;
    default:
204
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
205
  }
W
wangliu 已提交
206 207
}

208 209 210
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
211 212 213 214
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
215
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
216 217
          continue;
        }
H
hjchen2 已提交
218
        DLOG << "init persistable var: " << var_desc->Name();
Refine  
陈后江 已提交
219
        char *origin_data =
Refine  
陈后江 已提交
220
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
221
        char *data = origin_data;
H
update  
hjchen2 已提交
222
        auto tensor = var->template GetMutable<LoDTensor>();
223 224
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
225
      } else {
226
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
227
        varInputMemory(var_desc, var);
W
wangliu 已提交
228 229 230 231 232
      }
    }
  }
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246
static void ClearNoPersistableTensorArray(const framework::ProgramDesc *program,
                                          framework::Scope *scope) {
  for (const auto &block : program->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
        auto var = scope->Var(var_desc->Name());
        auto array = var->template GetMutable<framework::LoDTensorArray>();
        array->resize(1);
      }
    }
  }
}

247 248
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
249
  char *origin_data = nullptr;
Refine  
陈后江 已提交
250
  bool self_alloc = false;
251
  if (program_.combined_params_buf && program_.combined_params_len) {
252 253
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
254
  } else {
Refine  
陈后江 已提交
255
    self_alloc = true;
Refine  
陈后江 已提交
256
    origin_data = ReadFileToBuff(program_.para_path);
257
  }
Refine  
陈后江 已提交
258 259
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
260
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
261 262 263 264
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
265
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
266 267
          continue;
        }
L
liuruilong 已提交
268 269

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
270
        auto tensor = var->template GetMutable<LoDTensor>();
271
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
272
      } else {
H
update  
hjchen2 已提交
273 274
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
275 276 277
      }
    }
  }
Refine  
陈后江 已提交
278
  if (self_alloc) {
279
    delete[] origin_data;
Refine  
陈后江 已提交
280 281
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
282
}
283

L
liuruilong 已提交
284
template <typename Device, typename T>
L
liuruilong 已提交
285
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
L
liuruilong 已提交
286 287 288 289 290 291
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      auto tensor = var->template GetMutable<LoDTensor>();
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
292
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
293 294 295 296 297
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
298 299 300 301
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
L
liuruilong 已提交
302
          tensor->template mutable_data<T>();
H
update  
hjchen2 已提交
303 304 305
        } else {
          PADDLE_MOBILE_THROW_EXCEPTION("Unsupported var type `%d`",
                                        var_desc->Type());
L
liuruilong 已提交
306 307 308 309 310 311 312 313 314 315
        }
      }
    }
  }

  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<T>();
}

316 317
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
318
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
319
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
320
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
321
  tensor->init(type_id<float>().hash_code());
322 323
  return true;
#endif
H
update  
hjchen2 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
337
  }
H
update  
hjchen2 已提交
338
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
339
}
L
liuruilong 已提交
340

341 342 343 344 345
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
346
  }
347 348 349 350 351 352 353 354
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
355
  }
356
  return this->Predict();
W
wangliu 已提交
357
}
xiebaiyuan's avatar
xiebaiyuan 已提交
358

359 360 361
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
362 363 364 365 366 367 368
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
369
  Tensor feed_tensor(input, make_ddim(dims));
370
  SetInput(feed_tensor, input_name);
371 372
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
373 374
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
375 376 377 378 379 380
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
381

382 383 384
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
385
  int index = 0;
386
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
387
    index = feed_indices_.find(var_name)->second;
388
  }
H
hjchen2 已提交
389 390 391 392 393 394
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
395
}
xiebaiyuan's avatar
xiebaiyuan 已提交
396

397 398 399
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
400
  int index = 0;
401
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
402
    index = feed_indices_.find(var_name)->second;
403
  }
H
hjchen2 已提交
404 405 406 407 408 409 410
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
411 412 413 414 415
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
416 417 418 419 420 421 422 423 424
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
425

426 427 428 429 430 431 432
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
433
}
xiebaiyuan's avatar
xiebaiyuan 已提交
434

435 436
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
437 438 439
#if _OPENMP
  omp_set_num_threads(get_global_num_threads());
#endif
440 441 442 443
  // clear all no persistable tensor array since write_to_array
  // is always push back a new tensor in the array
  ClearNoPersistableTensorArray(program_desc_.get(), program_.scope.get());

xiebaiyuan's avatar
xiebaiyuan 已提交
444
#ifdef PADDLE_MOBILE_PROFILE
445
  std::vector<ProfInfo> profile(ops_of_block0_.size());
446 447
  struct timespec ts;
  int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
448
#endif
449
  for (auto &op_handler : ops_of_block0_) {
xiebaiyuan's avatar
xiebaiyuan 已提交
450
#ifdef PADDLE_MOBILE_PROFILE
451 452
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
453
#endif
H
hjchen2 已提交
454
    DLOG << "run op: " << op_handler->Type();
455 456 457 458
    if (lod_mode_) {
      op_handler->InferShape();
    }
    op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
459
#ifdef PADDLE_MOBILE_PROFILE
460 461 462
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
463 464 465 466 467 468 469
#endif
  }
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
470 471 472
    if (ops_of_block0_[i]->Type() == "conv2d" ||
        ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = ops_of_block0_[i]->Inputs();
473 474
      auto *filter =
          GetVarValue<LoDTensor>("Filter", inputs, *(program_.scope));
475
      int kernel_size = filter->dims()[2];
476 477
      _tp[ops_of_block0_[i]->Type() + "_" + std::to_string(kernel_size)] +=
          timeCost;
478
    } else {
479
      _tp[ops_of_block0_[i]->Type()] += timeCost;
480
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
481
  }
H
hjchen2 已提交
482
  printf("====================[ profile ]======================\n");
483
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
499
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
500
#endif
501
  return PMSuccess;
xiebaiyuan's avatar
xiebaiyuan 已提交
502 503
}

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
template <typename Device, typename T>
void Executor<Device, T>::FeedTensorData(const vector<framework::Tensor> &v) {
  auto input_size = v.size();
  auto *feed_var = program_.scope->Var("feed");

  PADDLE_MOBILE_ENFORCE(input_size == feed_indices_.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
    framework::LoDTensor &target =
        feed_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    target.ShareDataWith(v[input_size - i - 1]);
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
  auto *fetch_var = program_.scope->Var("fetch");
  auto output_size = fetch_indices_.size();
  for (int i = 0; i < output_size; i++) {
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    v->push_back(&target);
  }
}

530
#ifdef PADDLE_MOBILE_FPGA
531 532 533 534
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
535
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
536 537
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
538
}
539

540 541
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
542
  InjectVariable(t, "feed0");
543
}
544

545
template <typename Device, typename T>
546
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
547
  auto input_size = v.size();
Z
zhangyang0701 已提交
548 549
  int index = 0;
  auto vars = program_.scope->VarContain("feed", &index);
550 551 552
  PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
553
    auto var = program_.scope->Var("feed", i + index);
554 555 556 557 558 559 560 561 562
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
563 564
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
565 566
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
567

568
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
569
    auto var = program_.scope->Var("fetch", i + index);
570 571
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
572
  }
573
}
574

575
template <typename Device, typename T>
576 577 578 579
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
580
}
581

582 583
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
584
  auto &ops = ops_of_block0_;
585

Z
zhangyang 已提交
586 587 588 589 590
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
591 592 593
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
594
}
595

596 597
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
598
  auto &ops = ops_of_block0_;
599
  end = end < 0 ? static_cast<int>(ops.size()) : end;
600 601 602 603 604 605 606 607 608 609 610 611
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
612
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
613 614 615 616 617 618 619
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
620
}
621

622 623
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
624
  Predict_From_To(start);
625
}
626

627 628
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
629
  Predict_From_To(0, end);
630
}
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
#ifdef PADDLE_MOBILE_FPGA_V2
std::map<std::string, float> LoadQuantValFromFile(std::string filename) {
  std::map<std::string, float> quantValList;
  std::ifstream in;
  in.open(filename, std::ios::in);
  if (!in.is_open()) {
    std::cout << "open File Failed." << std::endl;
    exit(-1);
  }

  std::string line;
  while (getline(in, line)) {
    std::string splitStr = " : ";
    std::string::size_type pos;
    pos = line.find(splitStr);
    std::string subStr[2];
    subStr[0] = line.substr(0, pos);
    subStr[1] = line.substr(pos + splitStr.size(), line.size());
    quantValList.insert(std::make_pair(subStr[0], atof(subStr[1].c_str())));
  }
  in.close();
  return quantValList;
}
654

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
template <typename Device, typename T>
void Executor<Device, T>::InitQuantMemory() {
  std::string quantValFilePath;
  if (program_.combined) {
    quantValFilePath = program_.para_path;
    quantValFilePath =
        quantValFilePath.substr(0, (quantValFilePath.length() - 6));
    quantValFilePath = quantValFilePath + "scale";
  } else {
    quantValFilePath = program_.model_path + "/scale";
  }
  std::map<std::string, float> quantValList =
      LoadQuantValFromFile(quantValFilePath);
  auto ops = ops_of_block0_;
  for (int id = 0; id < ops.size(); id++) {
    auto op = ops[id];
    auto input_keys = op->GetInputKeys();
    auto inputs = op->Inputs();
    for (auto key = input_keys.begin(); key != input_keys.end(); key++) {
      auto inputs_vars = inputs[*key];
      int count = inputs_vars.size();
      for (int i = 0; i < count; i++) {
        auto tensor = GetTensorByName(inputs_vars[i]);
        tensor->scale[0] = quantValList[inputs_vars[i]];
        std::cout << "input variance name : " << inputs_vars[i]
                  << ", scale value : " << tensor->scale[0] << std::endl;
      }
    }
    auto output_keys = op->GetOutKeys();
    auto outputs = op->Outputs();
    for (auto key = output_keys.begin(); key != output_keys.end(); key++) {
      auto outputs_vars = outputs[*key];
      int count = outputs_vars.size();
      for (int i = 0; i < count; i++) {
        auto tensor = GetTensorByName(outputs_vars[i]);
        tensor->scale[0] = quantValList[outputs_vars[i]];
        std::cout << "output variance name : " << outputs_vars[i]
                  << ", scale value : " << tensor->scale[0] << std::endl;
      }
    }
  }
}
#endif
#endif
Y
yangfei 已提交
699
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
700 701
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
702
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      auto cl_image = var->template GetMutable<CLImage>();

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
734

xiebaiyuan's avatar
xiebaiyuan 已提交
735 736 737
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
738 739 740 741 742 743 744
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor *target_tensor =
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
745 746 747 748 749

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
  DLOG << "target_tensor->IsInitialized() " << target_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << target_tensor->dims();
  DLOG << "input.dims()   " << input.dims();
750
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
751
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
752
    if (input_dim_last_ != input.dims()) {
753 754 755
      DLOG << "SetInput ---- > resize1";
      target_tensor->Resize(input.dims());
      target_tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
756 757 758 759 760 761 762 763
      InitNoPersistableMemory(*target_tensor);
    }
  } else {
    DLOG << "SetInput ---- > resize2";
    target_tensor->Resize(input.dims());
    DLOG << "SetInput ---- > ShareDataWith";
  }
  target_tensor->ShareDataWith(input);
764 765
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
766 767
}

768 769 770
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
771

Y
yangfei 已提交
772
template <>
H
hjchen2 已提交
773 774
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

812
  const TensorDesc &desc = var_desc.Tensor_desc();
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
847

Y
yangfei 已提交
848
template <>
849 850
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
851 852 853
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
854
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
855
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
856
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
857
          continue;
L
liuruilong 已提交
858
        } else {
859
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
860
        }
L
liuruilong 已提交
861

Y
yangfei 已提交
862
        char *origin_data =
L
liuruilong 已提交
863
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
864
        char *data = origin_data;
Y
yangfei 已提交
865
        cl_context context = program_.scope->GetCLScpoe()->Context();
866
        const TensorDesc &desc = var_desc->Tensor_desc();
867 868 869 870 871
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
872
        float *tensorInput = static_cast<float *>(
873 874
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
875

876
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
877

L
liuruilong 已提交
878 879
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
880

881
        delete origin_data;
Y
yangfei 已提交
882
        paddle_mobile::memory::Free(tensorInput);
883
      } else {
884 885
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
886
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
887 888
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
889

890 891 892
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
893
          DLOG << var_desc->Name();
L
liuruilong 已提交
894
          cl_image->InitEmptyImage(context, command_queue, ddim);
895
        }
Y
yangfei 已提交
896 897 898 899
      }
    }
  }
}
900

Y
yangfei 已提交
901
template <>
902
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
903 904
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
905 906
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
907 908
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
909
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
Y
yangfei 已提交
910 911
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
912
    self_alloc = true;
L
liuruilong 已提交
913
    origin_data = ReadFileToBuff(program_.para_path);
Y
yangfei 已提交
914 915
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
916
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
917

918
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
919 920 921
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
922
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
923
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
924
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
925
          continue;
L
liuruilong 已提交
926
        } else {
927
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
928 929 930 931
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

932 933
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
934 935 936 937 938

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
939 940 941
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
942 943 944 945

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

946 947
        paddle_mobile::memory::Free(tensorInput);
      } else {
948
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
949
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
950 951
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
952 953 954
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
955
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
956 957 958
      }
    }
  }
Y
yangfei 已提交
959
  if (self_alloc) {
960
    delete data;
Y
yangfei 已提交
961
  }
Y
yangfei 已提交
962
  LOG(kLOG_INFO) << " end init combine memory ";
963
}
Y
yangfei 已提交
964 965 966

#endif

967
template class Executor<CPU, float>;
Y
yangfei 已提交
968

969
template class Executor<FPGA, float>;
W
wangliu 已提交
970

971
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
972

973
template class Executor<GPU_MALI, float>;
Y
yangfei 已提交
974 975

}  // namespace framework
W
wangliu 已提交
976
}  // namespace paddle_mobile