executor.cpp 33.6 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hjchen2 已提交
15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <utility>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
21
#include "framework/context.h"
L
liuruilong 已提交
22
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
23 24
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
25
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
26 27 28 29
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
H
hjchen2 已提交
30
#include "memory/t_malloc.h"
H
hjchen2 已提交
31
#include "pass/memory_optimize.h"
L
update  
liuruilong 已提交
32 33 34
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif
W
wangliu 已提交
35 36

namespace paddle_mobile {
37
namespace framework {
38

W
wangliu 已提交
39 40
#pragma mark - executor

41 42 43 44 45
template <typename Device, typename T>
void Executor<Device, T>::SetThreadNum(int threads) {
  set_global_num_threads(threads);
}

46
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
47 48 49 50
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
51
    : program_(program),
H
hjchen2 已提交
52 53
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
54 55
      lod_mode_(lod_mode),
      config_(config) {
56 57
  DLOG << "executor in lod mode: " << lod_mode_;

W
wangliu 已提交
58
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
59
  variable_ptr->SetValue<int>(batch_size);
60 61

  program_desc_ =
Refine  
陈后江 已提交
62
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
63 64
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
C
Chon 已提交
65 66
#if !defined(PADDLE_MOBILE_FPGA) && !defined(PADDLE_MOBILE_FPGA_KD) && \
    !defined(PADDLE_MOBILE_CL)
67
  pass::MemoryOptPass()(program_desc_.get(), program_.scope.get());
68
#endif
69 70 71 72
  // resize feed and fetch list
  // should init feed and fetch variables before infer shape
  InitFeedFetchList();
  const auto &blocks = program_desc_->Blocks();
73 74 75 76 77 78 79 80
  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
81
        op_desc->GetAttrMap(), program_.scope.get());
82 83 84 85
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
86
    }
87
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
88
  }
89 90 91
#ifdef PADDLE_MOBILE_FPGA_V2
  InitQuantMemory();
#endif
W
wangliu 已提交
92
  if (program_.combined) {
L
liuruilong 已提交
93 94 95 96
    InitCombineMemory();
  } else {
    InitMemory();
  }
97
  int count = 0;
98 99 100
  for (auto &op_handler : ops_of_block0_) {
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
    op_handler->Init();
L
liuruilong 已提交
101
  }
W
wangliu 已提交
102 103
}

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

131
template <typename T>
132
static void LoadMemInternal(void **data, LoDTensor *tensor,
133
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
134
  char **data_buf = reinterpret_cast<char **>(data);
135
  int64_t size = tensor->numel();
136
  T *tensor_data = tensor->mutable_data<T>();
137 138
  if (quant_uint8) {
    // should be moved into operator init function
139 140
    float min_value;
    float max_value;
141 142 143
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
144
    const float factor = (max_value - min_value) / 255.0;
145
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
146 147
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
148
    }
149
    *data_buf += size * sizeof(uint8_t);
150
  } else {
151 152
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
153
  }
154
}
W
wangliu 已提交
155

156 157 158 159
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
160
  char **data_buf = reinterpret_cast<char **>(data);
161
  // version
162
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
163
  *data_buf += sizeof(uint32_t);
164
  // lod information
H
hjchen2 已提交
165 166
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
167
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
168
  *data_buf += sizeof(uint64_t);
169 170 171 172

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
173
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
174
    *data_buf += sizeof(uint64_t);
175
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
176
    memory::Copy(tmp_dim.data(), *data_buf, size);
177
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
178
    *data_buf += size;
W
wangliu 已提交
179
  }
180
  // tensor version
181
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
182
  *data_buf += sizeof(uint32_t);
183
  // tensor desc size
184
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
185
  *data_buf += sizeof(int32_t);
186
  // skip tensor desc
Refine  
陈后江 已提交
187
  *data_buf += tensor_desc_size;
188

189 190
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
191 192
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
193
    case VARTYPE_TYPE_FP32:
194 195
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
196
      break;
197
    case VARTYPE_TYPE_INT8:
198
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
199
      break;
200
    case VARTYPE_TYPE_INT32:
201
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
202 203
      break;
    default:
204
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
205
  }
W
wangliu 已提交
206 207
}

208 209 210
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
211 212 213 214
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
215
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
216 217
          continue;
        }
H
hjchen2 已提交
218
        DLOG << "init persistable var: " << var_desc->Name();
Refine  
陈后江 已提交
219
        char *origin_data =
Refine  
陈后江 已提交
220
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
221
        char *data = origin_data;
H
update  
hjchen2 已提交
222
        auto tensor = var->template GetMutable<LoDTensor>();
223 224
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
225
      } else {
226
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
227
        varInputMemory(var_desc, var);
W
wangliu 已提交
228 229 230 231 232
      }
    }
  }
}

233 234
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
235
  char *origin_data = nullptr;
Refine  
陈后江 已提交
236
  bool self_alloc = false;
237
  if (program_.combined_params_buf && program_.combined_params_len) {
238 239
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
240
  } else {
Refine  
陈后江 已提交
241
    self_alloc = true;
Refine  
陈后江 已提交
242
    origin_data = ReadFileToBuff(program_.para_path);
243
  }
Refine  
陈后江 已提交
244 245
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
246
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
247 248 249 250
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
251
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
252 253
          continue;
        }
L
liuruilong 已提交
254 255

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
256
        auto tensor = var->template GetMutable<LoDTensor>();
257
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
258
      } else {
H
update  
hjchen2 已提交
259 260
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
261 262 263
      }
    }
  }
Refine  
陈后江 已提交
264
  if (self_alloc) {
265
    delete[] origin_data;
Refine  
陈后江 已提交
266 267
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
268
}
269

C
Chon 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283
static void ClearNoPersistableTensorArray(const framework::ProgramDesc *program,
                                          framework::Scope *scope) {
  for (const auto &block : program->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      if (!var_desc->Persistable() &&
          var_desc->Type() == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
        auto var = scope->Var(var_desc->Name());
        auto array = var->template GetMutable<framework::LoDTensorArray>();
        array->resize(1);
      }
    }
  }
}

L
liuruilong 已提交
284
template <typename Device, typename T>
L
liuruilong 已提交
285
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
L
liuruilong 已提交
286 287 288 289 290 291
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      auto tensor = var->template GetMutable<LoDTensor>();
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
292
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
293 294 295 296 297
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
298 299 300 301
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
L
liuruilong 已提交
302
          tensor->template mutable_data<T>();
H
update  
hjchen2 已提交
303 304 305
        } else {
          PADDLE_MOBILE_THROW_EXCEPTION("Unsupported var type `%d`",
                                        var_desc->Type());
L
liuruilong 已提交
306 307 308 309 310 311 312 313 314 315
        }
      }
    }
  }

  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<T>();
}

316 317
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
318
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
319
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
320
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
321 322 323
#ifdef PADDLE_MOBILE_FPGA_V2
  tensor->init(type_id<int8_t>().hash_code());
#else
324
  tensor->init(type_id<float>().hash_code());
325
#endif
326 327
  return true;
#endif
H
update  
hjchen2 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
341
  }
H
update  
hjchen2 已提交
342
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
343
}
L
liuruilong 已提交
344

345 346 347 348 349
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
350
  }
351 352 353 354 355 356 357 358
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
359
  }
360
  return this->Predict();
W
wangliu 已提交
361
}
xiebaiyuan's avatar
xiebaiyuan 已提交
362

363 364 365
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
366 367 368 369 370 371 372
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
373
  Tensor feed_tensor(input, make_ddim(dims));
374
  SetInput(feed_tensor, input_name);
375 376
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
377 378
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
379 380 381 382 383 384
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
385

386 387 388
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
389
  int index = 0;
390
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
391
    index = feed_indices_.find(var_name)->second;
392
  }
H
hjchen2 已提交
393 394 395 396 397 398
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
399
}
xiebaiyuan's avatar
xiebaiyuan 已提交
400

401 402 403
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
404
  int index = 0;
405
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
406
    index = feed_indices_.find(var_name)->second;
407
  }
H
hjchen2 已提交
408 409 410 411 412 413 414
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
415 416 417 418 419
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
420 421 422 423 424 425 426 427 428
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
429

430 431 432 433 434 435 436
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
437
}
xiebaiyuan's avatar
xiebaiyuan 已提交
438

439 440
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
441 442 443
#if _OPENMP
  omp_set_num_threads(get_global_num_threads());
#endif
444 445 446 447
  // clear all no persistable tensor array since write_to_array
  // is always push back a new tensor in the array
  ClearNoPersistableTensorArray(program_desc_.get(), program_.scope.get());

xiebaiyuan's avatar
xiebaiyuan 已提交
448
#ifdef PADDLE_MOBILE_PROFILE
449
  std::vector<ProfInfo> profile(ops_of_block0_.size());
450 451
  struct timespec ts;
  int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
452
#endif
453
  for (auto &op_handler : ops_of_block0_) {
xiebaiyuan's avatar
xiebaiyuan 已提交
454
#ifdef PADDLE_MOBILE_PROFILE
455 456
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
457
#endif
H
hjchen2 已提交
458
    DLOG << "run op: " << op_handler->Type();
459 460 461 462
    if (lod_mode_) {
      op_handler->InferShape();
    }
    op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
463
#ifdef PADDLE_MOBILE_PROFILE
464 465 466
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
467 468 469 470 471 472 473
#endif
  }
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
474 475 476
    if (ops_of_block0_[i]->Type() == "conv2d" ||
        ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = ops_of_block0_[i]->Inputs();
477 478
      auto *filter =
          GetVarValue<LoDTensor>("Filter", inputs, *(program_.scope));
479
      int kernel_size = filter->dims()[2];
480 481
      _tp[ops_of_block0_[i]->Type() + "_" + std::to_string(kernel_size)] +=
          timeCost;
482
    } else {
483
      _tp[ops_of_block0_[i]->Type()] += timeCost;
484
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
485
  }
H
hjchen2 已提交
486
  printf("====================[ profile ]======================\n");
487
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
503
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
504
#endif
505
  return PMSuccess;
xiebaiyuan's avatar
xiebaiyuan 已提交
506 507
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
template <typename Device, typename T>
void Executor<Device, T>::FeedTensorData(const vector<framework::Tensor> &v) {
  auto input_size = v.size();
  auto *feed_var = program_.scope->Var("feed");

  PADDLE_MOBILE_ENFORCE(input_size == feed_indices_.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
    framework::LoDTensor &target =
        feed_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    target.ShareDataWith(v[input_size - i - 1]);
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
  auto *fetch_var = program_.scope->Var("fetch");
  auto output_size = fetch_indices_.size();
  for (int i = 0; i < output_size; i++) {
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(i);
    v->push_back(&target);
  }
}

534
#ifdef PADDLE_MOBILE_FPGA
535 536 537 538
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
539
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
540 541
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
542
}
543

544 545
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
546
  InjectVariable(t, "feed0");
547
}
548

549
template <typename Device, typename T>
550
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
551
  auto input_size = v.size();
Z
zhangyang0701 已提交
552 553
  int index = 0;
  auto vars = program_.scope->VarContain("feed", &index);
554 555 556
  PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
557
    auto var = program_.scope->Var("feed", i + index);
558 559 560 561 562 563 564 565 566
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
567 568
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
569 570
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
571

572
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
573
    auto var = program_.scope->Var("fetch", i + index);
574 575
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
576
  }
577
}
578

579
template <typename Device, typename T>
580 581 582 583
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
584
}
585

586 587
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
588
  auto &ops = ops_of_block0_;
589

Z
zhangyang 已提交
590 591 592 593 594
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
595 596 597
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
598
}
599

600 601
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
602
  auto &ops = ops_of_block0_;
603
  end = end < 0 ? static_cast<int>(ops.size()) : end;
604 605 606 607 608 609 610 611 612 613 614 615
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
616
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
617 618 619 620 621 622 623
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
624
}
625

626 627
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
628
  Predict_From_To(start);
629
}
630

631 632
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
633
  Predict_From_To(0, end);
634
}
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
#ifdef PADDLE_MOBILE_FPGA_V2
std::map<std::string, float> LoadQuantValFromFile(std::string filename) {
  std::map<std::string, float> quantValList;
  std::ifstream in;
  in.open(filename, std::ios::in);
  if (!in.is_open()) {
    std::cout << "open File Failed." << std::endl;
    exit(-1);
  }

  std::string line;
  while (getline(in, line)) {
    std::string splitStr = " : ";
    std::string::size_type pos;
    pos = line.find(splitStr);
    std::string subStr[2];
    subStr[0] = line.substr(0, pos);
    subStr[1] = line.substr(pos + splitStr.size(), line.size());
    quantValList.insert(std::make_pair(subStr[0], atof(subStr[1].c_str())));
  }
  in.close();
  return quantValList;
}
658

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
template <typename Device, typename T>
void Executor<Device, T>::InitQuantMemory() {
  std::string quantValFilePath;
  if (program_.combined) {
    quantValFilePath = program_.para_path;
    quantValFilePath =
        quantValFilePath.substr(0, (quantValFilePath.length() - 6));
    quantValFilePath = quantValFilePath + "scale";
  } else {
    quantValFilePath = program_.model_path + "/scale";
  }
  std::map<std::string, float> quantValList =
      LoadQuantValFromFile(quantValFilePath);
  auto ops = ops_of_block0_;
  for (int id = 0; id < ops.size(); id++) {
    auto op = ops[id];
    auto input_keys = op->GetInputKeys();
    auto inputs = op->Inputs();
    for (auto key = input_keys.begin(); key != input_keys.end(); key++) {
      auto inputs_vars = inputs[*key];
      int count = inputs_vars.size();
      for (int i = 0; i < count; i++) {
        auto tensor = GetTensorByName(inputs_vars[i]);
        tensor->scale[0] = quantValList[inputs_vars[i]];
683 684
        DLOG << "input variance name : " << inputs_vars[i]
             << ", scale value : " << tensor->scale[0];
685 686 687 688 689 690 691 692 693 694
      }
    }
    auto output_keys = op->GetOutKeys();
    auto outputs = op->Outputs();
    for (auto key = output_keys.begin(); key != output_keys.end(); key++) {
      auto outputs_vars = outputs[*key];
      int count = outputs_vars.size();
      for (int i = 0; i < count; i++) {
        auto tensor = GetTensorByName(outputs_vars[i]);
        tensor->scale[0] = quantValList[outputs_vars[i]];
695 696
        DLOG << "output variance name : " << outputs_vars[i]
             << ", scale value : " << tensor->scale[0];
697 698 699 700 701 702
      }
    }
  }
}
#endif
#endif
Y
yangfei 已提交
703
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
704 705
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
706
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      auto cl_image = var->template GetMutable<CLImage>();

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
H
hjchen2 已提交
738

xiebaiyuan's avatar
xiebaiyuan 已提交
739 740 741
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
H
hjchen2 已提交
742 743 744 745 746 747 748
  int index = 0;
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
    index = feed_indices_.find(var_name)->second;
  }
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor *target_tensor =
      &(feed_var->template GetMutable<framework::LoDTensorArray>()->at(index));
xiebaiyuan's avatar
xiebaiyuan 已提交
749 750 751 752 753

  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
  DLOG << "target_tensor->IsInitialized() " << target_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << target_tensor->dims();
  DLOG << "input.dims()   " << input.dims();
754
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
755
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
756
    if (input_dim_last_ != input.dims()) {
757 758 759
      DLOG << "SetInput ---- > resize1";
      target_tensor->Resize(input.dims());
      target_tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
760 761 762 763 764 765 766 767
      InitNoPersistableMemory(*target_tensor);
    }
  } else {
    DLOG << "SetInput ---- > resize2";
    target_tensor->Resize(input.dims());
    DLOG << "SetInput ---- > ShareDataWith";
  }
  target_tensor->ShareDataWith(input);
768 769
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
770 771
}

772 773 774
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
775

Y
yangfei 已提交
776
template <>
H
hjchen2 已提交
777 778
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

816
  const TensorDesc &desc = var_desc.Tensor_desc();
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
851

Y
yangfei 已提交
852
template <>
853 854
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
855 856 857
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
858
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
859
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
860
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
861
          continue;
L
liuruilong 已提交
862
        } else {
863
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
864
        }
L
liuruilong 已提交
865

Y
yangfei 已提交
866
        char *origin_data =
L
liuruilong 已提交
867
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
868
        char *data = origin_data;
Y
yangfei 已提交
869
        cl_context context = program_.scope->GetCLScpoe()->Context();
870
        const TensorDesc &desc = var_desc->Tensor_desc();
871 872 873 874 875
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
876
        float *tensorInput = static_cast<float *>(
877 878
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
879

880
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
881

L
liuruilong 已提交
882 883
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
884

885
        delete origin_data;
Y
yangfei 已提交
886
        paddle_mobile::memory::Free(tensorInput);
887
      } else {
888 889
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
890
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
891 892
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
893

894 895 896
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
897
          DLOG << var_desc->Name();
L
liuruilong 已提交
898
          cl_image->InitEmptyImage(context, command_queue, ddim);
899
        }
Y
yangfei 已提交
900 901 902 903
      }
    }
  }
}
904

Y
yangfei 已提交
905
template <>
906
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
907 908
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
909 910
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
911 912
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
913
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
Y
yangfei 已提交
914 915
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
916
    self_alloc = true;
L
liuruilong 已提交
917
    origin_data = ReadFileToBuff(program_.para_path);
Y
yangfei 已提交
918 919
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
920
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
921

922
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
923 924 925
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
926
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
927
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
hjchen2 已提交
928
          var->template GetMutable<framework::LoDTensorArray>();
Y
yangfei 已提交
929
          continue;
L
liuruilong 已提交
930
        } else {
931
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
932 933 934 935
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

936 937
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
938 939 940 941 942

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
943 944 945
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
946 947 948 949

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

950 951
        paddle_mobile::memory::Free(tensorInput);
      } else {
952
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
953
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
954 955
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
956 957 958
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
959
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
960 961 962
      }
    }
  }
Y
yangfei 已提交
963
  if (self_alloc) {
964
    delete data;
Y
yangfei 已提交
965
  }
Y
yangfei 已提交
966
  LOG(kLOG_INFO) << " end init combine memory ";
967
}
Y
yangfei 已提交
968 969 970

#endif

971
template class Executor<CPU, float>;
Y
yangfei 已提交
972

973
template class Executor<FPGA, float>;
W
wangliu 已提交
974

975
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
976

977
template class Executor<GPU_MALI, float>;
Y
yangfei 已提交
978 979

}  // namespace framework
W
wangliu 已提交
980
}  // namespace paddle_mobile