core.c 182.5 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
21
#include <linux/tick.h>
T
Thomas Gleixner 已提交
22
#include <linux/sysfs.h>
23
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
24
#include <linux/percpu.h>
25
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
26
#include <linux/reboot.h>
27
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
28
#include <linux/device.h>
29
#include <linux/export.h>
30
#include <linux/vmalloc.h>
31 32
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
33 34 35
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
36
#include <linux/kernel_stat.h>
37
#include <linux/perf_event.h>
L
Li Zefan 已提交
38
#include <linux/ftrace_event.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/mm_types.h>
41
#include <linux/cgroup.h>
T
Thomas Gleixner 已提交
42

43 44
#include "internal.h"

45 46
#include <asm/irq_regs.h>

47
struct remote_function_call {
48 49 50 51
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
85 86 87 88
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
109 110 111 112
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
113 114 115 116 117 118 119
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
120 121 122 123
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

124 125 126 127 128 129 130
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

131 132 133 134 135 136
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
137 138 139 140
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
141
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
142
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
144

145 146 147
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
148

P
Peter Zijlstra 已提交
149 150 151 152
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

153
/*
154
 * perf event paranoia level:
155 156
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
157
 *   1 - disallow cpu events for unpriv
158
 *   2 - disallow kernel profiling for unpriv
159
 */
160
int sysctl_perf_event_paranoid __read_mostly = 1;
161

162 163
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
164 165

/*
166
 * max perf event sample rate
167
 */
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
#define DEFAULT_MAX_SAMPLE_RATE		100000
#define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
#define DEFAULT_CPU_TIME_MAX_PERCENT	25

int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;

static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;

static atomic_t perf_sample_allowed_ns __read_mostly =
	ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);

void update_perf_cpu_limits(void)
{
	u64 tmp = perf_sample_period_ns;

	tmp *= sysctl_perf_cpu_time_max_percent;
185
	do_div(tmp, 100);
186 187
	atomic_set(&perf_sample_allowed_ns, tmp);
}
P
Peter Zijlstra 已提交
188

189 190
static int perf_rotate_context(struct perf_cpu_context *cpuctx);

P
Peter Zijlstra 已提交
191 192 193 194 195 196 197 198 199 200
int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
	update_perf_cpu_limits();

	return 0;
}

int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;

int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp,
				loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	update_perf_cpu_limits();
P
Peter Zijlstra 已提交
219 220 221

	return 0;
}
222

223 224 225 226 227 228 229 230 231 232 233 234
/*
 * perf samples are done in some very critical code paths (NMIs).
 * If they take too much CPU time, the system can lock up and not
 * get any real work done.  This will drop the sample rate when
 * we detect that events are taking too long.
 */
#define NR_ACCUMULATED_SAMPLES 128
DEFINE_PER_CPU(u64, running_sample_length);

void perf_sample_event_took(u64 sample_len_ns)
{
	u64 avg_local_sample_len;
235
	u64 local_samples_len;
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

	if (atomic_read(&perf_sample_allowed_ns) == 0)
		return;

	/* decay the counter by 1 average sample */
	local_samples_len = __get_cpu_var(running_sample_length);
	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
	local_samples_len += sample_len_ns;
	__get_cpu_var(running_sample_length) = local_samples_len;

	/*
	 * note: this will be biased artifically low until we have
	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
	 * from having to maintain a count.
	 */
	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;

	if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
		return;

	if (max_samples_per_tick <= 1)
		return;

	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;

	printk_ratelimited(KERN_WARNING
			"perf samples too long (%lld > %d), lowering "
			"kernel.perf_event_max_sample_rate to %d\n",
			avg_local_sample_len,
			atomic_read(&perf_sample_allowed_ns),
			sysctl_perf_event_sample_rate);

	update_perf_cpu_limits();
}

273
static atomic64_t perf_event_id;
274

275 276 277 278
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
279 280 281 282 283
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
284

285
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
286

287
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
288
{
289
	return "pmu";
T
Thomas Gleixner 已提交
290 291
}

292 293 294 295 296
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
297 298 299 300 301 302
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
319 320
#ifdef CONFIG_CGROUP_PERF

321 322 323 324 325 326 327 328 329 330 331
/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {
	u64				time;
	u64				timestamp;
};

struct perf_cgroup {
	struct cgroup_subsys_state	css;
332
	struct perf_cgroup_info	__percpu *info;
333 334
};

335 336 337 338 339
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
	/* @event doesn't care about cgroup */
	if (!event->cgrp)
		return true;

	/* wants specific cgroup scope but @cpuctx isn't associated with any */
	if (!cpuctx->cgrp)
		return false;

	/*
	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
	 * also enabled for all its descendant cgroups.  If @cpuctx's
	 * cgroup is a descendant of @event's (the test covers identity
	 * case), it's a match.
	 */
	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
				    event->cgrp->css.cgroup);
S
Stephane Eranian 已提交
369 370
}

371
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
372
{
373
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
422 423
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
424
	/*
425 426
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
427
	 */
428
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
429 430
		return;

431 432 433 434 435 436
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
437 438 439
}

static inline void
440 441
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
442 443 444 445
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

446 447 448 449 450 451
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
452 453 454 455
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
456
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
489 490
		if (cpuctx->unique_pmu != pmu)
			continue; /* ensure we process each cpuctx once */
S
Stephane Eranian 已提交
491 492 493 494 495 496 497 498 499

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
500 501
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
502 503 504 505 506 507 508 509 510 511 512

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
513
				WARN_ON_ONCE(cpuctx->cgrp);
514 515 516 517
				/*
				 * set cgrp before ctxsw in to allow
				 * event_filter_match() to not have to pass
				 * task around
S
Stephane Eranian 已提交
518 519 520 521
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
522 523
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
524 525 526 527 528 529 530 531
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

532 533
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
534
{
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
557 558
}

559 560
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
561
{
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
580 581 582 583 584 585 586 587
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
588 589
	struct fd f = fdget(fd);
	int ret = 0;
S
Stephane Eranian 已提交
590

591
	if (!f.file)
S
Stephane Eranian 已提交
592 593
		return -EBADF;

594
	css = cgroup_css_from_dir(f.file, perf_subsys_id);
595 596 597 598
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
599 600 601 602

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

603
	/* must be done before we fput() the file */
604 605 606 607 608
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
609

S
Stephane Eranian 已提交
610 611 612 613 614 615 616 617 618
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
619
out:
620
	fdput(f);
S
Stephane Eranian 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

694 695
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
696 697 698
{
}

699 700
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
701 702 703 704 705 706 707 708 709 710 711
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
712 713
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
/*
 * set default to be dependent on timer tick just
 * like original code
 */
#define PERF_CPU_HRTIMER (1000 / HZ)
/*
 * function must be called with interrupts disbled
 */
static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
{
	struct perf_cpu_context *cpuctx;
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	int rotations = 0;

	WARN_ON(!irqs_disabled());

	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);

	rotations = perf_rotate_context(cpuctx);

	/*
	 * arm timer if needed
	 */
	if (rotations) {
		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
		ret = HRTIMER_RESTART;
	}

	return ret;
}

/* CPU is going down */
void perf_cpu_hrtimer_cancel(int cpu)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	if (WARN_ON(cpu != smp_processor_id()))
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		if (pmu->task_ctx_nr == perf_sw_context)
			continue;

		hrtimer_cancel(&cpuctx->hrtimer);
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;
807
	int timer;
808 809 810 811 812

	/* no multiplexing needed for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

813 814 815 816 817 818 819 820 821
	/*
	 * check default is sane, if not set then force to
	 * default interval (1/tick)
	 */
	timer = pmu->hrtimer_interval_ms;
	if (timer < 1)
		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;

	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843

	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
	hr->function = perf_cpu_hrtimer_handler;
}

static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
{
	struct hrtimer *hr = &cpuctx->hrtimer;
	struct pmu *pmu = cpuctx->ctx.pmu;

	/* not for SW PMU */
	if (pmu->task_ctx_nr == perf_sw_context)
		return;

	if (hrtimer_active(hr))
		return;

	if (!hrtimer_callback_running(hr))
		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
					 0, HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
844
void perf_pmu_disable(struct pmu *pmu)
845
{
P
Peter Zijlstra 已提交
846 847 848
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
849 850
}

P
Peter Zijlstra 已提交
851
void perf_pmu_enable(struct pmu *pmu)
852
{
P
Peter Zijlstra 已提交
853 854 855
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
856 857
}

858 859 860 861 862 863 864
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
865
static void perf_pmu_rotate_start(struct pmu *pmu)
866
{
P
Peter Zijlstra 已提交
867
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
868
	struct list_head *head = &__get_cpu_var(rotation_list);
869

870
	WARN_ON(!irqs_disabled());
871

872 873
	if (list_empty(&cpuctx->rotation_list)) {
		int was_empty = list_empty(head);
874
		list_add(&cpuctx->rotation_list, head);
875 876 877
		if (was_empty)
			tick_nohz_full_kick();
	}
878 879
}

880
static void get_ctx(struct perf_event_context *ctx)
881
{
882
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
883 884
}

885
static void put_ctx(struct perf_event_context *ctx)
886
{
887 888 889
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
890 891
		if (ctx->task)
			put_task_struct(ctx->task);
892
		kfree_rcu(ctx, rcu_head);
893
	}
894 895
}

896
static void unclone_ctx(struct perf_event_context *ctx)
897 898 899 900 901 902 903
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

926
/*
927
 * If we inherit events we want to return the parent event id
928 929
 * to userspace.
 */
930
static u64 primary_event_id(struct perf_event *event)
931
{
932
	u64 id = event->id;
933

934 935
	if (event->parent)
		id = event->parent->id;
936 937 938 939

	return id;
}

940
/*
941
 * Get the perf_event_context for a task and lock it.
942 943 944
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
945
static struct perf_event_context *
P
Peter Zijlstra 已提交
946
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
947
{
948
	struct perf_event_context *ctx;
949

P
Peter Zijlstra 已提交
950
retry:
951 952 953 954 955 956 957 958 959 960 961
	/*
	 * One of the few rules of preemptible RCU is that one cannot do
	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
	 * part of the read side critical section was preemptible -- see
	 * rcu_read_unlock_special().
	 *
	 * Since ctx->lock nests under rq->lock we must ensure the entire read
	 * side critical section is non-preemptible.
	 */
	preempt_disable();
	rcu_read_lock();
P
Peter Zijlstra 已提交
962
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
963 964 965 966
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
967
		 * perf_event_task_sched_out, though the
968 969 970 971 972 973
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
974
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
975
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
976
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
977 978
			rcu_read_unlock();
			preempt_enable();
979 980
			goto retry;
		}
981 982

		if (!atomic_inc_not_zero(&ctx->refcount)) {
983
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
984 985
			ctx = NULL;
		}
986 987
	}
	rcu_read_unlock();
988
	preempt_enable();
989 990 991 992 993 994 995 996
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
997 998
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
999
{
1000
	struct perf_event_context *ctx;
1001 1002
	unsigned long flags;

P
Peter Zijlstra 已提交
1003
	ctx = perf_lock_task_context(task, ctxn, &flags);
1004 1005
	if (ctx) {
		++ctx->pin_count;
1006
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1007 1008 1009 1010
	}
	return ctx;
}

1011
static void perf_unpin_context(struct perf_event_context *ctx)
1012 1013 1014
{
	unsigned long flags;

1015
	raw_spin_lock_irqsave(&ctx->lock, flags);
1016
	--ctx->pin_count;
1017
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1018 1019
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

1031 1032 1033
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
1034 1035 1036 1037

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

1038 1039 1040
	return ctx ? ctx->time : 0;
}

1041 1042
/*
 * Update the total_time_enabled and total_time_running fields for a event.
1043
 * The caller of this function needs to hold the ctx->lock.
1044 1045 1046 1047 1048 1049 1050 1051 1052
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
1064
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
1065 1066
	else if (ctx->is_active)
		run_end = ctx->time;
1067 1068 1069 1070
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
1071 1072 1073 1074

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
1075
		run_end = perf_event_time(event);
1076 1077

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
1078

1079 1080
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

1093 1094 1095 1096 1097 1098 1099 1100 1101
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

1102
/*
1103
 * Add a event from the lists for its context.
1104 1105
 * Must be called with ctx->mutex and ctx->lock held.
 */
1106
static void
1107
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1108
{
1109 1110
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
1111 1112

	/*
1113 1114 1115
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
1116
	 */
1117
	if (event->group_leader == event) {
1118 1119
		struct list_head *list;

1120 1121 1122
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

1123 1124
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
1125
	}
P
Peter Zijlstra 已提交
1126

1127
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
1128 1129
		ctx->nr_cgroups++;

1130 1131 1132
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

1133
	list_add_rcu(&event->event_entry, &ctx->event_list);
1134
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
1135
		perf_pmu_rotate_start(ctx->pmu);
1136 1137
	ctx->nr_events++;
	if (event->attr.inherit_stat)
1138
		ctx->nr_stat++;
1139 1140
}

J
Jiri Olsa 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149
/*
 * Initialize event state based on the perf_event_attr::disabled.
 */
static inline void perf_event__state_init(struct perf_event *event)
{
	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
					      PERF_EVENT_STATE_INACTIVE;
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

1189 1190 1191 1192 1193 1194
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

A
Andi Kleen 已提交
1195 1196 1197
	if (sample_type & PERF_SAMPLE_WEIGHT)
		size += sizeof(data->weight);

1198 1199 1200
	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

1201 1202 1203
	if (sample_type & PERF_SAMPLE_DATA_SRC)
		size += sizeof(data->data_src.val);

1204 1205 1206 1207 1208 1209 1210 1211 1212
	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

1228
	event->id_header_size = size;
1229 1230
}

1231 1232
static void perf_group_attach(struct perf_event *event)
{
1233
	struct perf_event *group_leader = event->group_leader, *pos;
1234

P
Peter Zijlstra 已提交
1235 1236 1237 1238 1239 1240
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1252 1253 1254 1255 1256

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1257 1258
}

1259
/*
1260
 * Remove a event from the lists for its context.
1261
 * Must be called with ctx->mutex and ctx->lock held.
1262
 */
1263
static void
1264
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1265
{
1266
	struct perf_cpu_context *cpuctx;
1267 1268 1269 1270
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1271
		return;
1272 1273 1274

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1275
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1276
		ctx->nr_cgroups--;
1277 1278 1279 1280 1281 1282 1283 1284 1285
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1286

1287 1288 1289
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1290 1291
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1292
		ctx->nr_stat--;
1293

1294
	list_del_rcu(&event->event_entry);
1295

1296 1297
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1298

1299
	update_group_times(event);
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1310 1311
}

1312
static void perf_group_detach(struct perf_event *event)
1313 1314
{
	struct perf_event *sibling, *tmp;
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1331
		goto out;
1332 1333 1334 1335
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1336

1337
	/*
1338 1339
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1340
	 * to whatever list we are on.
1341
	 */
1342
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1343 1344
		if (list)
			list_move_tail(&sibling->group_entry, list);
1345
		sibling->group_leader = sibling;
1346 1347 1348

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1349
	}
1350 1351 1352 1353 1354 1355

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1356 1357
}

1358 1359 1360
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1361 1362
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1363 1364
}

1365 1366
static void
event_sched_out(struct perf_event *event,
1367
		  struct perf_cpu_context *cpuctx,
1368
		  struct perf_event_context *ctx)
1369
{
1370
	u64 tstamp = perf_event_time(event);
1371 1372 1373 1374 1375 1376 1377 1378 1379
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1380
		delta = tstamp - event->tstamp_stopped;
1381
		event->tstamp_running += delta;
1382
		event->tstamp_stopped = tstamp;
1383 1384
	}

1385
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1386
		return;
1387

1388 1389 1390 1391
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1392
	}
1393
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1394
	event->pmu->del(event, 0);
1395
	event->oncpu = -1;
1396

1397
	if (!is_software_event(event))
1398 1399
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1400 1401
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1402
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1403 1404 1405
		cpuctx->exclusive = 0;
}

1406
static void
1407
group_sched_out(struct perf_event *group_event,
1408
		struct perf_cpu_context *cpuctx,
1409
		struct perf_event_context *ctx)
1410
{
1411
	struct perf_event *event;
1412
	int state = group_event->state;
1413

1414
	event_sched_out(group_event, cpuctx, ctx);
1415 1416 1417 1418

	/*
	 * Schedule out siblings (if any):
	 */
1419 1420
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1421

1422
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1423 1424 1425
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1426
/*
1427
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1428
 *
1429
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1430 1431
 * remove it from the context list.
 */
1432
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1433
{
1434 1435
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1436
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1437

1438
	raw_spin_lock(&ctx->lock);
1439 1440
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1441 1442 1443 1444
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1445
	raw_spin_unlock(&ctx->lock);
1446 1447

	return 0;
T
Thomas Gleixner 已提交
1448 1449 1450 1451
}


/*
1452
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1453
 *
1454
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1455
 * call when the task is on a CPU.
1456
 *
1457 1458
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1459 1460
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1461
 * When called from perf_event_exit_task, it's OK because the
1462
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1463
 */
1464
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1465
{
1466
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1467 1468
	struct task_struct *task = ctx->task;

1469 1470
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1471 1472
	if (!task) {
		/*
1473
		 * Per cpu events are removed via an smp call and
1474
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1475
		 */
1476
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1477 1478 1479 1480
		return;
	}

retry:
1481 1482
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1483

1484
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1485
	/*
1486 1487
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1488
	 */
1489
	if (ctx->is_active) {
1490
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1491 1492 1493 1494
		goto retry;
	}

	/*
1495 1496
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1497
	 */
1498
	list_del_event(event, ctx);
1499
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1500 1501
}

1502
/*
1503
 * Cross CPU call to disable a performance event
1504
 */
1505
int __perf_event_disable(void *info)
1506
{
1507 1508
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1509
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1510 1511

	/*
1512 1513
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1514 1515 1516
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1517
	 */
1518
	if (ctx->task && cpuctx->task_ctx != ctx)
1519
		return -EINVAL;
1520

1521
	raw_spin_lock(&ctx->lock);
1522 1523

	/*
1524
	 * If the event is on, turn it off.
1525 1526
	 * If it is in error state, leave it in error state.
	 */
1527
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1528
		update_context_time(ctx);
S
Stephane Eranian 已提交
1529
		update_cgrp_time_from_event(event);
1530 1531 1532
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1533
		else
1534 1535
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1536 1537
	}

1538
	raw_spin_unlock(&ctx->lock);
1539 1540

	return 0;
1541 1542 1543
}

/*
1544
 * Disable a event.
1545
 *
1546 1547
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1548
 * remains valid.  This condition is satisifed when called through
1549 1550 1551 1552
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1553
 * is the current context on this CPU and preemption is disabled,
1554
 * hence we can't get into perf_event_task_sched_out for this context.
1555
 */
1556
void perf_event_disable(struct perf_event *event)
1557
{
1558
	struct perf_event_context *ctx = event->ctx;
1559 1560 1561 1562
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1563
		 * Disable the event on the cpu that it's on
1564
		 */
1565
		cpu_function_call(event->cpu, __perf_event_disable, event);
1566 1567 1568
		return;
	}

P
Peter Zijlstra 已提交
1569
retry:
1570 1571
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1572

1573
	raw_spin_lock_irq(&ctx->lock);
1574
	/*
1575
	 * If the event is still active, we need to retry the cross-call.
1576
	 */
1577
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1578
		raw_spin_unlock_irq(&ctx->lock);
1579 1580 1581 1582 1583
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1584 1585 1586 1587 1588 1589 1590
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1591 1592 1593
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1594
	}
1595
	raw_spin_unlock_irq(&ctx->lock);
1596
}
1597
EXPORT_SYMBOL_GPL(perf_event_disable);
1598

S
Stephane Eranian 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1634 1635 1636 1637
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1638
static int
1639
event_sched_in(struct perf_event *event,
1640
		 struct perf_cpu_context *cpuctx,
1641
		 struct perf_event_context *ctx)
1642
{
1643 1644
	u64 tstamp = perf_event_time(event);

1645
	if (event->state <= PERF_EVENT_STATE_OFF)
1646 1647
		return 0;

1648
	event->state = PERF_EVENT_STATE_ACTIVE;
1649
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1661 1662 1663 1664 1665
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1666
	if (event->pmu->add(event, PERF_EF_START)) {
1667 1668
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1669 1670 1671
		return -EAGAIN;
	}

1672
	event->tstamp_running += tstamp - event->tstamp_stopped;
1673

S
Stephane Eranian 已提交
1674
	perf_set_shadow_time(event, ctx, tstamp);
1675

1676
	if (!is_software_event(event))
1677
		cpuctx->active_oncpu++;
1678
	ctx->nr_active++;
1679 1680
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1681

1682
	if (event->attr.exclusive)
1683 1684
		cpuctx->exclusive = 1;

1685 1686 1687
	return 0;
}

1688
static int
1689
group_sched_in(struct perf_event *group_event,
1690
	       struct perf_cpu_context *cpuctx,
1691
	       struct perf_event_context *ctx)
1692
{
1693
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1694
	struct pmu *pmu = group_event->pmu;
1695 1696
	u64 now = ctx->time;
	bool simulate = false;
1697

1698
	if (group_event->state == PERF_EVENT_STATE_OFF)
1699 1700
		return 0;

P
Peter Zijlstra 已提交
1701
	pmu->start_txn(pmu);
1702

1703
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1704
		pmu->cancel_txn(pmu);
1705
		perf_cpu_hrtimer_restart(cpuctx);
1706
		return -EAGAIN;
1707
	}
1708 1709 1710 1711

	/*
	 * Schedule in siblings as one group (if any):
	 */
1712
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1713
		if (event_sched_in(event, cpuctx, ctx)) {
1714
			partial_group = event;
1715 1716 1717 1718
			goto group_error;
		}
	}

1719
	if (!pmu->commit_txn(pmu))
1720
		return 0;
1721

1722 1723 1724 1725
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1736
	 */
1737 1738
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1739 1740 1741 1742 1743 1744 1745 1746
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1747
	}
1748
	event_sched_out(group_event, cpuctx, ctx);
1749

P
Peter Zijlstra 已提交
1750
	pmu->cancel_txn(pmu);
1751

1752 1753
	perf_cpu_hrtimer_restart(cpuctx);

1754 1755 1756
	return -EAGAIN;
}

1757
/*
1758
 * Work out whether we can put this event group on the CPU now.
1759
 */
1760
static int group_can_go_on(struct perf_event *event,
1761 1762 1763 1764
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1765
	 * Groups consisting entirely of software events can always go on.
1766
	 */
1767
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1768 1769 1770
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1771
	 * events can go on.
1772 1773 1774 1775 1776
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1777
	 * events on the CPU, it can't go on.
1778
	 */
1779
	if (event->attr.exclusive && cpuctx->active_oncpu)
1780 1781 1782 1783 1784 1785 1786 1787
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1788 1789
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1790
{
1791 1792
	u64 tstamp = perf_event_time(event);

1793
	list_add_event(event, ctx);
1794
	perf_group_attach(event);
1795 1796 1797
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1798 1799
}

1800 1801 1802 1803 1804 1805
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1806

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1819
/*
1820
 * Cross CPU call to install and enable a performance event
1821 1822
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1823
 */
1824
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1825
{
1826 1827
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1828
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1829 1830 1831
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1832
	perf_ctx_lock(cpuctx, task_ctx);
1833
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1834 1835

	/*
1836
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1837
	 */
1838
	if (task_ctx)
1839
		task_ctx_sched_out(task_ctx);
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1854 1855
		task = task_ctx->task;
	}
1856

1857
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1858

1859
	update_context_time(ctx);
S
Stephane Eranian 已提交
1860 1861 1862 1863 1864 1865
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1866

1867
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1868

1869
	/*
1870
	 * Schedule everything back in
1871
	 */
1872
	perf_event_sched_in(cpuctx, task_ctx, task);
1873 1874 1875

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1876 1877

	return 0;
T
Thomas Gleixner 已提交
1878 1879 1880
}

/*
1881
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1882
 *
1883 1884
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1885
 *
1886
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1887 1888 1889 1890
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1891 1892
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1893 1894 1895 1896
			int cpu)
{
	struct task_struct *task = ctx->task;

1897 1898
	lockdep_assert_held(&ctx->mutex);

1899
	event->ctx = ctx;
1900 1901
	if (event->cpu != -1)
		event->cpu = cpu;
1902

T
Thomas Gleixner 已提交
1903 1904
	if (!task) {
		/*
1905
		 * Per cpu events are installed via an smp call and
1906
		 * the install is always successful.
T
Thomas Gleixner 已提交
1907
		 */
1908
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1909 1910 1911 1912
		return;
	}

retry:
1913 1914
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1915

1916
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1917
	/*
1918 1919
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1920
	 */
1921
	if (ctx->is_active) {
1922
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1923 1924 1925 1926
		goto retry;
	}

	/*
1927 1928
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1929
	 */
1930
	add_event_to_ctx(event, ctx);
1931
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1932 1933
}

1934
/*
1935
 * Put a event into inactive state and update time fields.
1936 1937 1938 1939 1940 1941
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1942
static void __perf_event_mark_enabled(struct perf_event *event)
1943
{
1944
	struct perf_event *sub;
1945
	u64 tstamp = perf_event_time(event);
1946

1947
	event->state = PERF_EVENT_STATE_INACTIVE;
1948
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1949
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1950 1951
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1952
	}
1953 1954
}

1955
/*
1956
 * Cross CPU call to enable a performance event
1957
 */
1958
static int __perf_event_enable(void *info)
1959
{
1960 1961 1962
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1963
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1964
	int err;
1965

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	/*
	 * There's a time window between 'ctx->is_active' check
	 * in perf_event_enable function and this place having:
	 *   - IRQs on
	 *   - ctx->lock unlocked
	 *
	 * where the task could be killed and 'ctx' deactivated
	 * by perf_event_exit_task.
	 */
	if (!ctx->is_active)
1976
		return -EINVAL;
1977

1978
	raw_spin_lock(&ctx->lock);
1979
	update_context_time(ctx);
1980

1981
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1982
		goto unlock;
S
Stephane Eranian 已提交
1983 1984 1985 1986

	/*
	 * set current task's cgroup time reference point
	 */
1987
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1988

1989
	__perf_event_mark_enabled(event);
1990

S
Stephane Eranian 已提交
1991 1992 1993
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1994
		goto unlock;
S
Stephane Eranian 已提交
1995
	}
1996

1997
	/*
1998
	 * If the event is in a group and isn't the group leader,
1999
	 * then don't put it on unless the group is on.
2000
	 */
2001
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2002
		goto unlock;
2003

2004
	if (!group_can_go_on(event, cpuctx, 1)) {
2005
		err = -EEXIST;
2006
	} else {
2007
		if (event == leader)
2008
			err = group_sched_in(event, cpuctx, ctx);
2009
		else
2010
			err = event_sched_in(event, cpuctx, ctx);
2011
	}
2012 2013 2014

	if (err) {
		/*
2015
		 * If this event can't go on and it's part of a
2016 2017
		 * group, then the whole group has to come off.
		 */
2018
		if (leader != event) {
2019
			group_sched_out(leader, cpuctx, ctx);
2020 2021
			perf_cpu_hrtimer_restart(cpuctx);
		}
2022
		if (leader->attr.pinned) {
2023
			update_group_times(leader);
2024
			leader->state = PERF_EVENT_STATE_ERROR;
2025
		}
2026 2027
	}

P
Peter Zijlstra 已提交
2028
unlock:
2029
	raw_spin_unlock(&ctx->lock);
2030 2031

	return 0;
2032 2033 2034
}

/*
2035
 * Enable a event.
2036
 *
2037 2038
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
2039
 * remains valid.  This condition is satisfied when called through
2040 2041
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
2042
 */
2043
void perf_event_enable(struct perf_event *event)
2044
{
2045
	struct perf_event_context *ctx = event->ctx;
2046 2047 2048 2049
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
2050
		 * Enable the event on the cpu that it's on
2051
		 */
2052
		cpu_function_call(event->cpu, __perf_event_enable, event);
2053 2054 2055
		return;
	}

2056
	raw_spin_lock_irq(&ctx->lock);
2057
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2058 2059 2060
		goto out;

	/*
2061 2062
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
2063 2064 2065 2066
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
2067 2068
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
2069

P
Peter Zijlstra 已提交
2070
retry:
2071
	if (!ctx->is_active) {
2072
		__perf_event_mark_enabled(event);
2073 2074 2075
		goto out;
	}

2076
	raw_spin_unlock_irq(&ctx->lock);
2077 2078 2079

	if (!task_function_call(task, __perf_event_enable, event))
		return;
2080

2081
	raw_spin_lock_irq(&ctx->lock);
2082 2083

	/*
2084
	 * If the context is active and the event is still off,
2085 2086
	 * we need to retry the cross-call.
	 */
2087 2088 2089 2090 2091 2092
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
2093
		goto retry;
2094
	}
2095

P
Peter Zijlstra 已提交
2096
out:
2097
	raw_spin_unlock_irq(&ctx->lock);
2098
}
2099
EXPORT_SYMBOL_GPL(perf_event_enable);
2100

2101
int perf_event_refresh(struct perf_event *event, int refresh)
2102
{
2103
	/*
2104
	 * not supported on inherited events
2105
	 */
2106
	if (event->attr.inherit || !is_sampling_event(event))
2107 2108
		return -EINVAL;

2109 2110
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
2111 2112

	return 0;
2113
}
2114
EXPORT_SYMBOL_GPL(perf_event_refresh);
2115

2116 2117 2118
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
2119
{
2120
	struct perf_event *event;
2121
	int is_active = ctx->is_active;
2122

2123
	ctx->is_active &= ~event_type;
2124
	if (likely(!ctx->nr_events))
2125 2126
		return;

2127
	update_context_time(ctx);
S
Stephane Eranian 已提交
2128
	update_cgrp_time_from_cpuctx(cpuctx);
2129
	if (!ctx->nr_active)
2130
		return;
2131

P
Peter Zijlstra 已提交
2132
	perf_pmu_disable(ctx->pmu);
2133
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2134 2135
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2136
	}
2137

2138
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2139
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2140
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
2141
	}
P
Peter Zijlstra 已提交
2142
	perf_pmu_enable(ctx->pmu);
2143 2144
}

2145 2146 2147
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
2148 2149 2150 2151
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
2152
 * in them directly with an fd; we can only enable/disable all
2153
 * events via prctl, or enable/disable all events in a family
2154 2155
 * via ioctl, which will have the same effect on both contexts.
 */
2156 2157
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
2158 2159
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2160
		&& ctx1->parent_gen == ctx2->parent_gen
2161
		&& !ctx1->pin_count && !ctx2->pin_count;
2162 2163
}

2164 2165
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
2166 2167 2168
{
	u64 value;

2169
	if (!event->attr.inherit_stat)
2170 2171 2172
		return;

	/*
2173
	 * Update the event value, we cannot use perf_event_read()
2174 2175
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
2176
	 * we know the event must be on the current CPU, therefore we
2177 2178
	 * don't need to use it.
	 */
2179 2180
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
2181 2182
		event->pmu->read(event);
		/* fall-through */
2183

2184 2185
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
2186 2187 2188 2189 2190 2191 2192
		break;

	default:
		break;
	}

	/*
2193
	 * In order to keep per-task stats reliable we need to flip the event
2194 2195
	 * values when we flip the contexts.
	 */
2196 2197 2198
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
2199

2200 2201
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
2202

2203
	/*
2204
	 * Since we swizzled the values, update the user visible data too.
2205
	 */
2206 2207
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
2208 2209 2210 2211 2212
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

2213 2214
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
2215
{
2216
	struct perf_event *event, *next_event;
2217 2218 2219 2220

	if (!ctx->nr_stat)
		return;

2221 2222
	update_context_time(ctx);

2223 2224
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
2225

2226 2227
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
2228

2229 2230
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
2231

2232
		__perf_event_sync_stat(event, next_event);
2233

2234 2235
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
2236 2237 2238
	}
}

2239 2240
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
2241
{
P
Peter Zijlstra 已提交
2242
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2243 2244
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
2245
	struct perf_cpu_context *cpuctx;
2246
	int do_switch = 1;
T
Thomas Gleixner 已提交
2247

P
Peter Zijlstra 已提交
2248 2249
	if (likely(!ctx))
		return;
2250

P
Peter Zijlstra 已提交
2251 2252
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
2253 2254
		return;

2255 2256
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
2257
	next_ctx = next->perf_event_ctxp[ctxn];
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2269 2270
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2271
		if (context_equiv(ctx, next_ctx)) {
2272 2273
			/*
			 * XXX do we need a memory barrier of sorts
2274
			 * wrt to rcu_dereference() of perf_event_ctxp
2275
			 */
P
Peter Zijlstra 已提交
2276 2277
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2278 2279 2280
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2281

2282
			perf_event_sync_stat(ctx, next_ctx);
2283
		}
2284 2285
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2286
	}
2287
	rcu_read_unlock();
2288

2289
	if (do_switch) {
2290
		raw_spin_lock(&ctx->lock);
2291
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2292
		cpuctx->task_ctx = NULL;
2293
		raw_spin_unlock(&ctx->lock);
2294
	}
T
Thomas Gleixner 已提交
2295 2296
}

P
Peter Zijlstra 已提交
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2311 2312
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2313 2314 2315 2316 2317
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2318 2319 2320 2321 2322 2323 2324

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2325
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2326 2327
}

2328
static void task_ctx_sched_out(struct perf_event_context *ctx)
2329
{
P
Peter Zijlstra 已提交
2330
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2331

2332 2333
	if (!cpuctx->task_ctx)
		return;
2334 2335 2336 2337

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2338
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2339 2340 2341
	cpuctx->task_ctx = NULL;
}

2342 2343 2344 2345 2346 2347 2348
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2349 2350
}

2351
static void
2352
ctx_pinned_sched_in(struct perf_event_context *ctx,
2353
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2354
{
2355
	struct perf_event *event;
T
Thomas Gleixner 已提交
2356

2357 2358
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2359
			continue;
2360
		if (!event_filter_match(event))
2361 2362
			continue;

S
Stephane Eranian 已提交
2363 2364 2365 2366
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2367
		if (group_can_go_on(event, cpuctx, 1))
2368
			group_sched_in(event, cpuctx, ctx);
2369 2370 2371 2372 2373

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2374 2375 2376
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2377
		}
2378
	}
2379 2380 2381 2382
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2383
		      struct perf_cpu_context *cpuctx)
2384 2385 2386
{
	struct perf_event *event;
	int can_add_hw = 1;
2387

2388 2389 2390
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2391
			continue;
2392 2393
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2394
		 * of events:
2395
		 */
2396
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2397 2398
			continue;

S
Stephane Eranian 已提交
2399 2400 2401 2402
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2403
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2404
			if (group_sched_in(event, cpuctx, ctx))
2405
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2406
		}
T
Thomas Gleixner 已提交
2407
	}
2408 2409 2410 2411 2412
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2413 2414
	     enum event_type_t event_type,
	     struct task_struct *task)
2415
{
S
Stephane Eranian 已提交
2416
	u64 now;
2417
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2418

2419
	ctx->is_active |= event_type;
2420
	if (likely(!ctx->nr_events))
2421
		return;
2422

S
Stephane Eranian 已提交
2423 2424
	now = perf_clock();
	ctx->timestamp = now;
2425
	perf_cgroup_set_timestamp(task, ctx);
2426 2427 2428 2429
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2430
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2431
		ctx_pinned_sched_in(ctx, cpuctx);
2432 2433

	/* Then walk through the lower prio flexible groups */
2434
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2435
		ctx_flexible_sched_in(ctx, cpuctx);
2436 2437
}

2438
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2439 2440
			     enum event_type_t event_type,
			     struct task_struct *task)
2441 2442 2443
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2444
	ctx_sched_in(ctx, cpuctx, event_type, task);
2445 2446
}

S
Stephane Eranian 已提交
2447 2448
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2449
{
P
Peter Zijlstra 已提交
2450
	struct perf_cpu_context *cpuctx;
2451

P
Peter Zijlstra 已提交
2452
	cpuctx = __get_cpu_context(ctx);
2453 2454 2455
	if (cpuctx->task_ctx == ctx)
		return;

2456
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2457
	perf_pmu_disable(ctx->pmu);
2458 2459 2460 2461 2462 2463 2464
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2465 2466
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2467

2468 2469
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2470 2471 2472
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2473 2474 2475 2476
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2477
	perf_pmu_rotate_start(ctx->pmu);
2478 2479
}

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2551 2552
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2553 2554 2555 2556 2557 2558 2559 2560 2561
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2562
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2563
	}
S
Stephane Eranian 已提交
2564 2565 2566 2567 2568 2569
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2570
		perf_cgroup_sched_in(prev, task);
2571 2572 2573 2574

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2575 2576
}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2604
#define REDUCE_FLS(a, b)		\
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2644 2645 2646
	if (!divisor)
		return dividend;

2647 2648 2649
	return div64_u64(dividend, divisor);
}

2650 2651 2652
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2653
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2654
{
2655
	struct hw_perf_event *hwc = &event->hw;
2656
	s64 period, sample_period;
2657 2658
	s64 delta;

2659
	period = perf_calculate_period(event, nsec, count);
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2670

2671
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2672 2673 2674
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2675
		local64_set(&hwc->period_left, 0);
2676 2677 2678

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2679
	}
2680 2681
}

2682 2683 2684 2685 2686 2687 2688
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2689
{
2690 2691
	struct perf_event *event;
	struct hw_perf_event *hwc;
2692
	u64 now, period = TICK_NSEC;
2693
	s64 delta;
2694

2695 2696 2697 2698 2699 2700
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2701 2702
		return;

2703
	raw_spin_lock(&ctx->lock);
2704
	perf_pmu_disable(ctx->pmu);
2705

2706
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2707
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2708 2709
			continue;

2710
		if (!event_filter_match(event))
2711 2712
			continue;

2713
		hwc = &event->hw;
2714

2715 2716
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2717
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2718
			event->pmu->start(event, 0);
2719 2720
		}

2721
		if (!event->attr.freq || !event->attr.sample_freq)
2722 2723
			continue;

2724 2725 2726 2727 2728
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2729
		now = local64_read(&event->count);
2730 2731
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2732

2733 2734 2735
		/*
		 * restart the event
		 * reload only if value has changed
2736 2737 2738
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2739
		 */
2740
		if (delta > 0)
2741
			perf_adjust_period(event, period, delta, false);
2742 2743

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2744
	}
2745

2746
	perf_pmu_enable(ctx->pmu);
2747
	raw_spin_unlock(&ctx->lock);
2748 2749
}

2750
/*
2751
 * Round-robin a context's events:
2752
 */
2753
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2754
{
2755 2756 2757 2758 2759 2760
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2761 2762
}

2763
/*
2764 2765 2766
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2767
 */
2768
static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2769
{
P
Peter Zijlstra 已提交
2770
	struct perf_event_context *ctx = NULL;
2771
	int rotate = 0, remove = 1;
2772

2773
	if (cpuctx->ctx.nr_events) {
2774
		remove = 0;
2775 2776 2777
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2778

P
Peter Zijlstra 已提交
2779
	ctx = cpuctx->task_ctx;
2780
	if (ctx && ctx->nr_events) {
2781
		remove = 0;
2782 2783 2784
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2785

2786
	if (!rotate)
2787 2788
		goto done;

2789
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2790
	perf_pmu_disable(cpuctx->ctx.pmu);
2791

2792 2793 2794
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2795

2796 2797 2798
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2799

2800
	perf_event_sched_in(cpuctx, ctx, current);
2801

2802 2803
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2804
done:
2805 2806
	if (remove)
		list_del_init(&cpuctx->rotation_list);
2807 2808

	return rotate;
2809 2810
}

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
#ifdef CONFIG_NO_HZ_FULL
bool perf_event_can_stop_tick(void)
{
	if (list_empty(&__get_cpu_var(rotation_list)))
		return true;
	else
		return false;
}
#endif

2821 2822 2823 2824
void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2825 2826
	struct perf_event_context *ctx;
	int throttled;
2827

2828 2829
	WARN_ON(!irqs_disabled());

2830 2831 2832
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2833
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2834 2835 2836 2837 2838 2839
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);
2840
	}
T
Thomas Gleixner 已提交
2841 2842
}

2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2853
	__perf_event_mark_enabled(event);
2854 2855 2856 2857

	return 1;
}

2858
/*
2859
 * Enable all of a task's events that have been marked enable-on-exec.
2860 2861
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2862
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2863
{
2864
	struct perf_event *event;
2865 2866
	unsigned long flags;
	int enabled = 0;
2867
	int ret;
2868 2869

	local_irq_save(flags);
2870
	if (!ctx || !ctx->nr_events)
2871 2872
		goto out;

2873 2874 2875 2876 2877 2878 2879
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2880
	perf_cgroup_sched_out(current, NULL);
2881

2882
	raw_spin_lock(&ctx->lock);
2883
	task_ctx_sched_out(ctx);
2884

2885
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2886 2887 2888
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2889 2890 2891
	}

	/*
2892
	 * Unclone this context if we enabled any event.
2893
	 */
2894 2895
	if (enabled)
		unclone_ctx(ctx);
2896

2897
	raw_spin_unlock(&ctx->lock);
2898

2899 2900 2901
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2902
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2903
out:
2904 2905 2906
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2907
/*
2908
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2909
 */
2910
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2911
{
2912 2913
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2914
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2915

2916 2917 2918 2919
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2920 2921
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2922 2923 2924 2925
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2926
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2927
	if (ctx->is_active) {
2928
		update_context_time(ctx);
S
Stephane Eranian 已提交
2929 2930
		update_cgrp_time_from_event(event);
	}
2931
	update_event_times(event);
2932 2933
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2934
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2935 2936
}

P
Peter Zijlstra 已提交
2937 2938
static inline u64 perf_event_count(struct perf_event *event)
{
2939
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2940 2941
}

2942
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2943 2944
{
	/*
2945 2946
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2947
	 */
2948 2949 2950 2951
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2952 2953 2954
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2955
		raw_spin_lock_irqsave(&ctx->lock, flags);
2956 2957 2958 2959 2960
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2961
		if (ctx->is_active) {
2962
			update_context_time(ctx);
S
Stephane Eranian 已提交
2963 2964
			update_cgrp_time_from_event(event);
		}
2965
		update_event_times(event);
2966
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2967 2968
	}

P
Peter Zijlstra 已提交
2969
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2970 2971
}

2972
/*
2973
 * Initialize the perf_event context in a task_struct:
2974
 */
2975
static void __perf_event_init_context(struct perf_event_context *ctx)
2976
{
2977
	raw_spin_lock_init(&ctx->lock);
2978
	mutex_init(&ctx->mutex);
2979 2980
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2981 2982
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2998
	}
2999 3000 3001
	ctx->pmu = pmu;

	return ctx;
3002 3003
}

3004 3005 3006 3007 3008
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
3009 3010

	rcu_read_lock();
3011
	if (!vpid)
T
Thomas Gleixner 已提交
3012 3013
		task = current;
	else
3014
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
3015 3016 3017 3018 3019 3020 3021 3022
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
3023 3024 3025 3026
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

3027 3028 3029 3030 3031 3032 3033
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

3034 3035 3036
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
3037
static struct perf_event_context *
M
Matt Helsley 已提交
3038
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
3039
{
3040
	struct perf_event_context *ctx;
3041
	struct perf_cpu_context *cpuctx;
3042
	unsigned long flags;
P
Peter Zijlstra 已提交
3043
	int ctxn, err;
T
Thomas Gleixner 已提交
3044

3045
	if (!task) {
3046
		/* Must be root to operate on a CPU event: */
3047
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
3048 3049 3050
			return ERR_PTR(-EACCES);

		/*
3051
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
3052 3053 3054
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
3055
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
3056 3057
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
3058
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
3059
		ctx = &cpuctx->ctx;
3060
		get_ctx(ctx);
3061
		++ctx->pin_count;
T
Thomas Gleixner 已提交
3062 3063 3064 3065

		return ctx;
	}

P
Peter Zijlstra 已提交
3066 3067 3068 3069 3070
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
3071
retry:
P
Peter Zijlstra 已提交
3072
	ctx = perf_lock_task_context(task, ctxn, &flags);
3073
	if (ctx) {
3074
		unclone_ctx(ctx);
3075
		++ctx->pin_count;
3076
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3077
	} else {
3078
		ctx = alloc_perf_context(pmu, task);
3079 3080 3081
		err = -ENOMEM;
		if (!ctx)
			goto errout;
3082

3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
3093
		else {
3094
			get_ctx(ctx);
3095
			++ctx->pin_count;
3096
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3097
		}
3098 3099 3100
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
3101
			put_ctx(ctx);
3102 3103 3104 3105

			if (err == -EAGAIN)
				goto retry;
			goto errout;
3106 3107 3108
		}
	}

T
Thomas Gleixner 已提交
3109
	return ctx;
3110

P
Peter Zijlstra 已提交
3111
errout:
3112
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
3113 3114
}

L
Li Zefan 已提交
3115 3116
static void perf_event_free_filter(struct perf_event *event);

3117
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
3118
{
3119
	struct perf_event *event;
P
Peter Zijlstra 已提交
3120

3121 3122 3123
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
3124
	perf_event_free_filter(event);
3125
	kfree(event);
P
Peter Zijlstra 已提交
3126 3127
}

3128
static void ring_buffer_put(struct ring_buffer *rb);
3129
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3130

3131
static void free_event(struct perf_event *event)
3132
{
3133
	irq_work_sync(&event->pending);
3134

3135
	if (!event->parent) {
3136
		if (event->attach_state & PERF_ATTACH_TASK)
3137
			static_key_slow_dec_deferred(&perf_sched_events);
3138
		if (event->attr.mmap || event->attr.mmap_data)
3139 3140 3141 3142 3143
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
3144 3145
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
3146 3147
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
3148
			static_key_slow_dec_deferred(&perf_sched_events);
3149
		}
3150 3151 3152 3153

		if (has_branch_stack(event)) {
			static_key_slow_dec_deferred(&perf_sched_events);
			/* is system-wide event */
3154
			if (!(event->attach_state & PERF_ATTACH_TASK)) {
3155 3156
				atomic_dec(&per_cpu(perf_branch_stack_events,
						    event->cpu));
3157
			}
3158
		}
3159
	}
3160

3161
	if (event->rb) {
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
		struct ring_buffer *rb;

		/*
		 * Can happen when we close an event with re-directed output.
		 *
		 * Since we have a 0 refcount, perf_mmap_close() will skip
		 * over us; possibly making our ring_buffer_put() the last.
		 */
		mutex_lock(&event->mmap_mutex);
		rb = event->rb;
		if (rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* could be last */
		}
		mutex_unlock(&event->mmap_mutex);
3178 3179
	}

S
Stephane Eranian 已提交
3180 3181 3182
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

3183 3184
	if (event->destroy)
		event->destroy(event);
3185

P
Peter Zijlstra 已提交
3186 3187 3188
	if (event->ctx)
		put_ctx(event->ctx);

3189
	call_rcu(&event->rcu_head, free_event_rcu);
3190 3191
}

3192
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
3193
{
3194
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
3195

3196
	WARN_ON_ONCE(ctx->parent_ctx);
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3210
	raw_spin_lock_irq(&ctx->lock);
3211
	perf_group_detach(event);
3212
	raw_spin_unlock_irq(&ctx->lock);
3213
	perf_remove_from_context(event);
3214
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
3215

3216
	free_event(event);
T
Thomas Gleixner 已提交
3217 3218 3219

	return 0;
}
3220
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
3221

3222 3223 3224
/*
 * Called when the last reference to the file is gone.
 */
3225
static void put_event(struct perf_event *event)
3226
{
P
Peter Zijlstra 已提交
3227
	struct task_struct *owner;
3228

3229 3230
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
3231

P
Peter Zijlstra 已提交
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

3265 3266 3267 3268 3269 3270 3271
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
3272 3273
}

3274
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3275
{
3276
	struct perf_event *child;
3277 3278
	u64 total = 0;

3279 3280 3281
	*enabled = 0;
	*running = 0;

3282
	mutex_lock(&event->child_mutex);
3283
	total += perf_event_read(event);
3284 3285 3286 3287 3288 3289
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3290
		total += perf_event_read(child);
3291 3292 3293
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3294
	mutex_unlock(&event->child_mutex);
3295 3296 3297

	return total;
}
3298
EXPORT_SYMBOL_GPL(perf_event_read_value);
3299

3300
static int perf_event_read_group(struct perf_event *event,
3301 3302
				   u64 read_format, char __user *buf)
{
3303
	struct perf_event *leader = event->group_leader, *sub;
3304 3305
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3306
	u64 values[5];
3307
	u64 count, enabled, running;
3308

3309
	mutex_lock(&ctx->mutex);
3310
	count = perf_event_read_value(leader, &enabled, &running);
3311 3312

	values[n++] = 1 + leader->nr_siblings;
3313 3314 3315 3316
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3317 3318 3319
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3320 3321 3322 3323

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3324
		goto unlock;
3325

3326
	ret = size;
3327

3328
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3329
		n = 0;
3330

3331
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3332 3333 3334 3335 3336
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3337
		if (copy_to_user(buf + ret, values, size)) {
3338 3339 3340
			ret = -EFAULT;
			goto unlock;
		}
3341 3342

		ret += size;
3343
	}
3344 3345
unlock:
	mutex_unlock(&ctx->mutex);
3346

3347
	return ret;
3348 3349
}

3350
static int perf_event_read_one(struct perf_event *event,
3351 3352
				 u64 read_format, char __user *buf)
{
3353
	u64 enabled, running;
3354 3355 3356
	u64 values[4];
	int n = 0;

3357 3358 3359 3360 3361
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3362
	if (read_format & PERF_FORMAT_ID)
3363
		values[n++] = primary_event_id(event);
3364 3365 3366 3367 3368 3369 3370

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3371
/*
3372
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3373 3374
 */
static ssize_t
3375
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3376
{
3377
	u64 read_format = event->attr.read_format;
3378
	int ret;
T
Thomas Gleixner 已提交
3379

3380
	/*
3381
	 * Return end-of-file for a read on a event that is in
3382 3383 3384
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3385
	if (event->state == PERF_EVENT_STATE_ERROR)
3386 3387
		return 0;

3388
	if (count < event->read_size)
3389 3390
		return -ENOSPC;

3391
	WARN_ON_ONCE(event->ctx->parent_ctx);
3392
	if (read_format & PERF_FORMAT_GROUP)
3393
		ret = perf_event_read_group(event, read_format, buf);
3394
	else
3395
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3396

3397
	return ret;
T
Thomas Gleixner 已提交
3398 3399 3400 3401 3402
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3403
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3404

3405
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3406 3407 3408 3409
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3410
	struct perf_event *event = file->private_data;
3411
	struct ring_buffer *rb;
3412
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3413

3414
	/*
3415 3416
	 * Pin the event->rb by taking event->mmap_mutex; otherwise
	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3417 3418
	 */
	mutex_lock(&event->mmap_mutex);
3419 3420
	rb = event->rb;
	if (rb)
3421
		events = atomic_xchg(&rb->poll, 0);
3422 3423
	mutex_unlock(&event->mmap_mutex);

3424
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3425 3426 3427 3428

	return events;
}

3429
static void perf_event_reset(struct perf_event *event)
3430
{
3431
	(void)perf_event_read(event);
3432
	local64_set(&event->count, 0);
3433
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3434 3435
}

3436
/*
3437 3438 3439 3440
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3441
 */
3442 3443
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3444
{
3445
	struct perf_event *child;
P
Peter Zijlstra 已提交
3446

3447 3448 3449 3450
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3451
		func(child);
3452
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3453 3454
}

3455 3456
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3457
{
3458 3459
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3460

3461 3462
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3463
	event = event->group_leader;
3464

3465 3466
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3467
		perf_event_for_each_child(sibling, func);
3468
	mutex_unlock(&ctx->mutex);
3469 3470
}

3471
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3472
{
3473
	struct perf_event_context *ctx = event->ctx;
3474 3475 3476
	int ret = 0;
	u64 value;

3477
	if (!is_sampling_event(event))
3478 3479
		return -EINVAL;

3480
	if (copy_from_user(&value, arg, sizeof(value)))
3481 3482 3483 3484 3485
		return -EFAULT;

	if (!value)
		return -EINVAL;

3486
	raw_spin_lock_irq(&ctx->lock);
3487 3488
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3489 3490 3491 3492
			ret = -EINVAL;
			goto unlock;
		}

3493
		event->attr.sample_freq = value;
3494
	} else {
3495 3496
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3497 3498
	}
unlock:
3499
	raw_spin_unlock_irq(&ctx->lock);
3500 3501 3502 3503

	return ret;
}

3504 3505
static const struct file_operations perf_fops;

3506
static inline int perf_fget_light(int fd, struct fd *p)
3507
{
3508 3509 3510
	struct fd f = fdget(fd);
	if (!f.file)
		return -EBADF;
3511

3512 3513 3514
	if (f.file->f_op != &perf_fops) {
		fdput(f);
		return -EBADF;
3515
	}
3516 3517
	*p = f;
	return 0;
3518 3519 3520 3521
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3522
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3523

3524 3525
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3526 3527
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3528
	u32 flags = arg;
3529 3530

	switch (cmd) {
3531 3532
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3533
		break;
3534 3535
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3536
		break;
3537 3538
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3539
		break;
P
Peter Zijlstra 已提交
3540

3541 3542
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3543

3544 3545
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3546

3547
	case PERF_EVENT_IOC_SET_OUTPUT:
3548 3549 3550
	{
		int ret;
		if (arg != -1) {
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
			struct perf_event *output_event;
			struct fd output;
			ret = perf_fget_light(arg, &output);
			if (ret)
				return ret;
			output_event = output.file->private_data;
			ret = perf_event_set_output(event, output_event);
			fdput(output);
		} else {
			ret = perf_event_set_output(event, NULL);
3561 3562 3563
		}
		return ret;
	}
3564

L
Li Zefan 已提交
3565 3566 3567
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3568
	default:
P
Peter Zijlstra 已提交
3569
		return -ENOTTY;
3570
	}
P
Peter Zijlstra 已提交
3571 3572

	if (flags & PERF_IOC_FLAG_GROUP)
3573
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3574
	else
3575
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3576 3577

	return 0;
3578 3579
}

3580
int perf_event_task_enable(void)
3581
{
3582
	struct perf_event *event;
3583

3584 3585 3586 3587
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3588 3589 3590 3591

	return 0;
}

3592
int perf_event_task_disable(void)
3593
{
3594
	struct perf_event *event;
3595

3596 3597 3598 3599
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3600 3601 3602 3603

	return 0;
}

3604
static int perf_event_index(struct perf_event *event)
3605
{
P
Peter Zijlstra 已提交
3606 3607 3608
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3609
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3610 3611
		return 0;

3612
	return event->pmu->event_idx(event);
3613 3614
}

3615
static void calc_timer_values(struct perf_event *event,
3616
				u64 *now,
3617 3618
				u64 *enabled,
				u64 *running)
3619
{
3620
	u64 ctx_time;
3621

3622 3623
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3624 3625 3626 3627
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3628
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3629 3630 3631
{
}

3632 3633 3634 3635 3636
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3637
void perf_event_update_userpage(struct perf_event *event)
3638
{
3639
	struct perf_event_mmap_page *userpg;
3640
	struct ring_buffer *rb;
3641
	u64 enabled, running, now;
3642 3643

	rcu_read_lock();
3644 3645 3646 3647 3648 3649 3650 3651 3652
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3653
	calc_timer_values(event, &now, &enabled, &running);
3654 3655
	rb = rcu_dereference(event->rb);
	if (!rb)
3656 3657
		goto unlock;

3658
	userpg = rb->user_page;
3659

3660 3661 3662 3663 3664
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3665
	++userpg->lock;
3666
	barrier();
3667
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3668
	userpg->offset = perf_event_count(event);
3669
	if (userpg->index)
3670
		userpg->offset -= local64_read(&event->hw.prev_count);
3671

3672
	userpg->time_enabled = enabled +
3673
			atomic64_read(&event->child_total_time_enabled);
3674

3675
	userpg->time_running = running +
3676
			atomic64_read(&event->child_total_time_running);
3677

3678
	arch_perf_update_userpage(userpg, now);
3679

3680
	barrier();
3681
	++userpg->lock;
3682
	preempt_enable();
3683
unlock:
3684
	rcu_read_unlock();
3685 3686
}

3687 3688 3689
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3690
	struct ring_buffer *rb;
3691 3692 3693 3694 3695 3696 3697 3698 3699
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3700 3701
	rb = rcu_dereference(event->rb);
	if (!rb)
3702 3703 3704 3705 3706
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3707
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3722 3723 3724 3725 3726 3727 3728 3729 3730
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
3731 3732
	if (list_empty(&event->rb_entry))
		list_add(&event->rb_entry, &rb->event_list);
3733 3734 3735
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

3736
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3755 3756 3757 3758
	if (rb) {
		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
			wake_up_all(&event->waitq);
	}
3759 3760 3761
	rcu_read_unlock();
}

3762
static void rb_free_rcu(struct rcu_head *rcu_head)
3763
{
3764
	struct ring_buffer *rb;
3765

3766 3767
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3768 3769
}

3770
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3771
{
3772
	struct ring_buffer *rb;
3773

3774
	rcu_read_lock();
3775 3776 3777 3778
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3779 3780 3781
	}
	rcu_read_unlock();

3782
	return rb;
3783 3784
}

3785
static void ring_buffer_put(struct ring_buffer *rb)
3786
{
3787
	if (!atomic_dec_and_test(&rb->refcount))
3788
		return;
3789

3790
	WARN_ON_ONCE(!list_empty(&rb->event_list));
3791

3792
	call_rcu(&rb->rcu_head, rb_free_rcu);
3793 3794 3795 3796
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3797
	struct perf_event *event = vma->vm_file->private_data;
3798

3799
	atomic_inc(&event->mmap_count);
3800
	atomic_inc(&event->rb->mmap_count);
3801 3802
}

3803 3804 3805 3806 3807 3808 3809 3810
/*
 * A buffer can be mmap()ed multiple times; either directly through the same
 * event, or through other events by use of perf_event_set_output().
 *
 * In order to undo the VM accounting done by perf_mmap() we need to destroy
 * the buffer here, where we still have a VM context. This means we need
 * to detach all events redirecting to us.
 */
3811 3812
static void perf_mmap_close(struct vm_area_struct *vma)
{
3813
	struct perf_event *event = vma->vm_file->private_data;
3814

3815 3816 3817 3818
	struct ring_buffer *rb = event->rb;
	struct user_struct *mmap_user = rb->mmap_user;
	int mmap_locked = rb->mmap_locked;
	unsigned long size = perf_data_size(rb);
3819

3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
	atomic_dec(&rb->mmap_count);

	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
		return;

	/* Detach current event from the buffer. */
	rcu_assign_pointer(event->rb, NULL);
	ring_buffer_detach(event, rb);
	mutex_unlock(&event->mmap_mutex);

	/* If there's still other mmap()s of this buffer, we're done. */
	if (atomic_read(&rb->mmap_count)) {
		ring_buffer_put(rb); /* can't be last */
		return;
	}
3835

3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851
	/*
	 * No other mmap()s, detach from all other events that might redirect
	 * into the now unreachable buffer. Somewhat complicated by the
	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
	 */
again:
	rcu_read_lock();
	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
		if (!atomic_long_inc_not_zero(&event->refcount)) {
			/*
			 * This event is en-route to free_event() which will
			 * detach it and remove it from the list.
			 */
			continue;
		}
		rcu_read_unlock();
3852

3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
		mutex_lock(&event->mmap_mutex);
		/*
		 * Check we didn't race with perf_event_set_output() which can
		 * swizzle the rb from under us while we were waiting to
		 * acquire mmap_mutex.
		 *
		 * If we find a different rb; ignore this event, a next
		 * iteration will no longer find it on the list. We have to
		 * still restart the iteration to make sure we're not now
		 * iterating the wrong list.
		 */
		if (event->rb == rb) {
			rcu_assign_pointer(event->rb, NULL);
			ring_buffer_detach(event, rb);
			ring_buffer_put(rb); /* can't be last, we still have one */
P
Peter Zijlstra 已提交
3868
		}
3869
		mutex_unlock(&event->mmap_mutex);
3870
		put_event(event);
3871

3872 3873 3874 3875 3876
		/*
		 * Restart the iteration; either we're on the wrong list or
		 * destroyed its integrity by doing a deletion.
		 */
		goto again;
3877
	}
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
	rcu_read_unlock();

	/*
	 * It could be there's still a few 0-ref events on the list; they'll
	 * get cleaned up by free_event() -- they'll also still have their
	 * ref on the rb and will free it whenever they are done with it.
	 *
	 * Aside from that, this buffer is 'fully' detached and unmapped,
	 * undo the VM accounting.
	 */

	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
	vma->vm_mm->pinned_vm -= mmap_locked;
	free_uid(mmap_user);

	ring_buffer_put(rb); /* could be last */
3894 3895
}

3896
static const struct vm_operations_struct perf_mmap_vmops = {
3897 3898 3899 3900
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3901 3902 3903 3904
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3905
	struct perf_event *event = file->private_data;
3906
	unsigned long user_locked, user_lock_limit;
3907
	struct user_struct *user = current_user();
3908
	unsigned long locked, lock_limit;
3909
	struct ring_buffer *rb;
3910 3911
	unsigned long vma_size;
	unsigned long nr_pages;
3912
	long user_extra, extra;
3913
	int ret = 0, flags = 0;
3914

3915 3916 3917
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3918
	 * same rb.
3919 3920 3921 3922
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3923
	if (!(vma->vm_flags & VM_SHARED))
3924
		return -EINVAL;
3925 3926 3927 3928

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3929
	/*
3930
	 * If we have rb pages ensure they're a power-of-two number, so we
3931 3932 3933
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3934 3935
		return -EINVAL;

3936
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3937 3938
		return -EINVAL;

3939 3940
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3941

3942
	WARN_ON_ONCE(event->ctx->parent_ctx);
3943
again:
3944
	mutex_lock(&event->mmap_mutex);
3945
	if (event->rb) {
3946
		if (event->rb->nr_pages != nr_pages) {
3947
			ret = -EINVAL;
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
			goto unlock;
		}

		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
			/*
			 * Raced against perf_mmap_close() through
			 * perf_event_set_output(). Try again, hope for better
			 * luck.
			 */
			mutex_unlock(&event->mmap_mutex);
			goto again;
		}

3961 3962 3963
		goto unlock;
	}

3964
	user_extra = nr_pages + 1;
3965
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3966 3967 3968 3969 3970 3971

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3972
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3973

3974 3975 3976
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3977

3978
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3979
	lock_limit >>= PAGE_SHIFT;
3980
	locked = vma->vm_mm->pinned_vm + extra;
3981

3982 3983
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3984 3985 3986
		ret = -EPERM;
		goto unlock;
	}
3987

3988
	WARN_ON(event->rb);
3989

3990
	if (vma->vm_flags & VM_WRITE)
3991
		flags |= RING_BUFFER_WRITABLE;
3992

3993 3994 3995 3996
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3997
	if (!rb) {
3998
		ret = -ENOMEM;
3999
		goto unlock;
4000
	}
P
Peter Zijlstra 已提交
4001

4002
	atomic_set(&rb->mmap_count, 1);
P
Peter Zijlstra 已提交
4003 4004
	rb->mmap_locked = extra;
	rb->mmap_user = get_current_user();
4005

4006
	atomic_long_add(user_extra, &user->locked_vm);
P
Peter Zijlstra 已提交
4007 4008
	vma->vm_mm->pinned_vm += extra;

4009
	ring_buffer_attach(event, rb);
P
Peter Zijlstra 已提交
4010
	rcu_assign_pointer(event->rb, rb);
4011

4012 4013
	perf_event_update_userpage(event);

4014
unlock:
4015 4016
	if (!ret)
		atomic_inc(&event->mmap_count);
4017
	mutex_unlock(&event->mmap_mutex);
4018

4019 4020 4021 4022
	/*
	 * Since pinned accounting is per vm we cannot allow fork() to copy our
	 * vma.
	 */
P
Peter Zijlstra 已提交
4023
	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4024
	vma->vm_ops = &perf_mmap_vmops;
4025 4026

	return ret;
4027 4028
}

P
Peter Zijlstra 已提交
4029 4030
static int perf_fasync(int fd, struct file *filp, int on)
{
A
Al Viro 已提交
4031
	struct inode *inode = file_inode(filp);
4032
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
4033 4034 4035
	int retval;

	mutex_lock(&inode->i_mutex);
4036
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
4037 4038 4039 4040 4041 4042 4043 4044
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
4045
static const struct file_operations perf_fops = {
4046
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
4047 4048 4049
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
4050 4051
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
4052
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
4053
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
4054 4055
};

4056
/*
4057
 * Perf event wakeup
4058 4059 4060 4061 4062
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

4063
void perf_event_wakeup(struct perf_event *event)
4064
{
4065
	ring_buffer_wakeup(event);
4066

4067 4068 4069
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
4070
	}
4071 4072
}

4073
static void perf_pending_event(struct irq_work *entry)
4074
{
4075 4076
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
4077

4078 4079 4080
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
4081 4082
	}

4083 4084 4085
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
4086 4087 4088
	}
}

4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

4236 4237 4238
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

4266 4267 4268
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

4295 4296 4297
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
4298 4299 4300 4301 4302
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

4303
static void perf_output_read_one(struct perf_output_handle *handle,
4304 4305
				 struct perf_event *event,
				 u64 enabled, u64 running)
4306
{
4307
	u64 read_format = event->attr.read_format;
4308 4309 4310
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
4311
	values[n++] = perf_event_count(event);
4312
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4313
		values[n++] = enabled +
4314
			atomic64_read(&event->child_total_time_enabled);
4315 4316
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4317
		values[n++] = running +
4318
			atomic64_read(&event->child_total_time_running);
4319 4320
	}
	if (read_format & PERF_FORMAT_ID)
4321
		values[n++] = primary_event_id(event);
4322

4323
	__output_copy(handle, values, n * sizeof(u64));
4324 4325 4326
}

/*
4327
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4328 4329
 */
static void perf_output_read_group(struct perf_output_handle *handle,
4330 4331
			    struct perf_event *event,
			    u64 enabled, u64 running)
4332
{
4333 4334
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
4335 4336 4337 4338 4339 4340
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4341
		values[n++] = enabled;
4342 4343

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4344
		values[n++] = running;
4345

4346
	if (leader != event)
4347 4348
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4349
	values[n++] = perf_event_count(leader);
4350
	if (read_format & PERF_FORMAT_ID)
4351
		values[n++] = primary_event_id(leader);
4352

4353
	__output_copy(handle, values, n * sizeof(u64));
4354

4355
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4356 4357
		n = 0;

4358
		if (sub != event)
4359 4360
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4361
		values[n++] = perf_event_count(sub);
4362
		if (read_format & PERF_FORMAT_ID)
4363
			values[n++] = primary_event_id(sub);
4364

4365
		__output_copy(handle, values, n * sizeof(u64));
4366 4367 4368
	}
}

4369 4370 4371
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4372
static void perf_output_read(struct perf_output_handle *handle,
4373
			     struct perf_event *event)
4374
{
4375
	u64 enabled = 0, running = 0, now;
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4387
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4388
		calc_timer_values(event, &now, &enabled, &running);
4389

4390
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4391
		perf_output_read_group(handle, event, enabled, running);
4392
	else
4393
		perf_output_read_one(handle, event, enabled, running);
4394 4395
}

4396 4397 4398
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4399
			struct perf_event *event)
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4430
		perf_output_read(handle, event);
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4441
			__output_copy(handle, data->callchain, size);
4442 4443 4444 4445 4446 4447 4448 4449 4450
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4451 4452
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4513 4514 4515 4516 4517

	if (sample_type & PERF_SAMPLE_STACK_USER)
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
A
Andi Kleen 已提交
4518 4519 4520

	if (sample_type & PERF_SAMPLE_WEIGHT)
		perf_output_put(handle, data->weight);
4521 4522 4523

	if (sample_type & PERF_SAMPLE_DATA_SRC)
		perf_output_put(handle, data->data_src.val);
4524 4525 4526 4527
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4528
			 struct perf_event *event,
4529
			 struct pt_regs *regs)
4530
{
4531
	u64 sample_type = event->attr.sample_type;
4532

4533
	header->type = PERF_RECORD_SAMPLE;
4534
	header->size = sizeof(*header) + event->header_size;
4535 4536 4537

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4538

4539
	__perf_event_header__init_id(header, data, event);
4540

4541
	if (sample_type & PERF_SAMPLE_IP)
4542 4543
		data->ip = perf_instruction_pointer(regs);

4544
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4545
		int size = 1;
4546

4547
		data->callchain = perf_callchain(event, regs);
4548 4549 4550 4551 4552

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4553 4554
	}

4555
	if (sample_type & PERF_SAMPLE_RAW) {
4556 4557 4558 4559 4560 4561 4562 4563
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4564
		header->size += size;
4565
	}
4566 4567 4568 4569 4570 4571 4572 4573 4574

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4618
}
4619

4620
static void perf_event_output(struct perf_event *event,
4621 4622 4623 4624 4625
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4626

4627 4628 4629
	/* protect the callchain buffers */
	rcu_read_lock();

4630
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4631

4632
	if (perf_output_begin(&handle, event, header.size))
4633
		goto exit;
4634

4635
	perf_output_sample(&handle, &header, data, event);
4636

4637
	perf_output_end(&handle);
4638 4639 4640

exit:
	rcu_read_unlock();
4641 4642
}

4643
/*
4644
 * read event_id
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4655
perf_event_read_event(struct perf_event *event,
4656 4657 4658
			struct task_struct *task)
{
	struct perf_output_handle handle;
4659
	struct perf_sample_data sample;
4660
	struct perf_read_event read_event = {
4661
		.header = {
4662
			.type = PERF_RECORD_READ,
4663
			.misc = 0,
4664
			.size = sizeof(read_event) + event->read_size,
4665
		},
4666 4667
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4668
	};
4669
	int ret;
4670

4671
	perf_event_header__init_id(&read_event.header, &sample, event);
4672
	ret = perf_output_begin(&handle, event, read_event.header.size);
4673 4674 4675
	if (ret)
		return;

4676
	perf_output_put(&handle, read_event);
4677
	perf_output_read(&handle, event);
4678
	perf_event__output_id_sample(event, &handle, &sample);
4679

4680 4681 4682
	perf_output_end(&handle);
}

4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
typedef int  (perf_event_aux_match_cb)(struct perf_event *event, void *data);
typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);

static void
perf_event_aux_ctx(struct perf_event_context *ctx,
		   perf_event_aux_match_cb match,
		   perf_event_aux_output_cb output,
		   void *data)
{
	struct perf_event *event;

	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (event->state < PERF_EVENT_STATE_INACTIVE)
			continue;
		if (!event_filter_match(event))
			continue;
		if (match(event, data))
			output(event, data);
	}
}

static void
perf_event_aux(perf_event_aux_match_cb match,
	       perf_event_aux_output_cb output,
	       void *data,
	       struct perf_event_context *task_ctx)
{
	struct perf_cpu_context *cpuctx;
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int ctxn;

	rcu_read_lock();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
		if (cpuctx->unique_pmu != pmu)
			goto next;
		perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
		if (task_ctx)
			goto next;
		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			goto next;
		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_aux_ctx(ctx, match, output, data);
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
	}

	if (task_ctx) {
		preempt_disable();
		perf_event_aux_ctx(task_ctx, match, output, data);
		preempt_enable();
	}
	rcu_read_unlock();
}

P
Peter Zijlstra 已提交
4741
/*
P
Peter Zijlstra 已提交
4742 4743
 * task tracking -- fork/exit
 *
4744
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4745 4746
 */

P
Peter Zijlstra 已提交
4747
struct perf_task_event {
4748
	struct task_struct		*task;
4749
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4750 4751 4752 4753 4754 4755

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4756 4757
		u32				tid;
		u32				ptid;
4758
		u64				time;
4759
	} event_id;
P
Peter Zijlstra 已提交
4760 4761
};

4762
static void perf_event_task_output(struct perf_event *event,
4763
				   void *data)
P
Peter Zijlstra 已提交
4764
{
4765
	struct perf_task_event *task_event = data;
P
Peter Zijlstra 已提交
4766
	struct perf_output_handle handle;
4767
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4768
	struct task_struct *task = task_event->task;
4769
	int ret, size = task_event->event_id.header.size;
4770

4771
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4772

4773
	ret = perf_output_begin(&handle, event,
4774
				task_event->event_id.header.size);
4775
	if (ret)
4776
		goto out;
P
Peter Zijlstra 已提交
4777

4778 4779
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4780

4781 4782
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4783

4784
	perf_output_put(&handle, task_event->event_id);
4785

4786 4787
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4788
	perf_output_end(&handle);
4789 4790
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4791 4792
}

4793 4794
static int perf_event_task_match(struct perf_event *event,
				 void *data __maybe_unused)
P
Peter Zijlstra 已提交
4795
{
4796 4797
	return event->attr.comm || event->attr.mmap ||
	       event->attr.mmap_data || event->attr.task;
P
Peter Zijlstra 已提交
4798 4799
}

4800 4801
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4802
			      int new)
P
Peter Zijlstra 已提交
4803
{
P
Peter Zijlstra 已提交
4804
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4805

4806 4807 4808
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4809 4810
		return;

P
Peter Zijlstra 已提交
4811
	task_event = (struct perf_task_event){
4812 4813
		.task	  = task,
		.task_ctx = task_ctx,
4814
		.event_id    = {
P
Peter Zijlstra 已提交
4815
			.header = {
4816
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4817
				.misc = 0,
4818
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4819
			},
4820 4821
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4822 4823
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4824
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4825 4826 4827
		},
	};

4828 4829 4830 4831
	perf_event_aux(perf_event_task_match,
		       perf_event_task_output,
		       &task_event,
		       task_ctx);
P
Peter Zijlstra 已提交
4832 4833
}

4834
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4835
{
4836
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4837 4838
}

4839 4840 4841 4842 4843
/*
 * comm tracking
 */

struct perf_comm_event {
4844 4845
	struct task_struct	*task;
	char			*comm;
4846 4847 4848 4849 4850 4851 4852
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4853
	} event_id;
4854 4855
};

4856
static void perf_event_comm_output(struct perf_event *event,
4857
				   void *data)
4858
{
4859
	struct perf_comm_event *comm_event = data;
4860
	struct perf_output_handle handle;
4861
	struct perf_sample_data sample;
4862
	int size = comm_event->event_id.header.size;
4863 4864 4865 4866
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4867
				comm_event->event_id.header.size);
4868 4869

	if (ret)
4870
		goto out;
4871

4872 4873
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4874

4875
	perf_output_put(&handle, comm_event->event_id);
4876
	__output_copy(&handle, comm_event->comm,
4877
				   comm_event->comm_size);
4878 4879 4880

	perf_event__output_id_sample(event, &handle, &sample);

4881
	perf_output_end(&handle);
4882 4883
out:
	comm_event->event_id.header.size = size;
4884 4885
}

4886 4887
static int perf_event_comm_match(struct perf_event *event,
				 void *data __maybe_unused)
4888
{
4889
	return event->attr.comm;
4890 4891
}

4892
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4893
{
4894
	char comm[TASK_COMM_LEN];
4895 4896
	unsigned int size;

4897
	memset(comm, 0, sizeof(comm));
4898
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4899
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4900 4901 4902 4903

	comm_event->comm = comm;
	comm_event->comm_size = size;

4904
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
P
Peter Zijlstra 已提交
4905

4906 4907 4908 4909
	perf_event_aux(perf_event_comm_match,
		       perf_event_comm_output,
		       comm_event,
		       NULL);
4910 4911
}

4912
void perf_event_comm(struct task_struct *task)
4913
{
4914
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4915 4916
	struct perf_event_context *ctx;
	int ctxn;
4917

4918
	rcu_read_lock();
P
Peter Zijlstra 已提交
4919 4920 4921 4922
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4923

P
Peter Zijlstra 已提交
4924 4925
		perf_event_enable_on_exec(ctx);
	}
4926
	rcu_read_unlock();
4927

4928
	if (!atomic_read(&nr_comm_events))
4929
		return;
4930

4931
	comm_event = (struct perf_comm_event){
4932
		.task	= task,
4933 4934
		/* .comm      */
		/* .comm_size */
4935
		.event_id  = {
4936
			.header = {
4937
				.type = PERF_RECORD_COMM,
4938 4939 4940 4941 4942
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4943 4944 4945
		},
	};

4946
	perf_event_comm_event(&comm_event);
4947 4948
}

4949 4950 4951 4952 4953
/*
 * mmap tracking
 */

struct perf_mmap_event {
4954 4955 4956 4957
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4958 4959 4960 4961 4962 4963 4964 4965 4966

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4967
	} event_id;
4968 4969
};

4970
static void perf_event_mmap_output(struct perf_event *event,
4971
				   void *data)
4972
{
4973
	struct perf_mmap_event *mmap_event = data;
4974
	struct perf_output_handle handle;
4975
	struct perf_sample_data sample;
4976
	int size = mmap_event->event_id.header.size;
4977
	int ret;
4978

4979 4980
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4981
				mmap_event->event_id.header.size);
4982
	if (ret)
4983
		goto out;
4984

4985 4986
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4987

4988
	perf_output_put(&handle, mmap_event->event_id);
4989
	__output_copy(&handle, mmap_event->file_name,
4990
				   mmap_event->file_size);
4991 4992 4993

	perf_event__output_id_sample(event, &handle, &sample);

4994
	perf_output_end(&handle);
4995 4996
out:
	mmap_event->event_id.header.size = size;
4997 4998
}

4999
static int perf_event_mmap_match(struct perf_event *event,
5000
				 void *data)
5001
{
5002 5003 5004
	struct perf_mmap_event *mmap_event = data;
	struct vm_area_struct *vma = mmap_event->vma;
	int executable = vma->vm_flags & VM_EXEC;
5005

5006 5007
	return (!executable && event->attr.mmap_data) ||
	       (executable && event->attr.mmap);
5008 5009
}

5010
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5011
{
5012 5013
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
5014 5015 5016
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
5017
	const char *name;
5018

5019 5020
	memset(tmp, 0, sizeof(tmp));

5021
	if (file) {
5022
		/*
5023
		 * d_path works from the end of the rb backwards, so we
5024 5025 5026 5027
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
5028 5029 5030 5031
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
5032
		name = d_path(&file->f_path, buf, PATH_MAX);
5033 5034 5035 5036 5037
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
5038 5039
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
5040 5041
				       sizeof(tmp) - 1);
			tmp[sizeof(tmp) - 1] = '\0';
5042
			goto got_name;
5043
		}
5044 5045 5046 5047

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
5048 5049 5050 5051 5052 5053 5054 5055
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
5056 5057
		}

5058 5059 5060 5061 5062
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
5063
	size = ALIGN(strlen(name)+1, sizeof(u64));
5064 5065 5066 5067

	mmap_event->file_name = name;
	mmap_event->file_size = size;

5068 5069 5070
	if (!(vma->vm_flags & VM_EXEC))
		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;

5071
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5072

5073 5074 5075 5076
	perf_event_aux(perf_event_mmap_match,
		       perf_event_mmap_output,
		       mmap_event,
		       NULL);
5077

5078 5079 5080
	kfree(buf);
}

5081
void perf_event_mmap(struct vm_area_struct *vma)
5082
{
5083 5084
	struct perf_mmap_event mmap_event;

5085
	if (!atomic_read(&nr_mmap_events))
5086 5087 5088
		return;

	mmap_event = (struct perf_mmap_event){
5089
		.vma	= vma,
5090 5091
		/* .file_name */
		/* .file_size */
5092
		.event_id  = {
5093
			.header = {
5094
				.type = PERF_RECORD_MMAP,
5095
				.misc = PERF_RECORD_MISC_USER,
5096 5097 5098 5099
				/* .size */
			},
			/* .pid */
			/* .tid */
5100 5101
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
5102
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5103 5104 5105
		},
	};

5106
	perf_event_mmap_event(&mmap_event);
5107 5108
}

5109 5110 5111 5112
/*
 * IRQ throttle logging
 */

5113
static void perf_log_throttle(struct perf_event *event, int enable)
5114 5115
{
	struct perf_output_handle handle;
5116
	struct perf_sample_data sample;
5117 5118 5119 5120 5121
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
5122
		u64				id;
5123
		u64				stream_id;
5124 5125
	} throttle_event = {
		.header = {
5126
			.type = PERF_RECORD_THROTTLE,
5127 5128 5129
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
5130
		.time		= perf_clock(),
5131 5132
		.id		= primary_event_id(event),
		.stream_id	= event->id,
5133 5134
	};

5135
	if (enable)
5136
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5137

5138 5139 5140
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
5141
				throttle_event.header.size);
5142 5143 5144 5145
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
5146
	perf_event__output_id_sample(event, &handle, &sample);
5147 5148 5149
	perf_output_end(&handle);
}

5150
/*
5151
 * Generic event overflow handling, sampling.
5152 5153
 */

5154
static int __perf_event_overflow(struct perf_event *event,
5155 5156
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
5157
{
5158 5159
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
5160
	u64 seq;
5161 5162
	int ret = 0;

5163 5164 5165 5166 5167 5168 5169
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

5170 5171 5172 5173 5174 5175 5176 5177 5178
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
5179 5180
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
5181 5182
			ret = 1;
		}
5183
	}
5184

5185
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
5186
		u64 now = perf_clock();
5187
		s64 delta = now - hwc->freq_time_stamp;
5188

5189
		hwc->freq_time_stamp = now;
5190

5191
		if (delta > 0 && delta < 2*TICK_NSEC)
5192
			perf_adjust_period(event, delta, hwc->last_period, true);
5193 5194
	}

5195 5196
	/*
	 * XXX event_limit might not quite work as expected on inherited
5197
	 * events
5198 5199
	 */

5200 5201
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
5202
		ret = 1;
5203
		event->pending_kill = POLL_HUP;
5204 5205
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
5206 5207
	}

5208
	if (event->overflow_handler)
5209
		event->overflow_handler(event, data, regs);
5210
	else
5211
		perf_event_output(event, data, regs);
5212

P
Peter Zijlstra 已提交
5213
	if (event->fasync && event->pending_kill) {
5214 5215
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
5216 5217
	}

5218
	return ret;
5219 5220
}

5221
int perf_event_overflow(struct perf_event *event,
5222 5223
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
5224
{
5225
	return __perf_event_overflow(event, 1, data, regs);
5226 5227
}

5228
/*
5229
 * Generic software event infrastructure
5230 5231
 */

5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

5243
/*
5244 5245
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
5246 5247 5248 5249
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

5250
u64 perf_swevent_set_period(struct perf_event *event)
5251
{
5252
	struct hw_perf_event *hwc = &event->hw;
5253 5254 5255 5256 5257
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
5258 5259

again:
5260
	old = val = local64_read(&hwc->period_left);
5261 5262
	if (val < 0)
		return 0;
5263

5264 5265 5266
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
5267
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5268
		goto again;
5269

5270
	return nr;
5271 5272
}

5273
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5274
				    struct perf_sample_data *data,
5275
				    struct pt_regs *regs)
5276
{
5277
	struct hw_perf_event *hwc = &event->hw;
5278
	int throttle = 0;
5279

5280 5281
	if (!overflow)
		overflow = perf_swevent_set_period(event);
5282

5283 5284
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
5285

5286
	for (; overflow; overflow--) {
5287
		if (__perf_event_overflow(event, throttle,
5288
					    data, regs)) {
5289 5290 5291 5292 5293 5294
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5295
		throttle = 1;
5296
	}
5297 5298
}

P
Peter Zijlstra 已提交
5299
static void perf_swevent_event(struct perf_event *event, u64 nr,
5300
			       struct perf_sample_data *data,
5301
			       struct pt_regs *regs)
5302
{
5303
	struct hw_perf_event *hwc = &event->hw;
5304

5305
	local64_add(nr, &event->count);
5306

5307 5308 5309
	if (!regs)
		return;

5310
	if (!is_sampling_event(event))
5311
		return;
5312

5313 5314 5315 5316 5317 5318
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5319
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5320
		return perf_swevent_overflow(event, 1, data, regs);
5321

5322
	if (local64_add_negative(nr, &hwc->period_left))
5323
		return;
5324

5325
	perf_swevent_overflow(event, 0, data, regs);
5326 5327
}

5328 5329 5330
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5331
	if (event->hw.state & PERF_HES_STOPPED)
5332
		return 1;
P
Peter Zijlstra 已提交
5333

5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5345
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5346
				enum perf_type_id type,
L
Li Zefan 已提交
5347 5348 5349
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5350
{
5351
	if (event->attr.type != type)
5352
		return 0;
5353

5354
	if (event->attr.config != event_id)
5355 5356
		return 0;

5357 5358
	if (perf_exclude_event(event, regs))
		return 0;
5359 5360 5361 5362

	return 1;
}

5363 5364 5365 5366 5367 5368 5369
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5370 5371
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5372
{
5373 5374 5375 5376
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5377

5378 5379
/* For the read side: events when they trigger */
static inline struct hlist_head *
5380
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5381 5382
{
	struct swevent_hlist *hlist;
5383

5384
	hlist = rcu_dereference(swhash->swevent_hlist);
5385 5386 5387
	if (!hlist)
		return NULL;

5388 5389 5390 5391 5392
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5393
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5404
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5405 5406 5407 5408 5409
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5410 5411 5412
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5413
				    u64 nr,
5414 5415
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5416
{
5417
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5418
	struct perf_event *event;
5419
	struct hlist_head *head;
5420

5421
	rcu_read_lock();
5422
	head = find_swevent_head_rcu(swhash, type, event_id);
5423 5424 5425
	if (!head)
		goto end;

5426
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
L
Li Zefan 已提交
5427
		if (perf_swevent_match(event, type, event_id, data, regs))
5428
			perf_swevent_event(event, nr, data, regs);
5429
	}
5430 5431
end:
	rcu_read_unlock();
5432 5433
}

5434
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5435
{
5436
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5437

5438
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5439
}
I
Ingo Molnar 已提交
5440
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5441

5442
inline void perf_swevent_put_recursion_context(int rctx)
5443
{
5444
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5445

5446
	put_recursion_context(swhash->recursion, rctx);
5447
}
5448

5449
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5450
{
5451
	struct perf_sample_data data;
5452 5453
	int rctx;

5454
	preempt_disable_notrace();
5455 5456 5457
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5458

5459
	perf_sample_data_init(&data, addr, 0);
5460

5461
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5462 5463

	perf_swevent_put_recursion_context(rctx);
5464
	preempt_enable_notrace();
5465 5466
}

5467
static void perf_swevent_read(struct perf_event *event)
5468 5469 5470
{
}

P
Peter Zijlstra 已提交
5471
static int perf_swevent_add(struct perf_event *event, int flags)
5472
{
5473
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5474
	struct hw_perf_event *hwc = &event->hw;
5475 5476
	struct hlist_head *head;

5477
	if (is_sampling_event(event)) {
5478
		hwc->last_period = hwc->sample_period;
5479
		perf_swevent_set_period(event);
5480
	}
5481

P
Peter Zijlstra 已提交
5482 5483
	hwc->state = !(flags & PERF_EF_START);

5484
	head = find_swevent_head(swhash, event);
5485 5486 5487 5488 5489
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5490 5491 5492
	return 0;
}

P
Peter Zijlstra 已提交
5493
static void perf_swevent_del(struct perf_event *event, int flags)
5494
{
5495
	hlist_del_rcu(&event->hlist_entry);
5496 5497
}

P
Peter Zijlstra 已提交
5498
static void perf_swevent_start(struct perf_event *event, int flags)
5499
{
P
Peter Zijlstra 已提交
5500
	event->hw.state = 0;
5501
}
I
Ingo Molnar 已提交
5502

P
Peter Zijlstra 已提交
5503
static void perf_swevent_stop(struct perf_event *event, int flags)
5504
{
P
Peter Zijlstra 已提交
5505
	event->hw.state = PERF_HES_STOPPED;
5506 5507
}

5508 5509
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5510
swevent_hlist_deref(struct swevent_htable *swhash)
5511
{
5512 5513
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5514 5515
}

5516
static void swevent_hlist_release(struct swevent_htable *swhash)
5517
{
5518
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5519

5520
	if (!hlist)
5521 5522
		return;

5523
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5524
	kfree_rcu(hlist, rcu_head);
5525 5526 5527 5528
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5529
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5530

5531
	mutex_lock(&swhash->hlist_mutex);
5532

5533 5534
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5535

5536
	mutex_unlock(&swhash->hlist_mutex);
5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5554
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5555 5556
	int err = 0;

5557
	mutex_lock(&swhash->hlist_mutex);
5558

5559
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5560 5561 5562 5563 5564 5565 5566
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5567
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5568
	}
5569
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5570
exit:
5571
	mutex_unlock(&swhash->hlist_mutex);
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5595
fail:
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5606
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5607

5608 5609 5610
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5611

5612 5613
	WARN_ON(event->parent);

5614
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5615 5616 5617 5618 5619
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
5620
	u64 event_id = event->attr.config;
5621 5622 5623 5624

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5625 5626 5627 5628 5629 5630
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5631 5632 5633 5634 5635 5636 5637 5638 5639
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5640
	if (event_id >= PERF_COUNT_SW_MAX)
5641 5642 5643 5644 5645 5646 5647 5648 5649
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5650
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5651 5652 5653 5654 5655 5656
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5657 5658 5659 5660 5661
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5662
static struct pmu perf_swevent = {
5663
	.task_ctx_nr	= perf_sw_context,
5664

5665
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5666 5667 5668 5669
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5670
	.read		= perf_swevent_read,
5671 5672

	.event_idx	= perf_swevent_event_idx,
5673 5674
};

5675 5676
#ifdef CONFIG_EVENT_TRACING

5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5691 5692
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5693 5694 5695 5696
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5697 5698 5699 5700 5701 5702 5703 5704 5705
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5706 5707
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5708 5709
{
	struct perf_sample_data data;
5710 5711
	struct perf_event *event;

5712 5713 5714 5715 5716
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5717
	perf_sample_data_init(&data, addr, 0);
5718 5719
	data.raw = &raw;

5720
	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5721
		if (perf_tp_event_match(event, &data, regs))
5722
			perf_swevent_event(event, count, &data, regs);
5723
	}
5724

5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5750
	perf_swevent_put_recursion_context(rctx);
5751 5752 5753
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5754
static void tp_perf_event_destroy(struct perf_event *event)
5755
{
5756
	perf_trace_destroy(event);
5757 5758
}

5759
static int perf_tp_event_init(struct perf_event *event)
5760
{
5761 5762
	int err;

5763 5764 5765
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5766 5767 5768 5769 5770 5771
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5772 5773
	err = perf_trace_init(event);
	if (err)
5774
		return err;
5775

5776
	event->destroy = tp_perf_event_destroy;
5777

5778 5779 5780 5781
	return 0;
}

static struct pmu perf_tracepoint = {
5782 5783
	.task_ctx_nr	= perf_sw_context,

5784
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5785 5786 5787 5788
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5789
	.read		= perf_swevent_read,
5790 5791

	.event_idx	= perf_swevent_event_idx,
5792 5793 5794 5795
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5796
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5797
}
L
Li Zefan 已提交
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5822
#else
L
Li Zefan 已提交
5823

5824
static inline void perf_tp_register(void)
5825 5826
{
}
L
Li Zefan 已提交
5827 5828 5829 5830 5831 5832 5833 5834 5835 5836

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5837
#endif /* CONFIG_EVENT_TRACING */
5838

5839
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5840
void perf_bp_event(struct perf_event *bp, void *data)
5841
{
5842 5843 5844
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5845
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5846

P
Peter Zijlstra 已提交
5847
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5848
		perf_swevent_event(bp, 1, &sample, regs);
5849 5850 5851
}
#endif

5852 5853 5854
/*
 * hrtimer based swevent callback
 */
5855

5856
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5857
{
5858 5859 5860 5861 5862
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5863

5864
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5865 5866 5867 5868

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5869
	event->pmu->read(event);
5870

5871
	perf_sample_data_init(&data, 0, event->hw.last_period);
5872 5873 5874
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5875
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5876
			if (__perf_event_overflow(event, 1, &data, regs))
5877 5878
				ret = HRTIMER_NORESTART;
	}
5879

5880 5881
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5882

5883
	return ret;
5884 5885
}

5886
static void perf_swevent_start_hrtimer(struct perf_event *event)
5887
{
5888
	struct hw_perf_event *hwc = &event->hw;
5889 5890 5891 5892
	s64 period;

	if (!is_sampling_event(event))
		return;
5893

5894 5895 5896 5897
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5898

5899 5900 5901 5902 5903
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5904
				ns_to_ktime(period), 0,
5905
				HRTIMER_MODE_REL_PINNED, 0);
5906
}
5907 5908

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5909
{
5910 5911
	struct hw_perf_event *hwc = &event->hw;

5912
	if (is_sampling_event(event)) {
5913
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5914
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5915 5916 5917

		hrtimer_cancel(&hwc->hrtimer);
	}
5918 5919
}

P
Peter Zijlstra 已提交
5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
5940
		hwc->last_period = hwc->sample_period;
P
Peter Zijlstra 已提交
5941 5942 5943 5944
		event->attr.freq = 0;
	}
}

5945 5946 5947 5948 5949
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5950
{
5951 5952 5953
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5954
	now = local_clock();
5955 5956
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5957 5958
}

P
Peter Zijlstra 已提交
5959
static void cpu_clock_event_start(struct perf_event *event, int flags)
5960
{
P
Peter Zijlstra 已提交
5961
	local64_set(&event->hw.prev_count, local_clock());
5962 5963 5964
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5965
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5966
{
5967 5968 5969
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5970

P
Peter Zijlstra 已提交
5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5984 5985 5986 5987
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5988

5989 5990 5991 5992 5993 5994 5995 5996
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

5997 5998 5999 6000 6001 6002
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6003 6004
	perf_swevent_init_hrtimer(event);

6005
	return 0;
6006 6007
}

6008
static struct pmu perf_cpu_clock = {
6009 6010
	.task_ctx_nr	= perf_sw_context,

6011
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
6012 6013 6014 6015
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
6016
	.read		= cpu_clock_event_read,
6017 6018

	.event_idx	= perf_swevent_event_idx,
6019 6020 6021 6022 6023 6024 6025
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
6026
{
6027 6028
	u64 prev;
	s64 delta;
6029

6030 6031 6032 6033
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
6034

P
Peter Zijlstra 已提交
6035
static void task_clock_event_start(struct perf_event *event, int flags)
6036
{
P
Peter Zijlstra 已提交
6037
	local64_set(&event->hw.prev_count, event->ctx->time);
6038 6039 6040
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
6041
static void task_clock_event_stop(struct perf_event *event, int flags)
6042 6043 6044
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
6045 6046 6047 6048 6049 6050
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
6051

P
Peter Zijlstra 已提交
6052 6053 6054 6055 6056 6057
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
6058 6059 6060 6061
}

static void task_clock_event_read(struct perf_event *event)
{
6062 6063 6064
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
6065 6066 6067 6068 6069

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
6070
{
6071 6072 6073 6074 6075 6076
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

6077 6078 6079 6080 6081 6082
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
6083 6084
	perf_swevent_init_hrtimer(event);

6085
	return 0;
L
Li Zefan 已提交
6086 6087
}

6088
static struct pmu perf_task_clock = {
6089 6090
	.task_ctx_nr	= perf_sw_context,

6091
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
6092 6093 6094 6095
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
6096
	.read		= task_clock_event_read,
6097 6098

	.event_idx	= perf_swevent_event_idx,
6099
};
L
Li Zefan 已提交
6100

P
Peter Zijlstra 已提交
6101
static void perf_pmu_nop_void(struct pmu *pmu)
6102 6103
{
}
L
Li Zefan 已提交
6104

P
Peter Zijlstra 已提交
6105
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
6106
{
P
Peter Zijlstra 已提交
6107
	return 0;
L
Li Zefan 已提交
6108 6109
}

P
Peter Zijlstra 已提交
6110
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
6111
{
P
Peter Zijlstra 已提交
6112
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
6113 6114
}

P
Peter Zijlstra 已提交
6115 6116 6117 6118 6119
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
6120

P
Peter Zijlstra 已提交
6121
static void perf_pmu_cancel_txn(struct pmu *pmu)
6122
{
P
Peter Zijlstra 已提交
6123
	perf_pmu_enable(pmu);
6124 6125
}

6126 6127 6128 6129 6130
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
6131 6132 6133 6134 6135
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
6136
{
P
Peter Zijlstra 已提交
6137
	struct pmu *pmu;
6138

P
Peter Zijlstra 已提交
6139 6140
	if (ctxn < 0)
		return NULL;
6141

P
Peter Zijlstra 已提交
6142 6143 6144 6145
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
6146

P
Peter Zijlstra 已提交
6147
	return NULL;
6148 6149
}

6150
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6151
{
6152 6153 6154 6155 6156 6157 6158
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

6159 6160
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
6161 6162 6163 6164 6165 6166
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
6167

P
Peter Zijlstra 已提交
6168
	mutex_lock(&pmus_lock);
6169
	/*
P
Peter Zijlstra 已提交
6170
	 * Like a real lame refcount.
6171
	 */
6172 6173 6174
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
6175
			goto out;
6176
		}
P
Peter Zijlstra 已提交
6177
	}
6178

6179
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
6180 6181
out:
	mutex_unlock(&pmus_lock);
6182
}
P
Peter Zijlstra 已提交
6183
static struct idr pmu_idr;
6184

P
Peter Zijlstra 已提交
6185 6186 6187 6188 6189 6190 6191 6192
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
static ssize_t
perf_event_mux_interval_ms_show(struct device *dev,
				struct device_attribute *attr,
				char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
}

static ssize_t
perf_event_mux_interval_ms_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct pmu *pmu = dev_get_drvdata(dev);
	int timer, cpu, ret;

	ret = kstrtoint(buf, 0, &timer);
	if (ret)
		return ret;

	if (timer < 1)
		return -EINVAL;

	/* same value, noting to do */
	if (timer == pmu->hrtimer_interval_ms)
		return count;

	pmu->hrtimer_interval_ms = timer;

	/* update all cpuctx for this PMU */
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);

		if (hrtimer_active(&cpuctx->hrtimer))
			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
	}

	return count;
}

P
Peter Zijlstra 已提交
6237
static struct device_attribute pmu_dev_attrs[] = {
6238 6239 6240
	__ATTR_RO(type),
	__ATTR_RW(perf_event_mux_interval_ms),
	__ATTR_NULL,
P
Peter Zijlstra 已提交
6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

6262
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

6283
static struct lock_class_key cpuctx_mutex;
6284
static struct lock_class_key cpuctx_lock;
6285

6286
int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6287
{
P
Peter Zijlstra 已提交
6288
	int cpu, ret;
6289

6290
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
6291 6292 6293 6294
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
6295

P
Peter Zijlstra 已提交
6296 6297 6298 6299 6300 6301
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
T
Tejun Heo 已提交
6302 6303 6304
		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
		if (type < 0) {
			ret = type;
P
Peter Zijlstra 已提交
6305 6306 6307 6308 6309
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
6310 6311 6312 6313 6314 6315
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
6316
skip_type:
P
Peter Zijlstra 已提交
6317 6318 6319
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
6320

W
Wei Yongjun 已提交
6321
	ret = -ENOMEM;
P
Peter Zijlstra 已提交
6322 6323
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
6324
		goto free_dev;
6325

P
Peter Zijlstra 已提交
6326 6327 6328 6329
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6330
		__perf_event_init_context(&cpuctx->ctx);
6331
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6332
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6333
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
6334
		cpuctx->ctx.pmu = pmu;
6335 6336 6337

		__perf_cpu_hrtimer_init(cpuctx, cpu);

6338
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6339
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6340
	}
6341

P
Peter Zijlstra 已提交
6342
got_cpu_context:
P
Peter Zijlstra 已提交
6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6357
		}
6358
	}
6359

P
Peter Zijlstra 已提交
6360 6361 6362 6363 6364
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6365 6366 6367
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6368
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6369 6370
	ret = 0;
unlock:
6371 6372
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6373
	return ret;
P
Peter Zijlstra 已提交
6374

P
Peter Zijlstra 已提交
6375 6376 6377 6378
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6379 6380 6381 6382
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6383 6384 6385
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6386 6387
}

6388
void perf_pmu_unregister(struct pmu *pmu)
6389
{
6390 6391 6392
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6393

6394
	/*
P
Peter Zijlstra 已提交
6395 6396
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6397
	 */
6398
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6399
	synchronize_rcu();
6400

P
Peter Zijlstra 已提交
6401
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6402 6403
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6404 6405
	device_del(pmu->dev);
	put_device(pmu->dev);
6406
	free_pmu_context(pmu);
6407
}
6408

6409 6410 6411 6412
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6413
	int ret;
6414 6415

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6416 6417 6418 6419

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6420
	if (pmu) {
6421
		event->pmu = pmu;
6422 6423 6424
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6425
		goto unlock;
6426
	}
P
Peter Zijlstra 已提交
6427

6428
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6429
		event->pmu = pmu;
6430
		ret = pmu->event_init(event);
6431
		if (!ret)
P
Peter Zijlstra 已提交
6432
			goto unlock;
6433

6434 6435
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6436
			goto unlock;
6437
		}
6438
	}
P
Peter Zijlstra 已提交
6439 6440
	pmu = ERR_PTR(-ENOENT);
unlock:
6441
	srcu_read_unlock(&pmus_srcu, idx);
6442

6443
	return pmu;
6444 6445
}

T
Thomas Gleixner 已提交
6446
/*
6447
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6448
 */
6449
static struct perf_event *
6450
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6451 6452 6453
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6454 6455
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6456
{
P
Peter Zijlstra 已提交
6457
	struct pmu *pmu;
6458 6459
	struct perf_event *event;
	struct hw_perf_event *hwc;
6460
	long err;
T
Thomas Gleixner 已提交
6461

6462 6463 6464 6465 6466
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6467
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6468
	if (!event)
6469
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6470

6471
	/*
6472
	 * Single events are their own group leaders, with an
6473 6474 6475
	 * empty sibling list:
	 */
	if (!group_leader)
6476
		group_leader = event;
6477

6478 6479
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6480

6481 6482 6483
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6484 6485
	INIT_LIST_HEAD(&event->rb_entry);

6486
	init_waitqueue_head(&event->waitq);
6487
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6488

6489
	mutex_init(&event->mmap_mutex);
6490

6491
	atomic_long_set(&event->refcount, 1);
6492 6493 6494 6495 6496
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6497

6498
	event->parent		= parent_event;
6499

6500
	event->ns		= get_pid_ns(task_active_pid_ns(current));
6501
	event->id		= atomic64_inc_return(&perf_event_id);
6502

6503
	event->state		= PERF_EVENT_STATE_INACTIVE;
6504

6505 6506
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
6507 6508 6509

		if (attr->type == PERF_TYPE_TRACEPOINT)
			event->hw.tp_target = task;
6510 6511 6512 6513
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
6514
		else if (attr->type == PERF_TYPE_BREAKPOINT)
6515 6516 6517 6518
			event->hw.bp_target = task;
#endif
	}

6519
	if (!overflow_handler && parent_event) {
6520
		overflow_handler = parent_event->overflow_handler;
6521 6522
		context = parent_event->overflow_handler_context;
	}
6523

6524
	event->overflow_handler	= overflow_handler;
6525
	event->overflow_handler_context = context;
6526

J
Jiri Olsa 已提交
6527
	perf_event__state_init(event);
6528

6529
	pmu = NULL;
6530

6531
	hwc = &event->hw;
6532
	hwc->sample_period = attr->sample_period;
6533
	if (attr->freq && attr->sample_freq)
6534
		hwc->sample_period = 1;
6535
	hwc->last_period = hwc->sample_period;
6536

6537
	local64_set(&hwc->period_left, hwc->sample_period);
6538

6539
	/*
6540
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6541
	 */
6542
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6543 6544
		goto done;

6545
	pmu = perf_init_event(event);
6546

6547 6548
done:
	err = 0;
6549
	if (!pmu)
6550
		err = -EINVAL;
6551 6552
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6553

6554
	if (err) {
6555 6556 6557
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6558
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6559
	}
6560

6561
	if (!event->parent) {
6562
		if (event->attach_state & PERF_ATTACH_TASK)
6563
			static_key_slow_inc(&perf_sched_events.key);
6564
		if (event->attr.mmap || event->attr.mmap_data)
6565 6566 6567 6568 6569
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6570 6571 6572 6573 6574 6575 6576
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6577 6578 6579 6580 6581 6582
		if (has_branch_stack(event)) {
			static_key_slow_inc(&perf_sched_events.key);
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_inc(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
6583
	}
6584

6585
	return event;
T
Thomas Gleixner 已提交
6586 6587
}

6588 6589
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6590 6591
{
	u32 size;
6592
	int ret;
6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6617 6618 6619
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6620 6621
	 */
	if (size > sizeof(*attr)) {
6622 6623 6624
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6625

6626 6627
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6628

6629
		for (; addr < end; addr++) {
6630 6631 6632 6633 6634 6635
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6636
		size = sizeof(*attr);
6637 6638 6639 6640 6641 6642
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6643
	if (attr->__reserved_1)
6644 6645 6646 6647 6648 6649 6650 6651
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
6680 6681
		/* privileged levels capture (kernel, hv): check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6682 6683
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
6684
	}
6685

6686
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6687
		ret = perf_reg_validate(attr->sample_regs_user);
6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6706

6707 6708 6709 6710 6711 6712 6713 6714 6715
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6716 6717
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6718
{
6719
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6720 6721
	int ret = -EINVAL;

6722
	if (!output_event)
6723 6724
		goto set;

6725 6726
	/* don't allow circular references */
	if (event == output_event)
6727 6728
		goto out;

6729 6730 6731 6732 6733 6734 6735
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6736
	 * If its not a per-cpu rb, it must be the same task.
6737 6738 6739 6740
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6741
set:
6742
	mutex_lock(&event->mmap_mutex);
6743 6744 6745
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6746

6747 6748
	old_rb = event->rb;

6749
	if (output_event) {
6750 6751 6752
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6753
			goto unlock;
6754 6755
	}

6756 6757
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773

	if (rb)
		ring_buffer_attach(event, rb);

	rcu_assign_pointer(event->rb, rb);

	if (old_rb) {
		ring_buffer_put(old_rb);
		/*
		 * Since we detached before setting the new rb, so that we
		 * could attach the new rb, we could have missed a wakeup.
		 * Provide it now.
		 */
		wake_up_all(&event->waitq);
	}

6774
	ret = 0;
6775 6776 6777
unlock:
	mutex_unlock(&event->mmap_mutex);

6778 6779 6780 6781
out:
	return ret;
}

T
Thomas Gleixner 已提交
6782
/**
6783
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6784
 *
6785
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6786
 * @pid:		target pid
I
Ingo Molnar 已提交
6787
 * @cpu:		target cpu
6788
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6789
 */
6790 6791
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6792
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6793
{
6794 6795
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6796 6797 6798
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6799
	struct fd group = {NULL, 0};
M
Matt Helsley 已提交
6800
	struct task_struct *task = NULL;
6801
	struct pmu *pmu;
6802
	int event_fd;
6803
	int move_group = 0;
6804
	int err;
T
Thomas Gleixner 已提交
6805

6806
	/* for future expandability... */
S
Stephane Eranian 已提交
6807
	if (flags & ~PERF_FLAG_ALL)
6808 6809
		return -EINVAL;

6810 6811 6812
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6813

6814 6815 6816 6817 6818
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6819
	if (attr.freq) {
6820
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6821 6822 6823
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6824 6825 6826 6827 6828 6829 6830 6831 6832
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6833
	event_fd = get_unused_fd();
6834 6835 6836
	if (event_fd < 0)
		return event_fd;

6837
	if (group_fd != -1) {
6838 6839
		err = perf_fget_light(group_fd, &group);
		if (err)
6840
			goto err_fd;
6841
		group_leader = group.file->private_data;
6842 6843 6844 6845 6846 6847
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6848
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6849 6850 6851 6852 6853 6854 6855
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6856 6857
	get_online_cpus();

6858 6859
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6860 6861
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6862
		goto err_task;
6863 6864
	}

S
Stephane Eranian 已提交
6865 6866 6867 6868
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6869 6870 6871 6872 6873 6874
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6875
		static_key_slow_inc(&perf_sched_events.key);
S
Stephane Eranian 已提交
6876 6877
	}

6878 6879 6880 6881 6882
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6906 6907 6908 6909

	/*
	 * Get the target context (task or percpu):
	 */
6910
	ctx = find_get_context(pmu, task, event->cpu);
6911 6912
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6913
		goto err_alloc;
6914 6915
	}

6916 6917 6918 6919 6920
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6921
	/*
6922
	 * Look up the group leader (we will attach this event to it):
6923
	 */
6924
	if (group_leader) {
6925
		err = -EINVAL;
6926 6927

		/*
I
Ingo Molnar 已提交
6928 6929 6930 6931
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6932
			goto err_context;
I
Ingo Molnar 已提交
6933 6934 6935
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6936
		 */
6937 6938 6939 6940 6941 6942 6943 6944
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6945 6946 6947
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6948
		if (attr.exclusive || attr.pinned)
6949
			goto err_context;
6950 6951 6952 6953 6954
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6955
			goto err_context;
6956
	}
T
Thomas Gleixner 已提交
6957

6958 6959 6960
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6961
		goto err_context;
6962
	}
6963

6964 6965 6966 6967
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6968
		perf_remove_from_context(group_leader);
J
Jiri Olsa 已提交
6969 6970 6971 6972 6973 6974 6975

		/*
		 * Removing from the context ends up with disabled
		 * event. What we want here is event in the initial
		 * startup state, ready to be add into new context.
		 */
		perf_event__state_init(group_leader);
6976 6977
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6978
			perf_remove_from_context(sibling);
J
Jiri Olsa 已提交
6979
			perf_event__state_init(sibling);
6980 6981 6982 6983
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6984
	}
6985

6986
	WARN_ON_ONCE(ctx->parent_ctx);
6987
	mutex_lock(&ctx->mutex);
6988 6989

	if (move_group) {
6990
		synchronize_rcu();
6991
		perf_install_in_context(ctx, group_leader, event->cpu);
6992 6993 6994
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6995
			perf_install_in_context(ctx, sibling, event->cpu);
6996 6997 6998 6999
			get_ctx(ctx);
		}
	}

7000
	perf_install_in_context(ctx, event, event->cpu);
7001
	++ctx->generation;
7002
	perf_unpin_context(ctx);
7003
	mutex_unlock(&ctx->mutex);
7004

7005 7006
	put_online_cpus();

7007
	event->owner = current;
P
Peter Zijlstra 已提交
7008

7009 7010 7011
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
7012

7013 7014 7015 7016
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
7017
	perf_event__id_header_size(event);
7018

7019 7020 7021 7022 7023 7024
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
7025
	fdput(group);
7026 7027
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
7028

7029
err_context:
7030
	perf_unpin_context(ctx);
7031
	put_ctx(ctx);
7032
err_alloc:
7033
	free_event(event);
P
Peter Zijlstra 已提交
7034
err_task:
7035
	put_online_cpus();
P
Peter Zijlstra 已提交
7036 7037
	if (task)
		put_task_struct(task);
7038
err_group_fd:
7039
	fdput(group);
7040 7041
err_fd:
	put_unused_fd(event_fd);
7042
	return err;
T
Thomas Gleixner 已提交
7043 7044
}

7045 7046 7047 7048 7049
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
7050
 * @task: task to profile (NULL for percpu)
7051 7052 7053
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
7054
				 struct task_struct *task,
7055 7056
				 perf_overflow_handler_t overflow_handler,
				 void *context)
7057 7058
{
	struct perf_event_context *ctx;
7059
	struct perf_event *event;
7060
	int err;
7061

7062 7063 7064
	/*
	 * Get the target context (task or percpu):
	 */
7065

7066 7067
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
7068 7069 7070 7071
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
7072

M
Matt Helsley 已提交
7073
	ctx = find_get_context(event->pmu, task, cpu);
7074 7075
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
7076
		goto err_free;
7077
	}
7078 7079 7080 7081 7082

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
7083
	perf_unpin_context(ctx);
7084 7085 7086 7087
	mutex_unlock(&ctx->mutex);

	return event;

7088 7089 7090
err_free:
	free_event(event);
err:
7091
	return ERR_PTR(err);
7092
}
7093
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7094

7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

7128
static void sync_child_event(struct perf_event *child_event,
7129
			       struct task_struct *child)
7130
{
7131
	struct perf_event *parent_event = child_event->parent;
7132
	u64 child_val;
7133

7134 7135
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
7136

P
Peter Zijlstra 已提交
7137
	child_val = perf_event_count(child_event);
7138 7139 7140 7141

	/*
	 * Add back the child's count to the parent's count:
	 */
7142
	atomic64_add(child_val, &parent_event->child_count);
7143 7144 7145 7146
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
7147 7148

	/*
7149
	 * Remove this event from the parent's list
7150
	 */
7151 7152 7153 7154
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
7155 7156

	/*
7157
	 * Release the parent event, if this was the last
7158 7159
	 * reference to it.
	 */
7160
	put_event(parent_event);
7161 7162
}

7163
static void
7164 7165
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
7166
			 struct task_struct *child)
7167
{
7168 7169 7170 7171 7172
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
7173

7174
	perf_remove_from_context(child_event);
7175

7176
	/*
7177
	 * It can happen that the parent exits first, and has events
7178
	 * that are still around due to the child reference. These
7179
	 * events need to be zapped.
7180
	 */
7181
	if (child_event->parent) {
7182 7183
		sync_child_event(child_event, child);
		free_event(child_event);
7184
	}
7185 7186
}

P
Peter Zijlstra 已提交
7187
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7188
{
7189 7190
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
7191
	unsigned long flags;
7192

P
Peter Zijlstra 已提交
7193
	if (likely(!child->perf_event_ctxp[ctxn])) {
7194
		perf_event_task(child, NULL, 0);
7195
		return;
P
Peter Zijlstra 已提交
7196
	}
7197

7198
	local_irq_save(flags);
7199 7200 7201 7202 7203 7204
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
7205
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7206 7207 7208

	/*
	 * Take the context lock here so that if find_get_context is
7209
	 * reading child->perf_event_ctxp, we wait until it has
7210 7211
	 * incremented the context's refcount before we do put_ctx below.
	 */
7212
	raw_spin_lock(&child_ctx->lock);
7213
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
7214
	child->perf_event_ctxp[ctxn] = NULL;
7215 7216 7217
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
7218
	 * the events from it.
7219 7220
	 */
	unclone_ctx(child_ctx);
7221
	update_context_time(child_ctx);
7222
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7223 7224

	/*
7225 7226 7227
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
7228
	 */
7229
	perf_event_task(child, child_ctx, 0);
7230

7231 7232 7233
	/*
	 * We can recurse on the same lock type through:
	 *
7234 7235
	 *   __perf_event_exit_task()
	 *     sync_child_event()
7236 7237
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
7238 7239 7240
	 *
	 * But since its the parent context it won't be the same instance.
	 */
7241
	mutex_lock(&child_ctx->mutex);
7242

7243
again:
7244 7245 7246 7247 7248
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7249
				 group_entry)
7250
		__perf_event_exit_task(child_event, child_ctx, child);
7251 7252

	/*
7253
	 * If the last event was a group event, it will have appended all
7254 7255 7256
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
7257 7258
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
7259
		goto again;
7260 7261 7262 7263

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
7264 7265
}

P
Peter Zijlstra 已提交
7266 7267 7268 7269 7270
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
7271
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7272 7273
	int ctxn;

P
Peter Zijlstra 已提交
7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
7289 7290 7291 7292
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

7305
	put_event(parent);
7306

7307
	perf_group_detach(event);
7308 7309 7310 7311
	list_del_event(event, ctx);
	free_event(event);
}

7312 7313
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
7314
 * perf_event_init_task below, used by fork() in case of fail.
7315
 */
7316
void perf_event_free_task(struct task_struct *task)
7317
{
P
Peter Zijlstra 已提交
7318
	struct perf_event_context *ctx;
7319
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
7320
	int ctxn;
7321

P
Peter Zijlstra 已提交
7322 7323 7324 7325
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
7326

P
Peter Zijlstra 已提交
7327
		mutex_lock(&ctx->mutex);
7328
again:
P
Peter Zijlstra 已提交
7329 7330 7331
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
7332

P
Peter Zijlstra 已提交
7333 7334 7335
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
7336

P
Peter Zijlstra 已提交
7337 7338 7339
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
7340

P
Peter Zijlstra 已提交
7341
		mutex_unlock(&ctx->mutex);
7342

P
Peter Zijlstra 已提交
7343 7344
		put_ctx(ctx);
	}
7345 7346
}

7347 7348 7349 7350 7351 7352 7353 7354
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7367
	unsigned long flags;
P
Peter Zijlstra 已提交
7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7380
					   child,
P
Peter Zijlstra 已提交
7381
					   group_leader, parent_event,
7382
				           NULL, NULL);
P
Peter Zijlstra 已提交
7383 7384
	if (IS_ERR(child_event))
		return child_event;
7385 7386 7387 7388 7389 7390

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7415 7416
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7417

7418 7419 7420 7421
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7422
	perf_event__id_header_size(child_event);
7423

P
Peter Zijlstra 已提交
7424 7425 7426
	/*
	 * Link it up in the child's context:
	 */
7427
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7428
	add_event_to_ctx(child_event, child_ctx);
7429
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7463 7464 7465 7466 7467
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7468
		   struct task_struct *child, int ctxn,
7469 7470 7471
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7472
	struct perf_event_context *child_ctx;
7473 7474 7475 7476

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7477 7478
	}

7479
	child_ctx = child->perf_event_ctxp[ctxn];
7480 7481 7482 7483 7484 7485 7486
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7487

7488
		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7489 7490
		if (!child_ctx)
			return -ENOMEM;
7491

P
Peter Zijlstra 已提交
7492
		child->perf_event_ctxp[ctxn] = child_ctx;
7493 7494 7495 7496 7497 7498 7499 7500 7501
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7502 7503
}

7504
/*
7505
 * Initialize the perf_event context in task_struct
7506
 */
P
Peter Zijlstra 已提交
7507
int perf_event_init_context(struct task_struct *child, int ctxn)
7508
{
7509
	struct perf_event_context *child_ctx, *parent_ctx;
7510 7511
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7512
	struct task_struct *parent = current;
7513
	int inherited_all = 1;
7514
	unsigned long flags;
7515
	int ret = 0;
7516

P
Peter Zijlstra 已提交
7517
	if (likely(!parent->perf_event_ctxp[ctxn]))
7518 7519
		return 0;

7520
	/*
7521 7522
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7523
	 */
P
Peter Zijlstra 已提交
7524
	parent_ctx = perf_pin_task_context(parent, ctxn);
7525

7526 7527 7528 7529 7530 7531 7532
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7533 7534 7535 7536
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7537
	mutex_lock(&parent_ctx->mutex);
7538 7539 7540 7541 7542

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7543
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7544 7545
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7546 7547 7548
		if (ret)
			break;
	}
7549

7550 7551 7552 7553 7554 7555 7556 7557 7558
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7559
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7560 7561
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7562
		if (ret)
7563
			break;
7564 7565
	}

7566 7567 7568
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7569
	child_ctx = child->perf_event_ctxp[ctxn];
7570

7571
	if (child_ctx && inherited_all) {
7572 7573 7574
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7575 7576 7577
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7578
		 */
P
Peter Zijlstra 已提交
7579
		cloned_ctx = parent_ctx->parent_ctx;
7580 7581
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7582
			child_ctx->parent_gen = parent_ctx->parent_gen;
7583 7584 7585 7586 7587
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7588 7589
	}

P
Peter Zijlstra 已提交
7590
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7591
	mutex_unlock(&parent_ctx->mutex);
7592

7593
	perf_unpin_context(parent_ctx);
7594
	put_ctx(parent_ctx);
7595

7596
	return ret;
7597 7598
}

P
Peter Zijlstra 已提交
7599 7600 7601 7602 7603 7604 7605
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7606 7607 7608 7609
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7610 7611 7612 7613 7614 7615 7616 7617 7618
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7619 7620
static void __init perf_event_init_all_cpus(void)
{
7621
	struct swevent_htable *swhash;
7622 7623 7624
	int cpu;

	for_each_possible_cpu(cpu) {
7625 7626
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7627
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7628 7629 7630
	}
}

7631
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7632
{
P
Peter Zijlstra 已提交
7633
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7634

7635
	mutex_lock(&swhash->hlist_mutex);
7636
	if (swhash->hlist_refcount > 0) {
7637 7638
		struct swevent_hlist *hlist;

7639 7640 7641
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7642
	}
7643
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7644 7645
}

P
Peter Zijlstra 已提交
7646
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7647
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7648
{
7649 7650 7651 7652 7653 7654 7655
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7656
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7657
{
P
Peter Zijlstra 已提交
7658
	struct perf_event_context *ctx = __info;
7659
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7660

P
Peter Zijlstra 已提交
7661
	perf_pmu_rotate_stop(ctx->pmu);
7662

7663
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7664
		__perf_remove_from_context(event);
7665
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7666
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7667
}
P
Peter Zijlstra 已提交
7668 7669 7670 7671 7672 7673 7674 7675 7676

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7677
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7678 7679 7680 7681 7682 7683 7684 7685

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7686
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7687
{
7688
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7689

7690 7691 7692
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7693

P
Peter Zijlstra 已提交
7694
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7695 7696
}
#else
7697
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7698 7699
#endif

P
Peter Zijlstra 已提交
7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7720 7721 7722 7723 7724
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7725
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7726 7727

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7728
	case CPU_DOWN_FAILED:
7729
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7730 7731
		break;

P
Peter Zijlstra 已提交
7732
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7733
	case CPU_DOWN_PREPARE:
7734
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7735 7736 7737 7738 7739 7740 7741 7742
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

7743
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7744
{
7745 7746
	int ret;

P
Peter Zijlstra 已提交
7747 7748
	idr_init(&pmu_idr);

7749
	perf_event_init_all_cpus();
7750
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7751 7752 7753
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7754 7755
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7756
	register_reboot_notifier(&perf_reboot_notifier);
7757 7758 7759

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7760 7761 7762

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7763 7764 7765 7766 7767 7768 7769

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7770
}
P
Peter Zijlstra 已提交
7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7799 7800

#ifdef CONFIG_CGROUP_PERF
7801
static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
S
Stephane Eranian 已提交
7802 7803 7804
{
	struct perf_cgroup *jc;

7805
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7818
static void perf_cgroup_css_free(struct cgroup *cont)
S
Stephane Eranian 已提交
7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7834
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7835
{
7836 7837 7838 7839
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7840 7841
}

7842 7843
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7844 7845 7846 7847 7848 7849 7850 7851 7852
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7853
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7854 7855 7856
}

struct cgroup_subsys perf_subsys = {
7857 7858
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
7859 7860
	.css_alloc	= perf_cgroup_css_alloc,
	.css_free	= perf_cgroup_css_free,
7861
	.exit		= perf_cgroup_exit,
7862
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7863 7864
};
#endif /* CONFIG_CGROUP_PERF */